Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2150-2160.doi: 10.3864/j.issn.0578-1752.2022.11.006

• PLANT PROTECTION • Previous Articles     Next Articles

Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum

CHEN ErHu(),MENG HongJie,CHEN Yan,TANG PeiAn()   

  1. College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province/Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing 210023
  • Received:2021-11-23 Accepted:2021-12-28 Online:2022-06-01 Published:2022-06-16
  • Contact: PeiAn TANG E-mail:erhuchen1104@163.com;tangpeian@163.com

Abstract:

【Objective】 Cuticle proteins (CPs) are the main components of insect cuticle, and numerous studies have confirmed that the CP genes were involved in insecticide resistance. The objective of this study is to clarify the roles of TcCP14.6 (cuticle protein CP14.6) and TcLCPA3A (larval cuticle protein A3A) in phosphine resistance of Tribolium castaneum.【Method】 The FAO (Food and Agriculture Organization of the United Nations)-recommended bioassay method was used to determine the phosphine resistance levels of five different T. castaneum populations. The TcCP14.6 and TcLCPA3A sequences were downloaded from the T. castaneum genome data, and their encoded amino acid sequences, signal peptides and conserved domains were predicted via the online services. The total RNAs were extracted from different tissues (the cuticles of head, thorax and abdomen, wing, leg, gut, Malpighian tubules and fat body), different phosphine resistance levels, as well as phosphine induction of T. castaneum, respectively. With TcRPS and TcRPL as internal reference genes, the RT-qPCR was used to analyze the expression patterns of TcCP14.6 and TcLCPA3A in different tissues, different phosphine resistance levels, and in response to phosphine induction. Lastly, the RNA interference (RNAi) technology and bioassay method were used to explore the relationship between the two CP genes and phosphine resistance in T. castaneum.【Result】 The bioassay analysis showed that Jiangsu (JS, RR=1.7) and Yunnan (YN, RR=3.0) belonged to susceptible populations, Hunan (HN, RR=20.2) belonged to moderately resistant population, Sichuan (SC, RR=395.4) and Guangdong (GD, RR=862.7) belonged to highly resistant populations. The sequence analysis demonstrated that both TcCP14.6 and TcLCPA3A proteins consisted of signal peptides and chitin binding domains. The RT-qPCR analysis suggested that TcCP14.6 and TcLCPA3A all had a higher expression in the peripheral tissues (the cuticles of head, thorax and abdomen, wings and legs) of T. castaneum, and with a lower expression in the internal tissues, such as fat body, gut and Malpighian tube. Besides, with the increase of phosphine resistance levels in T. castaneum, the expression level of TcCP14.6 was up-regulated, while the expression level of TcLCPA3A was down-regulated. After phosphine induction for 6 h in T. castaneum, the expression levels of TcCP14.6 and TcLCPA3A were up-regulated and down-regulated, respectively. The injection of dsRNA could significantly inhibit the expression of TcCP14.6 and TcLCPA3A in phosphine resistance (GD) and susceptible (YN) populations of T. castaneum. When treated with phosphine (LC30), the mortality significantly increased after the TcCP14.6 was silenced. Instead, the mortality significantly decreased after the TcLCPA3A was silenced.【Conclusion】 The two CP genes TcCP14.6 and TcLCPA3A are involved in phosphine resistance of T. castaneum.

Key words: Tribolium castaneum, phosphine resistance, cuticle protein, TcCP14.6, TcLCPA3A, RNA interference (RNAi)

Table 1

Primer sequences used in this study"

