Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1143-1153.doi: 10.3864/j.issn.0578-1752.2021.06.006

• PLANT PROTECTION • Previous Articles     Next Articles

Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids

Xiang XU1(),Yi XIE1,LiYun SONG1,LiLi SHEN1,Ying LI1,Yong WANG2,MingHong LIU3,DongYang LIU2,XiaoYan WANG3,CunXiao ZHAO4,FengLong WANG1(),JinGuang YANG1()   

  1. 1Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
    2Liangshan Company, Sichuan Tobacco Company, Xichang 615000, Sichuan
    3Zunyi City Company, Guizhou Tobacco Company, Zunyi 563000, Guizhou
    4Qingyang Tobacco Company of Gansu Provincial Company, Qingyang 745099, Gansu
  • Received:2020-06-10 Accepted:2020-07-11 Online:2021-03-16 Published:2021-03-25
  • Contact: FengLong WANG,JinGuang YANG E-mail:17854233569@163.com;wangfenglong@caas.cn;yangjinguang@caas.cn

Abstract:

【Objective】The objective of this study is to screen the dsRNAs with high efficiency and targeting degradation of tobacco mosaic virus (TMV), achieve its mass preparation, and to explore the mechanism. 【Method】Using CP, MP and RdRP genes encoded by TMV as target sequences, dsRNAs were synthesized in vitro and infiltrated into Nicotiana benthamiana. After 24 h, TMV was inoculated, total RNA and protein were extracted from samples 2 and 3 d after TMV inoculation, and the mRNA level and protein level of CP gene were used as indicators, combined with the biological symptoms of TMV, to comprehensively evaluate the inhibitory effect of each dsRNA on TMV. The fluorescence expression of TMV-30B on N. benthamianas and the hypersensitive necrosis reaction of TMV on Nicotiana tabacum var. Samsun NN were also combined. The dsRNA fragments that efficiently inhibit TMV were screened by comparing the dsRNAs corresponding to the six target sequences on the TMV genome. In order to obtain a large number of dsRNAs, the corresponding gene fragments of dsRNAs were inserted between the double T7 promoters of the prokaryotic expression vector L4440 and transformed into RNase III deficient Escherichia coli HT115 (DE3). And the siRNA generated after the prepared dsRNA spraying on tobacco was deeply sequenced to compare the effect of exogenous application of dsRNA on the small RNA expression characteristics and enrichment bands of TMV infestation. 【Result】RdRP1461-1774 dsRNAs with high effect on TMV CP gene expression were screened, and L4440-dsRdRP1461-1774 prokaryotic expression vector was constructed, which could induce the formation of target dsRNAs. The dsRNA extracted from bacteria solution could significantly inhibit TMV, when TMV-30B was applied to infect tobacco, the number of fluorescence decreased, the time of leaf wilting prolonged, and the number of necrosis spots decreased significantly. The results of small RNA sequencing showed that in the RNAi process induced by TMV infection, the sense and antisense chains produced siRNA with approximately equal frequency, while the infiltration of exogenous dsRNA resulted in the enrichment of siRNA in the target area, and the accumulation of antisense chain of siRNA increased sharply, the cumulative value of the corresponding sense chain decreased sharply. The application of exogenous dsRNA could change the abundance of siRNA expression. 【Conclusion】The targeted anti-TMV dsRNA sequences were screened by comparing the effects of dsRNA on the targeted anti-TMV infection in plants. Finally, a 313 bp long effective segment of RdRP gene was selected. This fragment of dsRNA can efficiently bind to the target gene and reduce the expression of TMV in infected plants. At the same time, a dsRNA prokaryotic expression system of RdRP1461-1774 gene was constructed to achieve low-cost and high-efficiency production, which provided the basis for the follow-up application of dsRNAs in the control of plant virus.

