Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2949-2960.doi: 10.3864/j.issn.0578-1752.2022.15.007

• PLANT PROTECTION • Previous Articles     Next Articles

Commercialization Status and Existing Problems of RNA Biopesticides

GUAN RuoBing1,2(),LI HaiChao1,2,MIAO XueXia2()   

  1. 1College of Plant Protection, Henan Agricultural University, Zhengzhou 450002
    2Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032
  • Received:2022-02-21 Accepted:2022-03-30 Online:2022-08-01 Published:2022-08-02
  • Contact: XueXia MIAO E-mail:guanruobing@126.com;xxm@cemps.ac.cn

Abstract:

RNA biopesticides use the principle of RNA interference (RNAi) to inhibit the expression of important genes in target organisms, causing the developmental retardation or death of harmful organisms, thereby achieving the purpose of pest control. The technology does not alter the genome of pests and cause adverse effects on the ecosystem. RNA biopesticides are called “the third revolution in the history of pesticides” because they have the advantages of precision, high efficiency, green and pollution-free, etc. In recent years, with the approval of Bayer’s insect-resistant transgenic maize MON87411 which expressing insect dsRNA, major traditional agrochemical companies have invested a lot of manpower and material resources in layout and product development. In addition, it has also attracted the attention of the capital market, and large numbers of companies based on RNAi technology for pest control have emerged, which has greatly accelerated the industrialization of RNA biopesticides. With the rapid development of RNA biopesticides, it will be bound to change the global pesticide market pattern, which is undoubtedly a new challenge. Although the R&D program in this field started early and the starting point is relatively high in our country, most of the research mainly focuses on basic theories, and the application development is relatively weak, which has lagged far behind the international counterparts. Compared with traditional pesticides, RNA biopesticides have their own unique features in both mechanism and application development. It is urgent to improve the corresponding laws and regulations to supervise and guide production, promote the rapid development of RNA biopesticides in our country, and reduce the risk of international pesticide giants forming a technological monopoly in this field. Based on this, this paper systematically summarized the current domestic and foreign R&D status, commercialization, and future development trends of RNA biopesticides, as well as the regulations and policies related to RNA biopesticides in Europe, the United States and other countries. In addition, the paper also pointed out some urgent problems in the progress of R&D and industrialization of RNA biopesticides, hoping to provide a useful reference for the development and supervision of RNA biopesticides in China.

Key words: RNA interference (RNAi), RNA biopesticide, pest control, commercialization progress, policies and regulations

[1] FIRE A, XU S Q, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C. Potent and specific genetic interference by double- stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
doi: 10.1038/35888
[2] PERRIMON N, NI J Q, PERKINS L. In vivo RNAi: Today and tomorrow. Cold Spring Harbor Perspectives in Biology, 2010, 2(8): a003640.
[3] BRUGGENWIRTH I M A, MARTINS P N. RNA interference therapeutics in organ transplantation: The dawn of a new era. American Jounal of Transplantation, 2020, 20(4): 931-941.
[4] ADAMS D, GONZALEZ-DUARTE A, O’RIORDAN W D, YANG C C, UEDA M, KRISTEN A V, TOURNEV I, SCHMIDT H H, COELHO T, BERK J L, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine, 2018, 379(1): 11-21.
doi: 10.1056/NEJMoa1716153
[5] DAMASE T R, SUKHOVERSHIN R, BOADA C, TARABALLI F, PETTIGREW R I, COOKE J P. The limitless future of RNA therapeutics. Frontiers in Bioengineering and Biotechnology, 2021, 9: 628137.
doi: 10.3389/fbioe.2021.628137
[6] LAMB Y N. Inclisiran: First approval. Drugs, 2021, 81(3): 389-395.
doi: 10.1007/s40265-021-01473-6
[7] CHRISTIAENS O, NIU J Z, TANING C N T. RNAi in insects: A revolution in fundamental research and pest control applications. Insects, 2020, 11(7): 415.
doi: 10.3390/insects11070415
[8] VOGEL E, SANTOS D, MINGELS L, VERDONCKT T W, BROECK J V. RNA interference in insects: Protecting beneficials and controlling pests. Frontiers in Physiology, 2018, 9: 1912.
doi: 10.3389/fphys.2018.01912
[9] 李本杰, 徐汉虹. 新一代杀虫剂--在叶部能稳定应用的dsRNA. 世界农药, 2016, 38(6): 1-7.