引物类型Primer type 引物名称Primer name 引物序列Primer sequence (5′ to 3′)
qPCR引物
Primers for qPCR
TcCP14.6-F CGGCCATCCTCAGACTCAAC
TcCP14.6-R GAATTCCTGGTCGGTCCCTG
TcLCPA3A-F AAGGCAGCTACTCCCTCACT
TcLCPA3A-R GGACAACAGCGTTGAAACCG
TcRPS18-F CGAAGAGGTCGAGAAAATCG
TcRPS18-R CGTGGTCTTGGTGTGTTGAC
TcRPL13α-F ACCATATGACCGCAGGAAAC
TcRPL13α-R GGTGAATGGAGCCACTTGTT
dsRNA引物
Primers for dsRNA
dsTcCP14.6-F ggatcctaatacgactcactataggCACCTCTCATCTCCGATGCT
dsTcCP14.6-R ggatcctaatacgactcactataggTTTCACTTCGCCGATCTCCT
dsTcLCPA3A-F ggatcctaatacgactcactataggACGAGCAACAATGGCATTCA
dsTcLCPA3A-R ggatcctaatacgactcactataggTATTCAACAGTACGGCGGGT
dsGFP-F ggatcctaatacgactcactataggATGGTGAGCAAGGGCGAGA
dsGFP-R ggatcctaatacgactcactataggTTACTTGTACAGCTCGTCCA

Table 2

Sensitivity of different T. castaneum geographic populations to phosphine"

种群
Population
采集地
Collection site
回归方程
<BOLD>R</BOLD>egression equation (y=)
致死中浓度LC50
(μg·L-1) (95% CIa)
抗性倍数
RR
JS 江苏Jiangsu -7.108+6.009x 15.2 (14.1-16.2) 1.7
YN 云南Yunnan -10.565+7.465x 27.2 (26.7-27.5) 3.0
HN 湖南Hunan -6.378+2.822x 182.1 (151.6-240.7) 20.2
SC 四川Sichuan -18.084+5.092x 3558.4 (3402.7-3726.3) 395.4
GD 广东Guangdong -47.249+12.146x 7763.9 (7401.6-8143.6) 862.7

Fig. 1

Sequence structure of TcCP14.6 and TcLCPA3A Signal peptide and conserved domain are represented by black and grey boxes, respectively"

Fig. 2

Expression patterns of TcCP14.6 and TcLCPA3A in different tissues of T. castaneum Data are mean±SD in the figure. Different lowercases on the bars represent significant differences among different treatments (P<0.05, LSD test). The same as Fig. 3, Fig. 5 and Fig. 6"

Fig. 3

Expression patterns of TcCP14.6 and TcLCPA3A in different phosphine-resistant populations of T. castaneum"

Fig. 4

Expression patterns of TcCP14.6 and TcLCPA3A after phosphine treatments Data are mean±SD in the figure. Significant differences of the two treatments were analyzed using a Student’s t-test (* indicates significant difference at P<0.05, ns indicates no significant difference)"

Fig. 5

Silencing efficiency of TcCP14.6 and the change of sensitivity to phosphine after gene silencing The dsGFP was used as a negative control, the untreated group was used as a blank control。图6同The same as Fig. 6"

Fig. 6

Silencing efficiency of TcLCPA3A and the change of sensitivity to phosphine after gene silencing"

