Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2562-2571.doi: 10.3864/j.issn.0578-1752.2022.13.007
• PLANT PROTECTION • Previous Articles Next Articles
YIN Fei(),LI ZhenYu,SAMINA Shabbir,LIN QingSheng()
[1] |
LI Z Y, FENG X, LIU S S, YOU M S, FURLONG M J. Biology, ecology, and management of the diamondback moth in China. Annual Review of Entomology, 2016, 61: 277-296.
doi: 10.1146/annurev-ento-010715-023622 |
[2] |
ZALUCKI M P, SHABBIR A, SILVA R, ADAMSON D, LIU S S, FURLONG M J. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? Journal of Economic Entomology, 2012, 105(4): 1115-1129.
doi: 10.1603/EC12107 |
[3] |
YIN Q, QIAN L, SONG P P, JIAN T Y, HAN Z J. Molecular mechanisms conferring asymmetrical cross-resistance between tebufenozide and abamectin in Plutella xylostella. Journal of Asia- Pacific Entomology, 2019, 22(1): 189-193.
doi: 10.1016/j.aspen.2018.12.015 |
[4] |
BANAZEER A, AFZAL M B S, HASSAN S, IJAZ M, SHAD S A, SERRÃO J E. Status of insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) from 1997 to 2019: Cross- resistance, genetics, biological costs, underlying mechanisms, and implications for management. Phytoparasitica, 2022, 50: 465-485.
doi: 10.1007/s12600-021-00959-z |
[5] |
WANG X, KHAKAME S K, YE C, YANG Y, WU Y. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science, 2013, 69(5): 661-665.
doi: 10.1002/ps.3422 |
[6] |
TROCZKA B, ZIMMER C T, ELIAS J, SCHORN C, BASS C, DAVIES T G E, FIELD L M, WILLIAMSON M S, SLATER R, NAUEN R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochemistry and Molecular Biology, 2012, 42(11): 873-880.
doi: 10.1016/j.ibmb.2012.09.001 |
[7] |
STEINBACH D, GUTBROD O, LÜMMEN P, MATTHIESEN S, SCHORN C, NAUEN R. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 2015, 63: 14-22.
doi: 10.1016/j.ibmb.2015.05.001 |
[8] |
GUO L, LIANG P, ZHOU X G, GAO X W. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Scientific Reports, 2014, 4: 6924.
doi: 10.1038/srep06924 |
[9] |
JOURAKU A, KUWAZAKI S, MIYAMOTO K, UCHIYAMA M, KUROKAWA T, MORI E, MORI M X, MORI Y, SONODA S. Ryanodine receptor mutations (G4946E and I4790K) differentially responsible for diamide insecticide resistance in diamondback moth, Plutella xylostella L.. Insect Biochemistry and Molecular Biology, 2020, 118: 103308.
doi: 10.1016/j.ibmb.2019.103308 |
[10] |
LI X X, GUO L, ZHOU X G, GAO X W, LIANG P. miRNAs regulated overexpression of ryanodine receptor is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Scientific Reports, 2015, 5: 14095.
doi: 10.1038/srep14095 |
[11] |
HU Z D, FENG X, LIN Q S, CHEN H Y, LI Z Y, YIN F, LIANG P, GAO X W. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. Journal of Integrative Agriculture, 2014, 13(11): 2452-2459.
doi: 10.1016/S2095-3119(14)60748-6 |
[12] |
KANG W J, KOO H N, JEONG D H, KIM H K, KIM J, KIM G H. Functional and genetic characteristics of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Entomological Research, 2017, 47(6): 394-403.
doi: 10.1111/1748-5967.12258 |
[13] |
LIU X, WANG H Y, NING Y B, QIAO K, WANG K Y. Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 2015, 108(4): 1978-1985.
doi: 10.1093/jee/tov098 |
[14] | LI X X, LI R, ZHU B, GAO X W, LIANG P. Overexpression of cytochrome P 450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Management Science, 2018, 74(6): 1386-1393. |
[15] |
HU Z, LIN Q, CHEN H, LI Z, YIN F, FENG X. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Bulletin of Entomological Research, 2014, 104(6): 716-723.
doi: 10.1017/S0007485314000510 |
[16] | MALLOTT M, HAMM S, TROCZKA B J, RANDALL E, PYM A, GRANT C, BAXTER S, VOGEL H, SHELTON A M, FIELD L M, et al. A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 2019, 115: 103247. |
[17] |
ETEBARI K, AFRAD M H, TANG B, SILVA R, FURLONG M J, ASGARI S. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella. Insect Molecular Biology, 2018, 27(4): 478-491.