LI B J, XU H H. New pestcide-dsRNA can be stably applied in the leaves. World Pesticides, 2016, 38(6): 1-7. (in Chinese)
[10] TANING C N, ARPAIA S, CHRISTIAENS O, DIETZ-PFEILSTETTER A, JONES H, MEZZETTI B, SABBADINI S, SORTEBERG H G, SWEET J, VENTURA V, SMAGGHE G. RNA-based biocontrol compounds: Current status and perspectives to reach the market. Pest Management Science, 2020, 76(3): 841-845.
doi: 10.1002/ps.5686
[11] ZHU K Y, PALLI S R. Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 2020, 65: 293-311.
doi: 10.1146/annurev-ento-011019-025224
[12] 李晨雨, 裴新国, 张伊杰, 高聪芬. RNAi技术在昆虫防控研究中的应用和发展前景. 现代农药, 2021, 20(1): 1-6.
LI C Y, PEI X G, ZHANG Y J, GAO C F. Application and development prospect of RNAi technology in pest control. Modern Agrochemicals, 2021, 20(1): 1-6. (in Chinese)
[13] 胡少茹, 关若冰, 李海超, 苗雪霞. RNAi在害虫防治中应用的重要进展及存在问题. 昆虫学报, 2019, 62(4): 506-515.
HU S R, GUAN R B, LI H C, MIAO X X. Application of RNAi in insect pest management: Important progress and problems. Acta Entomologica Sinica, 2019, 62(4): 506-515. (in Chinese)
[14] ARPAIA S, CHRISTIAENS O, GIDDINGS K, JONES H, MEZZETTI B, MORONTA-BARRIOS F, PERRY J N, SWEET J B, TANING C N T, SMAGGHE G, DIETZ-PFEILSTETTER A. Biosafety of GM crop plants expressing dsRNA: Data requirements and EU regulatory considerations. Frontiers in Plant Science, 2020, 11: 940.
doi: 10.3389/fpls.2020.00940
[15] DARLINGTON M, REINDERS J D, SETHI A, LU A L, RAMASESHADRI P, FISCHER J R, BOECKMAN C J, PETRICK J S, ROPER J M, NARVA K E, VELEZ A M. RNAi for Western corn rootworm management: Lessons learned, challenges, and future directions. Insects, 2022, 13(1): 57.
doi: 10.3390/insects13010057
[16] BRAMLETT M, PLAETINCK G, MAIENFISCH P. RNA-based biocontrols-A new paradigm in crop protection. Engineering, 2020, 6(5): 522-527.
doi: 10.1016/j.eng.2019.09.008
[17] RODRIGUES T B, MISHRA S K, SRIDHARAN K, BARNES E R, ALYOKHIN A, TUTTLE R, KOKULAPALAN W, GARBY D, SKIZIM N J, TANG Y W, et al. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). Frontiers in Plant Science, 2021, 12: 728652.
doi: 10.3389/fpls.2021.728652
[18] GUAN R, CHU D, HAN X, MIAO X, LI H. Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural pest control. Frontiers in Bioengineering and Biotechnology, 2021, 9: 753790.
doi: 10.3389/fbioe.2021.753790
[19] ZOTTI M, DOS SANTOS E A, CAGLIARI D, CHRISTIAENS O, TANING C N T, SMAGGHE G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science, 2018, 74(6): 1239-1250.
doi: 10.1002/ps.4813
[20] BAUM J A, BOGAERT T, CLINTON W, HECK G R, FELDMANN P, ILAGAN O, JOHNSON S, PLAETINCK G, MUNYIKWA T, PLEAU M, VAUGHN T, ROBERTS J. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007, 25(11): 1322-1326.
doi: 10.1038/nbt1359
[21] MAO Y B, CAI W J, WANG J W, HONG G J, TAO X Y, WANG L J, HUANG Y P, CHEN X Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 2007, 25(11): 1307-1313.
doi: 10.1038/nbt1352
[22] GUAN R, CHEN Q, LI H, HU S, MIAO X, WANG G, YANG B. Knockout of the HaREase gene improves the stability of dsRNA and increases the sensitivity of Helicoverpa armigera to Bacillus thuringiensis toxin. Frontiers in Physiology, 2019, 10: 1368.
doi: 10.3389/fphys.2019.01368
[23] GUAN R B, LI H C, FAN Y J, HU S R, CHRISTIAENS O, SMAGGHE G, MIAO X X. A nuclease specific to lepidopteran insects suppresses RNAi. The Jounal of Biological Chemistry, 2018, 293(16): 6011-6021.