Key words: tobacco mosaic virus (TMV), RNA interference (RNAi), dsRNA, small RNA sequencing, prokaryotic expression

Fig. 1

Schematic diagram of TMV gene fragment"

Table 1

Primers used in this study"

引物
Primer
引物序列
Primer sequence (5′-3′)
产物长度
Expected size (bp)
引物用途
Use of primer
TMVCP-F
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGATGTCTTACAGTATCACTACTCC-3′ 548 克隆带启动子的CP基因
CP gene with promoter fragment cloning
TMVCP-R
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGAGTTGCAGGACCAGAGG-3′
TMVMP-F
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGGGAAAGAGCCGACGAG-3′ 401 克隆带启动子的MP基因
MP gene with promoter fragment cloning
TMVMP-R
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGGCAAGCCTGATTGACATA-3′
TMVP126-F
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGTCTTACCGTCGATGTTT-3′ 709 克隆带启动子的P126基因
P126 gene with promoter fragment cloning
TMVP126-R
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGGTTCTTGTTCGGCACT-3′
TMVRdRP851-1238F
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGCTTACTTCCCGGCCTCTA-3′ 456 克隆带启动子的RdRP851-1238基因
RdRP851-1238 gene with promoter fragment cloning
TMVRdRP851-1238R
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGGCTTTCGCCTGGTATGTT-3′
TMVRdRP1461-1774F
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGATTTCGCTGGCGTTTG-3′ 381 克隆带启动子的RdRP1461-1774基因
RdRP1461-1774 gene with promoter fragment cloning
TMVRdRP1461-1774R
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGCTGCCGTCATTGGGTC-3′
TMVRdRP1573-2330F
5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGTGACCTTCCACGACAGA-3′ 825 克隆带启动子的RdRP1573-2330基因
RdRP1573-2330 gene with promoter fragment cloning
TMVRdRP1573-2330R 5′-ATTCTCTAGAAGCTTAATACGACTCACTATAGGGAGCGCCACATGATACTT-3′
L4440-dsRdRP1461-1774F 5′-GGAGACCGGCAGATCTATTTCGCTGGCGTTTGGG-3′ _ 重组表达载体的构建
Construction of recombinant expression vector
L4440-dsRdRP1461-1774R 5′-TATAGGGCGAATTGGGTACCCTGCCGTCATTGGGTCAAC-3′
L4440-F 5′-CTTTATAGTCCTGTCGGGTTTCGC-3′ _ 重组表达载体测序
Sequencing of recombinant expression vector
L4440-R 5′-GGCGAGAAAGGAAGGGAAGAAAG-3′
Actin-F 5′-CAAGGAAATCACCGCTTTGG-3′ _ Actin基因转录水平的检测
Detection of Actin gene transcript level
Actin-R 5′-AAGGGATGCGAGGATGGA-3′
TMV-F 5′-GAGTAGACGACGCAACGG-3′ _ TMV CP基因转录水平检测
Detection of TMV CP transcript level
TMV-R 5′-CCAGAGGTCCAAACCAAAC-3′

Fig. 2

dsRNA electrophoresis of target genes 1: CP dsRNA; 2: MP dsRNA; 3: P126 dsRNA; 4: RdRP851-1238 dsRNA; 5: RdRP1461-1774 dsRNA; 6: RdRP1573-2330 dsRNA"

Fig. 3

Effects of different dsRNA treatments on the expression of wild-type TMV Analysis of variance (SPSS software) was conducted using Duncan’s multiple range test, different lowercase letters on the bars indicate significant difference (α=0.05)"

Fig. 4

Expression of CP protein of virus in infected leaves after different dsRNA treatments The expression of TMV CP protein after infiltration of PBS, TMV CP dsRNA, MP dsRNA, P126 dsRNA, RdRP851-1238 dsRNA, RdRP1461-1774 dsRNA, RdRP1573-2330 dsRNA"

Fig. 5

Symptoms of TMV-30B inoculation after different dsRNA treatments of N. benthamiana"

Fig. 6

Symptoms of Samsun NN leaves infiltrated with dsRNA after 3 d of TMV inoculation"

Fig. 7

Expression and identification of recombinant vector"

Fig. 8

Samsun NN after 3 d of TMV inoculation"

Fig. 9

Small RNA sequencing and personalized analysis map"