[1] BAJRACHARYA N S, OPIT G P, TALLEY J, GAUTAM S G, PAYTON M E. Assessment of fitness effects associated with phosphine resistance in Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). African Entomology, 2016, 24(1): 39-49.
doi: 10.4001/003.024.0039
[2] JAGADEESAN R, COLLINS P J, DAGLISH G J, EBERT P R, SCHLIPALIUS D I. Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, gene interactions and fitness costs. PLoS ONE, 2012, 7(2): e31582.
doi: 10.1371/journal.pone.0031582
[3] NAYAK M K, HOLLOWAY J C, EMERY R N, PAVIC H, BARTLET J, COLLINS P J. Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): Its characterisation, a rapid assay for diagnosis and its distribution in Australia. Pest Management Science, 2013, 69(1): 48-53.
doi: 10.1002/ps.3360
[4] AULICKY R, STEJSKAL V, FRYDOVA B. Field validation of phosphine efficacy on the first recorded resistant strains of Sitophilus granarius and Tribolium castaneum from the Czech Republic. Journal of Stored Products Research, 2019, 81: 107-113.
doi: 10.1016/j.jspr.2019.02.003
[5] AGRAFIOTI P, ATHANASSIOU C G, NAYAK M K. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. Journal of Stored Products Research, 2019, 82: 40-47.
doi: 10.1016/j.jspr.2019.02.004
[6] PIMENTEL M A G, FARONI L R, TÓTOLA M R, GUEDES R N C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Management Science, 2007, 63(9): 876-881.
doi: 10.1002/ps.1416
[7] ZURYN S, KUANG J, EBERT P. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans. Toxicological Sciences, 2008, 102(1): 179-186.
doi: 10.1093/toxsci/kfm278
[8] OPIT G P, PHILLIPS T W, AIKINS M J, HASAN M M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. Journal of Economic Entomology, 2012, 105(4): 1107-1114.
doi: 10.1603/EC12064
[9] SCHLIPALIUS D I, TUCK A G, PAVIC H, DAGLISH G J, NAYAK M K, EBERT P R. A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions. Pest Management Science, 2019, 75(4): 1091-1098.
doi: 10.1002/ps.5221
[10] SCHLIPALIUS D I, VALMAS N, TUCK A G, JAGADEESAN R, MA L, KAUR R, GOLDINGER A, ANDERSON C, KUANG J, ZURYN S, et al. A core metabolic enzyme mediates resistance to phosphine gas. Science, 2012, 338(6108): 807-810.
doi: 10.1126/science.1224951
[11] CHAUDHRY M Q, PRICE N R. Insect mortality at doses of phosphine which produce equal uptake in susceptible and resistant strains of Rhyzopertha dominica (F.)(Coleoptera: Bostrychidae). Journal of Stored Products Research, 1990, 26(2): 101-107.
doi: 10.1016/0022-474X(90)90008-G
[12] YANG J O, PARK J S, LEE H S, KWON M, KIM G H, KIM J. Identification of a phosphine resistance mechanism in Rhyzopertha dominica based on transcriptome analysis. Journal of Asia-Pacific Entomology, 2018, 21: 1450-1456.
doi: 10.1016/j.aspen.2018.11.012
[13] HUANG Y, LI F F, LIU M W, WANG Y Z, SHEN F, TANG P A. Susceptibility of Tribolium castaneum to phosphine in China and functions of cytochrome P450s in phosphine resistance. Journal of Pest Science, 2019, 92: 1239-1248.
doi: 10.1007/s10340-019-01088-7
[14] DOUCET D, RETNAKARAN A. Targeting cuticular components for pest management//COHEN E, MOUSSIAN B. Extracellular Composite Matrices in Arthropods, 2016: 369-407.
[15] GIROTTI J R, MIJAILOVSKY S J, JUÁREZ M P. Epicuticular hydrocarbons of the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). Physiological Entomology, 2012, 37: 266-277.
doi: 10.1111/j.1365-3032.2012.00843.x
[16] BALABANIDOU V, GRIGORAKI L, VONTAS J. Insect cuticle: A critical determinant of insecticide resistance. Current Opinion in Insect Science, 2018, 27: 68-74.
doi: 10.1016/j.cois.2018.03.001
[17] SOH L S, SINGHAM G V. Cuticle thickening associated with fenitrothion and imidacloprid resistance and influence of voltage-gated sodium channel mutations on pyrethroid resistance in the tropical bed bug, Cimex hemipterus. Pest Management Science, 2021, 77(11): 5202-5212.
doi: 10.1002/ps.6561
[18] MOUSSIAN B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 2010, 40: 363-375.
