Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4802-4812.doi: 10.3864/j.issn.0578-1752.2020.23.007
• PLANT PROTECTION • Previous Articles Next Articles
YU WeiDong1,2(),PAN BiYing1,QIU LingYu1,HUANG Zhen2,ZHOU Tai2,YE Lin2,TANG Bin1,WANG ShiGui1(
)
[1] | 徐春春, 纪龙, 陈中督, 方福平 . 2017年我国水稻产业形势分析及2018年展望. 中国稻米, 2018,24(2):1-3. |
XU C C, JI L, CHEN Z D, FANG F P . Analysis of China’s rice industry in 2017 and the outlook for 2018. China Rice, 2018,24(2):1-3. (in Chinese) | |
[2] |
CHENG X Y, ZHU L L, HE G C . Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant, 2013,6(3):621-634.
doi: 10.1093/mp/sst030 |
[3] |
LU G, ZHANG T, HE Y, ZHOU G . Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defense and volatile-biosynthesis genes. Scientific Reports, 2016,6:38581.
doi: 10.1038/srep38581 pmid: 27924841 |
[4] |
BODDUPALLY D, TAMIRISA S, GUNDRA S R, VUDEM D R, KHAREEDU V R . Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests. Scientific Reports, 2018,8:8458.
doi: 10.1038/s41598-018-26881-9 pmid: 29855556 |
[5] | 吴碧球, 黄所生, 黄凤宽 . 环境因素对水稻品种抗褐飞虱的影响研究概况. 植物保护, 2015,41(1):1-6. |
WU B Q, HUANG S S, HUANG F K . A review on factors affecting resistance of rice varieties to the rice brown planthopper. Plant Protection, 2015,41(1):1-6. (in Chinese) | |
[6] |
TANAKA K, ENDO S, KAZANO H . Toxicity of insecticides to predators of rice planthoppers: Spiders, the mirid bug and the dryinid wasp. Applied Entomology and Zoology, 2000,35(1):177-187.
doi: 10.1303/aez.2000.177 |
[7] | ROLA A C, PINGALI P L . Pesticides, Rice Productivity, and Farmers’ Health: An Economic Assessment. Manila, Philippines: International Rice Research Institute, 1993. |
[8] |
NAUEN R, DENHOLM I . Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Archives of Insect Biochemistry and Physiology, 2005,58(4):200-215.
doi: 10.1002/arch.20043 pmid: 15756698 |
[9] |
WANG H Y, YANG Y, SU J Y, SHEN J L, GAO C F, ZHU Y C . Assessment of the impact of insecticides on Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Crop Protection, 2008,27(3/5):514-522.
doi: 10.1016/j.cropro.2007.08.004 |
[10] |
BOTTRELL D G, SCHOENLY K G . Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. Journal of Asia-Pacific Entomology, 2012,15(1):122-140.
doi: 10.1016/j.aspen.2011.09.004 |
[11] |
BECKER A, SCHLÖDER P, STEELE J E, WEGENER G . The regulation of trehalose metabolism in insects. Experientia, 1996,52(5):433-439.
doi: 10.1007/BF01919312 pmid: 8706810 |
[12] |
ELBEIN A D, PAN Y T, PASTUSZAK I, CARROLL D . New insights on trehalose: A multifunctional molecule. Glycobiology, 2003,13(4):17R-27R.
doi: 10.1093/glycob/cwg047 pmid: 12626396 |
[13] |
IORDACHESCU M, IMAI R . Trehalose biosynthesis in response to abiotic stresses. Journal of Integrative Plant Biology, 2008,50(10):1223-1229.
doi: 10.1111/j.1744-7909.2008.00736.x |
[14] |
TANG B, CHEN J, YAO Q, PAN Z Q, XU W H, WANG S G, ZHANG W Q . Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. Journal of Insect Physiology, 2010,56(7):813-821.
doi: 10.1016/j.jinsphys.2010.02.009 pmid: 20193689 |
[15] |
SHUKLA E, THORAT L J, NATH B B, GAIKWAD S M . Insect trehalase: Physiological significance and potential applications. Glycobiology, 2015,25(4):357-367.
doi: 10.1093/glycob/cwu125 pmid: 25429048 |
[16] |
AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G . Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006,6:109.
doi: 10.1186/1471-2148-6-109 pmid: 17178000 |
[17] |
TANG B, WANG S, WANG S G, WANG H J, ZHANG J Y, CUI S Y . Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 2018,9:30.
doi: 10.3389/fphys.2018.00030 pmid: 29445344 |
[18] | 刘贻聪 . 丽蚜小蜂取食糖分对寄生烟粉虱的影响及糖转运蛋白诱导表达分析[D]. 北京: 中国农业科学院, 2018. |
LIU Y C . Effects of sugar diets on the parasitism of Encarsia formosa on Bemisia tabaci and analysis of induced expression of sugar transporter gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[19] | 郭婧, 范宇鸿, 宋立猛 . 葡萄糖转运蛋白-1在肿瘤中的表达及意义. 国际检验医学杂志, 2019,40(16):2009-2011, 2034. |
GUO J, FAN Y H, SONG L M . Expression and significance of glucose transporter-1 in tumors. International Journal of Laboratory Medicine, 2019,40(16):2009-2011, 2034. (in Chinese) | |
[20] | 杨泽众 . Q烟粉虱与内共生细菌互作机制及B烟粉虱糖转运蛋白超家族注释与功能研究[D]. 长沙: 湖南农业大学, 2017. |
YANG Z Z . Symbiotic relationship between Bemisia tabaci B and its endosymbionts and annotation and function research of sugar transporter superfamily of Bemisia tabaci B[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese) | |
[21] |
KIKAWADA T, SAITO A, KANAMORI Y, NAKAHARA Y, IWATA K, TANAKA D, WATANABE M, OKUDA T . Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(28):11585-11590.