doi: 10.1111/imb.12387 |
[18] |
MARCHAL E, ZHANG J R, BADISCO L, VERLINDEN H, HULT E F, WIELENDAELE P V, YAGI K J, TOBE S S, BROECK J V. Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 2011, 41(4): 219-227.
doi: 10.1016/j.ibmb.2010.12.007 |
[19] | CHUNG H, SZTAL T, PASRICHA S, SRIDHAR M, BATTERHAM P, DABORN P J. Characterization of Drosophila melanogaster cytochrome P450 genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5731-5736. |
[20] |
IGA M, KATAOKA H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biological and Pharmaceutical Bulletin, 2012, 35(6): 838-843.
doi: 10.1248/bpb.35.838 |
[21] |
RONG Y, FUJII T, KATSUMA S, YAMAMOTO M, ANDO T, ISHIKAWA Y. CYP341B14: A cytochrome P450 involved in the specific epoxidation of pheromone precursors in the fall webworm Hyphantria cunea. Insect Biochemistry and Molecular Biology, 2014, 54: 122-128.
doi: 10.1016/j.ibmb.2014.09.009 |
[22] | 徐莉, 王建华, 梅宇, 李冬植. 解毒酶和转运蛋白介导的害虫抗药性分子机制研究进展. 农药学学报, 2020, 22(1): 1-10. |
XU L, WANG J H, MEI Y, LI D Z. Research progress on the molecular mechanisms of insecticides resistance mediated by detoxification enzymes and transporters. Chinese Journal of Pesticide Science, 2020, 22(1): 1-10. (in Chinese) | |
[23] |
FEYEREISEN R, DERMAUW W, VAN LEEUWEN T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochemistry and Physiology, 2015, 121: 61-77.
doi: 10.1016/j.pestbp.2015.01.004 |
[24] | 邱星辉. 细胞色素P450介导的昆虫抗药性的分子机制. 昆虫学报, 2014, 57(4): 477-482. |
QIU X H. Molecular mechanisms of insecticide resistance mediated by cytochrome P450s in insects. Acta Entomologica Sinica, 2014, 57(4): 477-482. (in Chinese) | |
[25] | 李浩, 陈亚平, 鲁智慧, 郭建洋, 李亚红, 朱林云, 和淑琪, 桂富荣. 草地贪夜蛾和斜纹夜蛾幼虫体内保护酶及解毒酶对2种杀虫剂的响应比较. 南方农业学报, 2021, 52(3): 559-569. |
LI H, CHEN Y P, LU Z H, GUO J Y, LI Y H, ZHU L Y, HE S Q, GUI F R. Response comparison of protective and detoxification enzymes in Spodoptera frugiperda (J. E. Smith) and Spodoptera litura (Fabricius) larvae to two insecticides. Journal of Southern Agriculture, 2021, 52(3): 559-569. (in Chinese) | |
[26] |
ZHU F, LI T, ZHANG L, LIU N. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiology, 2008, 8: 18.
doi: 10.1186/1472-6793-8-18 |
[27] |
CHEN X E, ZHANG Y L. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: Possible involvement in resistance to beta-cypermethrin. Gene, 2015, 558(2): 208-214.