doi: 10.1016/j.ibmb.2010.03.003
[19] FUTAHASHI R, OKAMOTO S, KAWASAKI H, ZHONG Y S, IWANAGA M, MITA K, FUJIWARA H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38: 1138-1146.
doi: 10.1016/j.ibmb.2008.05.007
[20] YANG C H, YANG P C, ZHANG S F, SHI Z Y, KANG L, ZHANG A B. Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Insect Biochemistry and Molecular Biology, 2017, 83: 94-106.
doi: 10.1016/j.ibmb.2017.03.003
[21] 刘晓健, 刘卫敏, 赵小明, 张建珍, 马恩波. 昆虫表皮发育研究进展及展望. 应用昆虫学报, 2019, 56(4): 625-638.
LIU X J, LIU W M, ZHAO X M, ZHANG J Z, MA E B. Progress in the study of insect cuticle development and prospects for future research. Chinese Journal of Applied Entomology, 2019, 56(4): 625-638. (in Chinese)
[22] 梁欣, 陈斌, 乔梁. 昆虫表皮蛋白基因研究进展. 昆虫学报, 2014, 57(9): 1084-1093.
LIANG X, CHEN B, QIAO L. Research progress in insect cuticular protein genes. Acta Entomologica Sinica, 2014, 57(9): 1084-1093. (in Chinese)
[23] KAROUZOU M V, SPYROPOULOS Y, ICONOMIDOU V A, CORNMAN R S, HAMODRAKAS S J, WILLIS J H. Drosophila cuticular proteins with the R&R Consensus: Annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochemistry and Molecular Biology, 2007, 37: 754-760.
doi: 10.1016/j.ibmb.2007.03.007
[24] 丛林, 刘浩强, 李鸿筠, 巴音克西克, 冉春. 褐色橘蚜RR-2型表皮蛋白基因鉴定及功能分析. 植物保护学报, 2020, 47(5): 1078-1087.
CONG L, LIU H Q, LI H J, BAYINKEXIKE, RAN C. Identification and function analysis of RR-2 CPR genes in brown citrus aphid Toxoptera citricida (Kirkaldy). Journal of Plant Protection, 2020, 47(5): 1078-1087. (in Chinese)
[25] SHAHIN R, IWANAGA M, KAWASAKI H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. Insect Molecular Biology, 2016, 25(2): 138-152.
doi: 10.1111/imb.12207
[26] QIAO L, XIONG G, WANG R X, HE S Z, CHEN J, TONG X L, HU H, LI C L, GAI T T, XIN Y Q, LIU X F, CHEN B, XIANG Z H, LU C, DAI F Y. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics, 2014, 196: 1103-1115.
doi: 10.1534/genetics.113.158766
[27] ASANO T, TAOKA M, SHINKAWA T, YAMAUCHI Y, ISOBE T, SATO D. Identification of a cuticle protein with unique repeated motifs in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2013, 43: 344-351.
doi: 10.1016/j.ibmb.2013.01.001
[28] OPPERT B, GUEDES R N C, AIKINS M J, PERKIN L, CHEN Z, PHILLIPS T W, ZHU K Y, OPIT G P, HOON K, SUN Y, et al. Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum. BMC Genomics, 2015, 16: 968.
doi: 10.1186/s12864-015-2121-0
[29] WANG K X, LIU M W, WANG Y Z, SONG W, TANG P A. Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum. Pesticide Biochemistry and Physiology, 2020, 168: 104622.
doi: 10.1016/j.pestbp.2020.104622
[30] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ctmethod. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
[31] PHILLIPS T W, THRONE J E. Biorational approaches to managing stored-product insects. Annual Review of Entomology, 2010, 55: 375-397.
doi: 10.1146/annurev.ento.54.110807.090451
[32] NAYAK M K, DAGLISH G J, PHILLIPS T W, EBERT P R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annual Review of Entomology, 2020, 65: 333-350.
doi: 10.1146/annurev-ento-011019-025047
[33] KAUR R, SUBBARAYALU M, JAGADEESAN R, DAGLISH G J, NAYAK M K, NAIK H R, RAMASAMY S, SUBRAMANIAN C, EBERT P R, SCHLIPALIUS D I. Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Heredity, 2015, 115: 188-194.
doi: 10.1038/hdy.2015.24
[34] HUBHACHEN Z, JIANG H, SCHLIPALIUS D, PARK Y, GUEDES R N C, OPPERT B, OPIT G, PHILLIPS T W. A CAPS marker for determination of strong phosphine resistance in Tribolium castaneum from Brazil. Journal of Pest Science, 2020, 93: 127-134.
doi: 10.1007/s10340-019-01134-4
[35] 叶长青, 包涵, 刘田, 杨青. 双叉犀金龟表皮蛋白TdCPR12611与TdCPR7854的表达纯化及特性分析. 昆虫学报, 2021, 64(1): 19-29.
YE C Q, BAO H, LIU T, YANG Q. Expression, purification and characterization of the cuticular proteins TdCPR12611 and TdCPR7854 from Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Acta Entomologica Sinica, 2021, 64(1): 19-29. (in Chinese)