[24] LI H, GUAN R, GUO H, MIAO X. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant, Cell and Environment, 2015, 38(11): 2277-2285.
doi: 10.1111/pce.12546
[25] WANG Y B, ZHANG H, LI H C, MIAO X X. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE, 2011, 6(4): e18644.
doi: 10.1371/journal.pone.0018644
[26] ZHANG H, LI H, GUAN R, MIAO X. Lepidopteran insect species-specific, broad-spectrum, and systemic RNA interference by spraying dsRNA on larvae. Entomologia Experimentalis et Applicata, 2015, 155(3): 218-228.
[27] ZHANG H, LI H C, MIAO X X. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Science, 2013, 20(1): 15-30.
doi: 10.1111/j.1744-7917.2012.01513.x
[28] HUA C, ZHAO J H, GUO H S. Trans-kingdom RNA silencing in plant-fungal pathogen interactions. Molecular Plant, 2018, 11(2): 235-244.
doi: 10.1016/j.molp.2017.12.001
[29] ZHAO J H, GUO H S. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Current Opinion in Genetics and Development, 2019, 58/59: 62-69.
doi: 10.1016/j.gde.2019.07.019
[30] ZHAO J H, GUO H S. RNA silencing: From discovery and elucidation to application and perspectives. Journal of Integrative Plant Biology, 2022, 64(2): 476-498.
[31] ZHANG T, JIN Y, ZHAO J H, GAO F, ZHOU B J, FANG Y Y, GUO H S. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Molecular Plant, 2016, 9(6): 939-942.
doi: 10.1016/j.molp.2016.02.008
[32] ZHANG T, ZHAO Y L, ZHAO J H, WANG S, JIN Y, CHEN Z Q, FANG Y Y, HUA C L, DING S W, GUO H S. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016, 2(10): 16153.
doi: 10.1038/nplants.2016.153
[33] LIU F Z, YANG B, ZHANG A H, DING D R, WANG G R. Plant-mediated RNAi for controlling Apolygus lucorum. Frontiers in Plant Science, 2019, 10: 64.
doi: 10.3389/fpls.2019.00064
[34] YAN S, REN B Y, ZENG B, SHEN J. Improving RNAi efficiency for pest control in crop species. Biotechniques, 2020, 68(5): 283-290.
doi: 10.2144/btn-2019-0171
[35] YAN S, REN B Y, SHEN J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Science, 2021, 28(1): 21-34.
doi: 10.1111/1744-7917.12822
[36] 杨雨姮, 杨华蕊, 杨柳青, 沈杰, 闫硕. RNA杀虫剂的研究进展. 中国植保导刊, 2021, 41(3): 25-29, 45.
YANG Y H, YANG H R, YANG L Q, SHEN J, YAN S. Research progress of RNA insecticides. China Plant Protection, 2021, 41(3): 25-29, 45. (in Chinese)
[37] SONG H, ZHANG J, LI D, COOPER A M W, SILVER K, LI T, LIU X, MA E, ZHU K Y, ZHANG J. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochemistry and Molecular Biology, 2017, 86: 68-80.
doi: 10.1016/j.ibmb.2017.05.008
[38] YU R, XU X, LIANG Y, TIAN H, PAN Z, JIN S, WANG N, ZHANG W. The insect ecdysone receptor is a good potential target for RNAi-based pest control. International Journal of Biological Sciences, 2014, 10(10): 1171-1180.
doi: 10.7150/ijbs.9598
[39] 田宏刚, 刘同先, 张文庆. RNAi技术在中国昆虫学研究中的发展、应用与展望. 应用昆虫学报, 2019, 56(4): 605-616.
TIAN H G, LIU T X, ZHANG W Q. Progress in RNAi technology, and prospects for its application, in entomological research in China. Chinese Journal of Applied Entomology, 2019, 56(4): 605-616. (in Chinese)
[40] PAPADOPOULOU N, DEVOS Y, ALVAREZ-ALFAGEME F, LANZONI A, WAIGMANN E. Risk assessment considerations for genetically modified RNAi plants: EFSA’s activities and perspective. Frontiers in Plant Science, 2020, 11: 445.
doi: 10.3389/fpls.2020.00445
[41] EFSA Panel on Genetically Modified Organisms (GMO). Assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMONL-2015-124). EFSA Journal, 2018, 16(6): e05310.