doi: 10.1073/pnas.0702538104 pmid: 17606922 |
[22] |
KIKUTA S, NAKAMURA Y, HATTORI M, SATO R, KIKAWADA T, NODA H . Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 2015,64:60-67.
doi: 10.1016/j.ibmb.2015.07.015 pmid: 26226652 |
[23] |
PRICE D R, WILKINSON H S, GATEHOUSE J A . Functional expression and characterisation of a gut facilitative glucose transporter, NlHT1, from the phloem-feeding insect Nilaparvata lugens (rice brown planthopper). Insect Biochemistry and Molecular Biology, 2007,37(11):1138-1148.
doi: 10.1016/j.ibmb.2007.07.001 |
[24] |
KIKUTA S, KIKAWADA T, HAGIWARA-KOMODA Y, NAKASHIMA N, NODA H . Sugar transporter genes of the brown planthopper, Nilaparvata lugens: A facilitated glucose/fructose transporter. Insect Biochemistry and Molecular Biology, 2010,40(11):805-813.
doi: 10.1016/j.ibmb.2010.07.008 |
[25] |
PRICE D R, KARLEY A J, ASHFORD D A, ISAACS H V, POWNALL M E, WILKINSON H S, GATEHOUSE J A, DOUGLAS A E . Molecular characterisation of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum. Insect Biochemistry and Molecular Biology, 2007,37(4):307-317.
doi: 10.1016/j.ibmb.2006.12.005 |
[26] |
YOON J S, MOGILICHERLA K, GURUSAMY D, CHEN X, CHEREDDY S C, PALLI S R . Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(33):8334-8339.
doi: 10.1073/pnas.1809381115 pmid: 30061410 |
[27] |
XI Y, PAN P L, YE Y X, YU B, XU H J, ZHANG C X . Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015,24(1):29-40.
doi: 10.1111/imb.12133 pmid: 25224926 |
[28] |
ZHAO L N, YANG M M, SHEN Q D, SHI Z K, WANG S G, TANG B . Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports, 2016,6:27841.
doi: 10.1038/srep27841 pmid: 27328657 |
[29] |
LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[30] |
ZHANG L, QIU L Y, YANG H L, WANG H J, ZHOU M, WANG S G, TANG B . Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper, Nilaparvata lugens, by knockdown of TRE gene. Frontiers in Physiology, 2017,8:750.
doi: 10.3389/fphys.2017.00750 pmid: 29033849 |
[31] |
KANAMORI Y, SAITO A, HAGIWARA-KOMODA Y, TANAKA D, MITSUMASU K, KIKUTA S, WATANABE M, CORNETTE R, KIKAWADA T, OKUDA T . The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochemistry and Molecular Biology, 2010,40(1):30-37.
doi: 10.1016/j.ibmb.2009.12.006 |
[32] |
ULDRY M, THORENS B . The SLC2 family of facilitated hexose and polyol transporters. European Journal of Physiology, 2004,447(5):480-489.
doi: 10.1007/s00424-003-1085-0 pmid: 12750891 |
[33] |
SAIER M H . Genome archeology leading to the characterization and classification of transport proteins. Current Opinion in Microbiology, 1999,2(5):555-561.
doi: 10.1016/s1369-5274(99)00016-8 pmid: 10508720 |
[34] |
PRENTICE K, CHRISTIAENS O, PERTRY I, BAILEY A, NIBLETT C, GHISLAIN M, GHEYSEN G, SMAGGHE G . RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest Management Science, 2017,73(1):44-52.
doi: 10.1002/ps.4337 pmid: 27299308 |
[35] |
LOU Y H, PAN P L, YE Y X, CHENG C, XU H J, ZHANG C X . Identification and functional analysis of a novel chorion protein essential for egg maturation in the brown planthopper. Insect Molecular Biology, 2018,27(3):393-403.
doi: 10.1111/imb.12380 pmid: 29465791 |
[36] |
XI Y, PAN P L, ZHANG C X . The β-n-acetylhexosaminidase gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015,24(6):601-610.
doi: 10.1111/imb.12187 pmid: 26304035 |
[37] |
LI J X, CAO Z, GUO S, TIAN Z, LIU W, ZHU F, WANG X P . Molecular characterization and functional analysis of two trehalose transporter genes in the cabbage beetle, Colaphellus bowringi. Journal of Asia-Pacific Entomology, 2020,23(3):627-633.
doi: 10.1016/j.aspen.2020.05.011 |
[1] | LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344. |
[2] | PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432. |
[3] | XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024. |
[4] | ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968. |
[5] | SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314. |
[6] | CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982. |
[7] | GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960. |
[8] | YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571. |
[9] | WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346. |
[10] | GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484. |
[11] | CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160. |
[12] | NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750. |
[13] | Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153. |
[14] | LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532. |
[15] | NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability [J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953. |
|