[36] TANG L, LIANG J, ZHAN Z, XIANG Z, HE N. Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2010, 40: 228-234.
doi: 10.1016/j.ibmb.2010.01.010
[37] CHEN E H, HOU Q L, DOU W, WEI D D, YUE Y, YANG R L, YANG P J, YU S F, DE SCHUTTER K, SMAGGHE G, WANG J J. Genome-wide annotation of cuticular proteins in the oriental fruit fly (Bactrocera dorsalis), changes during pupariation and expression analysis of CPAP3 protein genes in response to environmental stresses. Insect Biochemistry and Molecular Biology, 2018, 97: 53-70.
doi: 10.1016/j.ibmb.2018.04.009
[38] 孙汝江. 中华蜜蜂表皮蛋白基因的克隆与功能分析[D]. 泰安: 山东农业大学, 2014.
SUN R J. Cloning and functional analysis of cuticular protein genes from Apis cerana cerana[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[39] CHEN E H, DUAN J Y, SONG W, WANG D X, TANG P A. RNA-seq analysis reveals mitochondrial and cuticular protein genes are associated with phosphine resistance in the rusty grain beetle (Coleoptera: Laemophloeidae). Journal of Economic Entomology, 2021, 114(1): 440-453.
doi: 10.1093/jee/toaa273
[40] KOGANEMARU R, MILLER D M, ADELMAN Z N. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pesticide Biochemistry and Physiology, 2013, 106: 190-197.
doi: 10.1016/j.pestbp.2013.01.001
[41] ZHOU D, DUAN B, SUN Y, MA L, ZHU C, SHEN B. Preliminary characterization of putative structural cuticular proteins in the malaria vector Anopheles sinensis. Pest Management Science, 2017, 73(12): 2519-2528.
doi: 10.1002/ps.4649
[42] SUN X, GUO J, YE W, GUO Q, HUANG Y, MA L, ZHOU D, SHEN B, SUN Y, ZHU C. Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens. Parasitology Research, 2017, 116(8): 2175-2179.
doi: 10.1007/s00436-017-5521-z
[43] HUANG Y, GUO Q, SUN X H, ZHANG C, XU N, XU Y, ZHOU D, SUN Y, MA L, ZHU C L, SHEN B. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix. Parasites and Vectors, 2018, 11(1): 6.
doi: 10.1186/s13071-017-2567-9
[44] 张万娜, 刘香亚, 赖乾, 肖海军. 棉铃虫表皮蛋白基因CP22CP14的表达特征及其对甲氧虫酰肼的响应. 植物保护学报, 2021, 48(5): 1043-1053.
ZHANG W N, LIU X Y, LAI Q, XIAO H J. Expression analysis of cuticular protein genes CP22 and CP14 in cotton bollworm Helicoverpa armigera and their response to the sublethal dose of methoxyfenozide. Journal of Plant Protection, 2021, 48(5): 1043-1053. (in Chinese)
[45] PRICE N R. Active exclusion of phosphine as a mechanism of resistance in Rhyzopertha dominica (F.)(Coleoptera: Bostrychidae). Journal of Stored Products Research, 1984, 20(3): 163-168.
doi: 10.1016/0022-474X(84)90025-0
[46] DANG K, DOGGETT S L, SINGHAM G V, LEE C Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites and Vectors, 2017, 10: 318.
doi: 10.1186/s13071-017-2232-3
[1] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[2] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[3] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[4] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[5] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[6] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[7] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[8] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[9] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[10] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[11] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[12] HE JingLan,ZHANG Ming,LIU RuiYing,WAN GuiJun,PAN WeiDong,CHEN FaJun. Effects of the Interference of Key Magnetic Response Genes on the Longevity of Brown Planthopper (Nilaparvata lugens) Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(1): 45-55.
[13] YANG YaTing, ZHAO XiaoMing, QIN ZhongYu, LIU WeiMin, MA EnBo, ZHANG JianZhen. Molecular Characteristics and Function Analysis of Cuticle Protein Gene LmNCP1 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(7): 1303-1314.
[14] . Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Replication by Plasmid-derived Short Hairpin RNA Targeting to M Protein Gene [J]. Scientia Agricultura Sinica, 2008, 41(1): 259-264 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!