[42] MENDELSOHN M L, GATHMANN A, KARDASSI D, SACHANA M, HOPWOOD E M, DIETZ-PFEILSTETTER A, MICHELSEN- CORREA S, FLETCHER S J, SZEKACS A. Summary of discussions from the 2019 OECD conference on RNAi based pesticides. Frontiers in Plant Science, 2020, 11: 740.
doi: 10.3389/fpls.2020.00740
[43] Organisation for Economic Cooperation and Development (OECD). Considerations for the Environmental Risk Assessment of the Application of Sprayed or Externally Applied dsRNA-Based Pesticides. Series on Pesticides No. 104, ENV/JM/MONO (2020) 26. Paris: OECD, 2020.
[44] FLETCHER S J, REEVES P T, HOANG B T, MITTER N. A perspective on RNAi-based biopesticides. Frontiers in Plant Science, 2020, 11: 51.
doi: 10.3389/fpls.2020.00051
[45] RANK A P, KOCH A. Lab-to-field transition of RNA spray applications - How far are we? Frontiers in Plant Science, 2021, 12: 755203.
[46] DIETZ-PFEILSTETTER A, MENDELSOHN M, GATHMANN A, KLINKENBUß D. Considerations and regulatory approaches in the USA and in the EU for dsRNA-based externally applied pesticides for plant protection. Frontiers in Plant Science, 2021, 12: 682387.
doi: 10.3389/fpls.2021.682387
[47] Environmental Protection Agency (EPA) RNAi Technology: Program Formulation for Human Health and Ecological Risk Assessment. FIFRA Scientific Advisory Panel Meeting 2014, SAP Minutes No. 2014-02.
[48] Regulation (EC) No 1107/2009 of the European parliament and of the council of 21 October 2009. Concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 2009, 309: 1-50.
[49] TANING C N T, MEZZETTI B, KLETER G, SMAGGHE G, BARALDI E. Does RNAi-based technology fit within EU sustainability goals? Trends in Biotechnology, 2021, 39(7): 644-647.
[50] CHRISTIAENS O, DZHAMBAZOVA T, KOSTOV K, ARPAIA S, JOGA M R, URRU I, SWEET J, SMAGGHE G. Literature review of baseline information on RNAi to support the environmental risk assessment of RNAi-based GM plants. EFSA Supporting Publications, 2018: EN-1424.
[51] KLETER G A. Food safety assessment of crops engineered with RNA interference and other methods to modulate expression of endogenous and plant pest genes. Pest Management Science, 2020, 76(10): 3333-3339.
doi: 10.1002/ps.5957
[52] SCHIEMANN J, DIETZ-PFEILSTETTER A, HARTUNG F, KOHL C, ROMEIS J, SPRINK T. Risk assessment and regulation of plants modified by modern biotechniques: Current Status and Future Challenges. Annual Review of Plant Biology, 2019, 70: 699-726.
doi: 10.1146/annurev-arplant-050718-100025
[53] MEHLHORN S, HUNNEKUHL V S, GEIBEL S, NAUEN R, BUCHER G. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: A brief guide. Frontiers in Zoology, 2021, 18(1): 60.
doi: 10.1186/s12983-021-00444-7
[54] TERENIUS O, PAPANICOLAOU A, GARBUTT J S, ELEFTHERIANOS I, HUVENNE H, KANGINAKUDRU S, ALBRECHTSEN M, AN C, AYMERIC J L, BARTHEL A, et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 2011, 57(2): 231-245.
doi: 10.1016/j.jinsphys.2010.11.006
[55] 张秋朗, 刘建宏, 徐进, 叶辉. RNA干扰在鳞翅目昆虫中的应用研究进展. 生物灾害科学, 2021, 44(4): 363-378.
ZHANG Q L, LIU J H, XU J, YE H. The mechanism and application of RNA interference in Lepidopteran insects. Biological Disaster Science, 2021, 44(4): 363-378. (in Chinese)
[56] YOON J S, MOGILICHERLA K, GURUSAMY D, CHEN X, CHEREDDY S, PALLI S R. Double-stranded RNA binding protein, staufen, is required for the initiation of RNAi in coleopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8334-8339.