[1] 杨德廉, 王凤龙, 钱玉梅, 陈德鑫, 张连峪, 刘春生, 孟凡刚, 苏世臣, 史文国, 李宗明. 我国烟草病毒病的防治研究策略. 中国烟草科学, 2001(1):46-48.
YANG D L, WANG F L, QIAN Y M, CHEN D X, ZHANG L Y, LIU C S, MENG F G, SU S C, SHI W G, LI Z M. Research strategy of tobacco virus disease control in China. Chinese Tobacco Science, 2001(1):46-48. (in Chinese)
[2] CHEN X. Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology, 2009,25:21-44.
doi: 10.1146/annurev.cellbio.042308.113417 pmid: 19575669
[3] GHILDIYAL M, ZAMORE P D. Small silencing RNAs: An expanding universe. Nature Reviews. Genetics, 2009,10(2):94-108.
doi: 10.1038/nrg2504 pmid: 19148191
[4] KIM V N, HAN J, SIOMI M C. Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology, 2009,10(2):126-139.
doi: 10.1038/nrm2632 pmid: 19165215
[5] VAUCHERET H. Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes and Development, 2006,20(7):759-771.
doi: 10.1101/gad.1410506 pmid: 16600909
[6] HAMEED A, TAHIR M N, ASAD S, BILAL R, VAN ECK J, JANDER G, MANSOOR S. RNAi-mediated simultaneous resistance against three RNA viruses in potato. Molecular Biotechnology, 2017,59(2/3):73-83.
doi: 10.1007/s12033-017-9995-9
[7] 栾颖, 梁晋刚, 周晓莉, 张正光. RNAi转基因作物安全评价研究进展. 生物安全学报, 2019,28(2):95-102.
LUAN Y, LIANG J G, ZHOU X L, ZHANG Z G. Discussion on safety evaluation of RNAi transgenic crops. Journal of Biosafety, 2019,28(2):95-102. (in Chinese)
[8] INCARBONE M, DUNOYER P. RNA silencing and its suppression: Novel insights from in planta analyses. Trends in Plant Science, 2013,18(7):382-392.
doi: 10.1016/j.tplants.2013.04.001 pmid: 23684690
[9] TENLLADO F, MARTÍNEZ-GARCÍA B, VARGAS M, DÍAZ-RUÍZ J R. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnology, 2003,3:3.
doi: 10.1186/1472-6750-3-3 pmid: 12659646
[10] AALTO A P, SARIN L P, VAN DIJK A A, SAARMA M, PORANEN M M, ARUMÄE U, BAMFORD D H. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA, 2007,13(3):422-429.
doi: 10.1261/rna.348307 pmid: 17237359
[11] 解昆仑, 刘莉铭, 刘美, 彭斌, 吴会杰, 古勤生. 小西葫芦黄花叶病毒dsRNA的原核表达及其对ZYMV的防治效果. 中国农业科学, 2020,53(8):1583-1593.
doi: 10.3864/j.issn.0578-1752.2020.08.008
XIE K L, LIU L M, LIU M, PENG B, WU H J, GU Q S. Prokaryotic expression of dsRNA of zucchini yellow mosaic virus and its control efficacy on ZYMV. Scientia Agricultura Sinica, 2020,53(8):1583-1593. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.08.008
[12] 徐滔明. 湖南地区烟草病毒病的发生情况及RNAi防治技术的研究[D]. 长沙: 湖南农业大学, 2014.
XU T M. Occurrence of tobacco virus disease in Hunan and prevention by novel RNAi technology[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese)
[13] KASSCHAU K D, FAHLGREN N, CHAPMAN E J, SULLIVAN C M, CUMBIE J S, GIVAN S A, CARRINGTON J C. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biology, 2007,5(3):e57.
doi: 10.1371/journal.pbio.0050057 pmid: 17298187
[14] 解昆仑, 郭珍, 古勤生. “RNAi农药”防治植物病毒病的研究进展. 中国植保导刊, 2020,40(1):29-34, 54.
XIE K L, GUO Z, GU Q S. Research progress on the control of plant virus disease by RNAi pesticide. China Plant Protection, 2020,40(1):29-34, 54. (in Chinese)
[15] 律凤霞. RNA干涉技术在烟草抗TMV病毒育种中的应用[D]. 大庆: 黑龙江八一农垦大学, 2008.
LÜ F X. The application of RNA interferential technology in tobacco breeding of resisting to TMV[D]. Daqing: Heilongjiang Bayi Agricultural University, 2008. (in Chinese)
[16] YAEGASHI H, TAMURA A, ISOGAI M, YOSHIKAWA N. Inhibition of long distance movement of RNA silencing signals in Nicotiana benthamiana by apple chlorotic leaf spot virus 50 kDa movement protein. Virology, 2008,382(2):199-206.
pmid: 18954886
[17] 宋晓丽. Malformin A1抗烟草花叶病毒机理研究[D]. 福州: 福建农林大学, 2019.
SONG X L. Anti-tobacco mosaic virus effect and action mechanism of malformin A1[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese)
[18] 王锐, 曲炳楠, 杨婧. 载siRNA的纳米制剂研究进展. 中国药房, 2017,28(31):4452-4455.