doi: 10.1016/j.gene.2014.12.053 |
[28] | 王学贵, 余慧灵, 梁沛, 史雪岩, 宋敦伦, 高希武. 氯虫苯甲酰胺诱导甜菜夜蛾细胞色素P450基因上调表达. 昆虫学报, 2015, 58(3): 281-287. |
WANG X G, YU H L, LIANG P, SHI X Y, SONG D L, GAO X W. Chlorantraniliprole induces up-regulated expression of cytochrome P450 genes in Spodoptera exigua (Lepidoptera: Noctuidae). Acta Entomologica Sinica, 2015, 58(3): 281-287. (in Chinese) | |
[29] | 刘俊杰, 苏栩, 李亚设, 谢兰芬, 张百重, 陈锡岭. 氯虫苯甲酰胺和氟虫腈对黏虫细胞色素P450基因表达的影响. 植物保护学报, 2019, 46(3): 563-573. |
LIU J J, SU X, LI Y S, XIE L F, ZHANG B Z, CHEN X L. Effects of chlorantraniliprole and fipronil on cytochrome P450 genes in oriental armyworm Mythimna separate. Journal of Plant Protection, 2019, 46(3): 563-573. (in Chinese) | |
[30] | 韩慧, 王彪龙, 李恩, 胡军, 马瑞燕, 高玲玲, 郭艳琼. 梨小食心虫细胞色素P450 CYP6AE123基因的克隆及表达分析. 山西农业科学, 2021, 49(5): 539-544. |
HAN H, WANG B L, LI E, HU J, MA R Y, GAO L L, GUO Y Q. Cloning and expression analysis of cytochrome P450 CYP6AE123 gene in Grapholita molesta (Busck). Journal of Shanxi Agricultural Sciences, 2021, 49(5): 539-544. (in Chinese) | |
[31] | 杨峰山, 殷城, 杨静, 危学高, 杜田华, 杨鑫, 王少丽, 张友军. Q型烟粉虱细胞色素P450 CYP6DV5基因克隆及其在烟粉虱对噻虫嗪抗性中的作用. 农药学学报, 2021, 23(1): 83-89. |
YANG F S, YIN C, YANG J, WEI X G, DU T H, YANG X, WANG S L, ZHANG Y J. Cloning and expression profiles of cytochrome P450 CYP6DV5 in Bemisia tabaci and its role in resistance of B. tabaci to thiamethoxam. Chinese Journal of Pesticide Science, 2021, 23(1): 83-89. (in Chinese) | |
[32] | 党英侨, 殷晶晶, 陈传佳, 孙丽丽, 刘鹏, 曹传旺. 转舞毒蛾LdCYP6AN15v1基因果蝇品系对氯虫苯甲酰胺胁迫响应. 林业科学, 2017, 53(6): 94-104. |
DANG Y Q, YIN J J, CHEN C J, SUN L L, LIU P, CAO C W. Responses of transformant Drosophila expressing LdCYP6AN15v1 gene to chlorantraniliprole stress. Scientia Silvae Sinicae, 2017, 53(6): 94-104. (in Chinese) | |
[33] | 石鑫, 李莎, 王志敏, 付开赟, 付文君, 姜卫华. 新疆马铃薯甲虫对噻虫嗪的抗性监测及其细胞色素P450基因表达分析. 中国农业科学, 2021, 54(14): 3004-3016. |
SHI X, LI S, WANG Z M, FU K Y, FU W J, JIANG W H. Resistance monitoring to thiamethoxam and expression analysis of cytochrome P450 genes in Leptinotarsa decemlineata from Xinjiang. Scientia Agricultura Sinica, 2021, 54(14): 3004-3016. (in Chinese) | |
[34] | 张雅男, 刘月庆, JUNAID M S, 王智琪, 樊东. 黏虫CYP9A113基因的克隆及外源物质对基因表达的诱导效应. 植物保护, 2019, 45(4): 97-103. |
ZHANG Y N, LIU Y Q, JUNAID M S, WANG Z Q, FAN D. Cloning of CYP9A113 and inductive effect of exogenous substances on the gene expression in Mythimna separate. Plant Protection, 2019, 45(4): 97-103. (in Chinese) | |
[35] |
WANG X G, GAO X W, LIANG P, SHI X Y, SONG D L. Induction of cytochrome P450 activity by the interaction of chlorantraniliprole and sinigrin in the Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology, 2016, 45(2): 500-507.
doi: 10.1093/ee/nvw007 |
[36] |
LAI T, LI J, SU J. Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pesticide Biochemistry and Physiology, 2011, 101(3): 198-205.
doi: 10.1016/j.pestbp.2011.09.006 |
[1] | CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733. |
[2] | LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101. |
[3] | ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720. |
[4] | YUAN GuoQing, CHEN ErHu, TANG PeiAn. The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(22): 4483-4494. |
[5] | LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482. |
[6] | WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034. |
[7] | CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707. |
[8] | SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332. |
[9] | GE TianCheng, YIN Fei, HU QiongBo, PENG ZhengKe, LI ZhenYu. Function of MBF2 Transcriptionally Regulating Glutathione S-transferase Metabolizing Chlorantraniliprole in Plutella xylostella [J]. Scientia Agricultura Sinica, 2023, 56(4): 665-673. |
[10] | SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063. |
[11] | WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959. |
[12] | GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960. |
[13] | WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346. |
[14] | CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160. |
[15] | Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153. |
|