[57] MU X, GREENWALD E, AHMAD S, HUR S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Research, 2018, 46(10): 5239-5249.
doi: 10.1093/nar/gky177
[58] TIMMONS L, COURT D L, FIRE A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 2001, 263(1/2): 103-112.
doi: 10.1016/S0378-1119(00)00579-5
[59] MURPHY K A, TABULOC C A, CERVANTES K R, CHIU J C. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Scientific Reports, 2016, 6: 22587.
doi: 10.1038/srep22587
[60] MYSORE K, LI P, WANG C W, HAPAIRAI L K, SCHEEL N D, REALEY J S, SUN L, SEVERSON D W, WEI N, DUMAN-SCHEEL M. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasites and Vectors, 2019, 12(1): 256.
doi: 10.1186/s13071-019-3504-x
[61] LEZZERINI M, VAN DE VEN K, VEERMAN M, BRUL S, BUDOVSKAYA Y V. Specific RNA interference in Caenorhabditis elegans by ingested dsRNA expressed in Bacillus subtilis. PLoS ONE, 2015, 10(4): e0124508.
doi: 10.1371/journal.pone.0124508
[62] SAELIM H, LOPRASERT S, PHONGDARA A. Bacillus subtilis expressing dsVP28 improved shrimp survival from WSSV challenge. ScienceAsia, 2020, 46S(1): 19-26.
doi: 10.2306/scienceasia1513-1874.2020.S003
[63] CHRISTIAENS O, WHYARD S, VELEZ A M, SMAGGHE G. Double-stranded RNA technology to control insect pests: Current status and challenges. Frontiers in Plant Science, 2020, 11: 451.
doi: 10.3389/fpls.2020.00451
[64] MITTER N, WORRALL E A, ROBINSON K E, LI P, JAIN R G, TAOCHY C, FLETCHER S J, CARROLL B J, LU G Q, XU Z P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017, 3: 16207.
doi: 10.1038/nplants.2016.207
[65] ZHANG K, WEI J, HUFF HARTZ K E, LYDY M J, MOON T S, SANDER M, PARKER K M. Analysis of RNA interference (RNAi) biopesticides: Double-stranded RNA (dsRNA) extraction from agricultural soils and quantification by RT-qPCR. Environment Science and Technology, 2020, 54(8): 4893-4902.
doi: 10.1021/acs.est.9b07781
[66] MEZZETTI B, SMAGGHE G, ARPAIA S, CHRISTIAENS O, DIETZ-PFEILSTETTER A, JONES H, KOSTOV K, SABBADINI S, OPSAHL-SORTEBERG H, VENTURA V, TANING C N T, SWEET J. RNAi: What is its position in agriculture? Journal of Pest Science, 2020, 93: 1125-1130.
doi: 10.1007/s10340-020-01238-2
[67] 徐雪亮, 王奋山, 刘子荣, 范琳娟, 季香云, 蒋杰贤, 姚英娟. RNA干扰技术在昆虫学领域研究进展. 生物技术通报, 2021, 37(1): 255-261.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0653
XU X L, WANG F S, LIU Z R, FAN L J, JI X Y, JIANG J X, YAO Y J. Research progress of RNA interference technology in the field of entomology. Biotechnology Bulletin, 2021, 37(1): 255-261. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0653
[68] 张建珍, 柴林, 史学凯, 高璐, 范云鹤. RNA干扰技术与害虫防治. 山西大学学报(自然科学版), 2021, 44(5): 980-987.
ZHANG J Z, CHAI L, SHI X K, GAO L, FAN Y H. RNA interference technology and pest control. Journal of Shanxi University (Natural Science Edition), 2021, 44(5): 980-987. (in Chinese)
[1] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[2] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[3] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[4] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[5] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[6] LI Shu,WANG Jie,HUANG NingXing,JIN ZhenYu,WANG Su,ZHANG Fan. Research Progress and Prospect on Banker Plant Systems of Predators for Biological Control [J]. Scientia Agricultura Sinica, 2020, 53(19): 3975-3987.
[7] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[8] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[9] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[10] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[11] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[12] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[13] HE JingLan,ZHANG Ming,LIU RuiYing,WAN GuiJun,PAN WeiDong,CHEN FaJun. Effects of the Interference of Key Magnetic Response Genes on the Longevity of Brown Planthopper (Nilaparvata lugens) Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(1): 45-55.
[14] . Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Replication by Plasmid-derived Short Hairpin RNA Targeting to M Protein Gene [J]. Scientia Agricultura Sinica, 2008, 41(1): 259-264 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!