WANG R, QU B N, YANG J. Progress in research on siRNA nanoparticles. China Pharmacy, 2017,28(31):4452-4455. (in Chinese)
[19] DAS S, DEBNATH N, CUI Y J, UNRINE J, PALLI S R. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. Applied Materials and Interfaces, 2015,7(35):19530-19535.
doi: 10.1021/acsami.5b05232 pmid: 26291176
[20] 夏晓翠. 中华蜜蜂囊状幼虫病病毒在寄主体内的复制机制及其基于RNAi的防控策略[D]. 福州: 福建农林大学, 2014.
XIA X C. Replication mechanism of Chinese sacbrood virus in Eastern honeybee, Apis cerena cerena and its control strategy based on RNA interference[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[21] 董丽, 郭惠珊. RNA沉默——植物基因组免疫的安全防线. 生物工程学报, 2012,28(5):521-530.
DONG L, GUO H S. RNA silencing, the fundamental security strategy of genomic immunity: A review. Chinese Journal of Biotechnology, 2012,28(5):521-530. (in Chinese)
[22] VAZQUEZ F, HOHN T. Biogenesis and biological activity of secondary siRNAs in plants. Scientifica, 2013,2013:783253.
doi: 10.1155/2013/783253 pmid: 24278785
[23] AXTELL M J. Classification and comparison of small RNAs from plants. Annual Review of Plant Biology, 2013,64:137-159.
pmid: 23330790
[24] WEI W, BA Z, GAO M, WU Y, MA Y, AMIARD S, WHITE C I, DANIELSEN J M R, YANG Y G, QI Y. A role for small RNAs in DNA double-strand break repair. Cell, 2012,149(1):101-112.
doi: 10.1016/j.cell.2012.03.002 pmid: 22445173
[25] 朱慧, 郭惠珊. 植物中病毒来源的小RNA介导的RNA沉默. 中国科学: 生命科学, 2012,42(1):29-36.
ZHU H, GUO H S. Virus-derived small interfering RNAs-mediated RNA silencing in plants. Scientia Sinica Vitae, 2012,42(1):29-36. (in Chinese)
[26] 张子杰, 肖文斐, 裘劼人, 忻雅, 刘庆坡, 柴伟国, 阮松林. 小RNA调节植物免疫应答反应研究进展. 植物生理学报, 2018,54(4):539-548.
ZHANG Z J, XIAO W F, QIU J R, XIN Y, LIU Q P, CHAI W G, RUAN S L. Advances in small RNA regulating of plant immune response. Plant Physiology Journal, 2018,54(4):539-548. (in Chinese)
[27] 张玉清. 小菜蛾免疫Bt动力学的DGE分析及其PGRP-LB基因的克隆[D]. 广州: 华南农业大学, 2016.
ZHANG Y Q. Kinetics studies of DGE from Plutella xylostella (L.) immune responses against Bacillus thuringiensis and the cloning of PGRP-LB[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
[28] 王嘉琪. 烟草花叶病毒RNAi制剂的研制[D]. 长沙: 湖南农业大学, 2018.
WANG J Q. Research on development of tobacco mosaic virus RNAi preparation[D]. Changsha: Hunan Agricultural University, 2018. (in Chinese)
[29] KONAKALLA N C, KALDIS A, BERBATI M, MASARAPU H, VOLOUDAKIS A E. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta, 2016,244(4):961-969.
pmid: 27456838
[30] 王嘉琪, 刘勇, 李成刚, 张松柏, 孙书娥, 张德咏. 纳米材料及其相关产品在水稻上的应用. 杂交水稻, 2018,33(3):1-4, 15.
WANG J Q, LIU Y, LI C G, ZHANG S B, ZHANG S E, ZHANG D Y. Application of nanomaterials and related products on rice. Hybrid Rice, 2018,33(3):1-4, 15. (in Chinese)
[31] 郭依. 双链RNA介导的烟草抗病毒病(TMV, CMV, PVY)和靶斑病(Rhizoctonia solani)的研究[D]. 沈阳: 沈阳农业大学, 2020.
GUO Y. DsRNA mediated tobacco resistance to virus disease (TMV, CMV, PVY) and target spot disease (Rhizoctonia solani)[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[1] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[2] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[3] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[4] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[5] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[6] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[7] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[8] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[9] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[10] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[11] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[12] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[13] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[14] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[15] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!