Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4527-4536.doi: 10.3864/j.issn.0578-1752.2020.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Heterosis and Genetic Recombination Dissection of Maize Key Inbred Line Jing2416

ZHAO JiuRan,LI ChunHui,SONG Wei(),LIU XinXiang,WANG YuanDong,ZHANG RuYang,WANG JiDong,SUN Xuan,WANG XiaQing   

  1. Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2020-02-15 Accepted:2020-03-25 Online:2020-11-16 Published:2020-11-28
  • Contact: Wei SONG E-mail:songwei1007@126.com

Abstract:

【Objective】Jing2416 is an elite maize Huangzaosi improved line (HIL), which was developed based on the basic population of (Jing24×5237) × Jing24 via employing multiple selection technologies, including high planting density, large population, strict selection and the pyramiding of elite lines from the same heterotic group. There are more than 20 registered varieties using Jing2416 as a male parent. Among them, the respective variety is Jingnongke728, which is one of the first varieties authorized by National Crop Variety Approval Committee in China and breaks through the technical bottleneck of huang-huai-hai summer maize mechanical grain harvesting. This study was to analyze the heterosis of Jing2416 crossed with the representative inbred lines from X group, and reveal the recombination events during the formation of Jing2416 and the identity-by-descent (IBD) segments transferred from Huangzaosi genome which can provide the genetic basis for the formation of Jing2416 and valuable guidance of the further genetic improvements of HILs. 【Method】Huangzaosi, Jing2416 and its two parents (Jing24 and 5237) were used as materials, and five representative lines from X group were used as tester lines, and their F1 hybridized combinations were obtained by NCII genetic mating design. We used the mid-parent heterosis, over-high parent heterosis and GCA (General combining ability) of kernel weight per ear to evaluate the heterosis of four HILs. The four HILs and five inbred lines from X group were sequenced with the average depth of 18×. We used BWA software to conduct the sequence alignments, and GATK software to identify the whole-genome variations. The PCA (principal component analysis) was calculated using GCTA software, and the phylogenetic tree was constructed using Treebest software. IBDseq software was used to analyze the IBD regions. 【Result】We found that Jing2416 had higher over-high parent heterosis and GCA than the other three HILs (Huangzaosi, Jing24 and 5237) to compare the yield related traits in the F1 hybridized combinations which were obtained by crossing Huangzaosi, Jing2416, Jing24 and 5237 with the five lines from X group. We identified the recombination events during the formation of Jing2416 and revealed the components of Jing2416 genome. We found that there were 80.96% and 19.04% of the genome regions of Jing2416 from Jing24 and 5237, respectively. We identified the IBD regions from Huangzaosi to Jing2416 and found that Jing2416 genome polymerized all nine important HILs characteristic selected regions from its two parents Jing24 and 5237.【Conclusion】The elite line Jing2416 genome polymerized all nine important HILs characteristic selected regions from its parents Jing24 and 5237 by the chromosome recombination during its genetic improvement. This study revealed the genetic basis for higher combining ability of Jing2416, which crossed with the representative lines from X group.

Key words: maize, Jing2416, heterosis, genetic recombination, Huangzaosi improved lines

Table 1

Name and pedigree source of 9 inbred lines"

序号Code 自交系Inbred lines 系谱来源Pedigree
1 京2416 Jing2416 京24×5237 Jing24×5237
2 京24 Jing24 早熟302×黄野四 Zaoshu302×Huangyesi
3 5237 502×丹340 502×Dan340
4 黄早四 Huangzaosi 塘四平头选系 Selected from Tangsipingtou
5 京724 Jing724 X1132x选系 Selected from X1132x
6 京464 Jing464 X1132x选系 Selected from X1132x
7 DH382 X1132x选系 Selected from X1132x
8 京725 Jing725 X1132x选系 Selected from X1132x
9 京MC01 JingMC01 X1132x选系 Selected from X1132x

Table 2

Heterosis of F1 kernel weight per ear of combinations between 4 HILs and 5 X lines (%)"

杂种优势
Heterosis
亲本
Parents
DH382 京MC01
JingMC01
京464
Jing464
京724
Jing724
京725
Jing725
中亲优势 Mid-parent heterosis
京2416 Jing2416 99.35 89.27 103.30 87.31 90.78
京24 Jing24 94.06 89.51 80.88 76.55 84.20
5237 70.95 60.91 72.39 82.32 58.03
黄早四 Huangzaosi 113.93 100.77 106.84 82.11 70.86
超高亲优势 Over-high parent heterosis
京2416 Jing2416 84.48 83.87 82.46 67.25 62.60
京24 Jing24 80.02 84.57 62.71 58.00 57.33
5237 63.37 60.11 59.59 67.90 38.65
黄早四 Huangzaosi 70.79 66.77 61.08 41.24 27.65

Table 3

RGCA of 4 HILs parents’ kernel weight per ear and RSCA of 20 combinations"

亲本 Parents RGCA (%) RSCA (%)
DH382 京MC01 JingMC01 京464 Jing464 京724 Jing724 京725 Jing725
京2416 Jing2416 7.50 -1.78 -2.43 2.47 -2.04 3.78
京24 Jing24 2.68 0.43 2.75 -5.02 -3.06 4.89
5237 -3.43 -3.15 -3.15 -0.85 9.29 -2.13
黄早四 Huangzaosi -6.75 4.50 2.83 3.40 -4.19 -6.54

Table 4

Resequencing of 9 maize inbred lines"

材料名称
Sample name
读长数
Reads (M)
碱基数量
Bases (Gb)
读长比对率
Map reads (%)
比对reads数量
Map reads
测序深度
Depth
覆盖度
Coverage (%)
京2416 Jing2416 237.49 35.07 90.45 212725920 15.90 88.93
京24 Jing24 230.52 33.89 89.65 204550192 15.36 88.90
5237 148.07 22.21 90.36 133672852 13.03 91.52
黄早四 Huangzaosi 296.63 37.08 91.03 293757182 16.81 97.24
DH382 155.61 22.73 88.87 136266112 11.04 88.80
京MC01 JingMC01 458.36 61.74 90.88 410270768 29.98 89.91
京724 Jing724 183.13 26.86 88.66 159907952 13.04 87.15
京725 Jing725 393.95 53.81 90.01 349216966 26.13 89.36
京464 Jing464 350.51 48.59 89.99 310638312 23.60 89.47
均值 Mean 281.80 38.72 92.32 257719899 18.32 90.14

Fig. 1

PCA analysis (A)and phylogenetic tree (B) of 9 inbred lines"

Fig. 2

The genetic background of Jing2416 and the two parents A: The pedigree of Jing2416; B: The recombination events of Jing2416 formation"

Fig. 3

The important genomic segments transferred in the process of Jing2416 formation The data of “IBD reserved proportion” in Fig. 3 was from the reference LI et al [13]"

[1] 李永祥, 王天宇, 黎裕 . 主要农作物骨干亲本形成与研究利用. 植物遗传资源学报, 2019,20(5):1093-1102.
LI Y X, WANG T Y, LI Y . Formation, research and utilization of founder parents in major crops. Journal of Plant Genetic Resources, 2019,20(5):1093-1102. (in Chinese)
[2] 李遂生 . 玉米“黄早4”的选育过程及其应用. 北京农业科学, 1997,15(1):20-22.
LI S S . Breeding process and application of maize “Huangzaosi”. Beijing Agricultural Sciences, 1997,15(1):20-22. (in Chinese)
[3] 赵峰, 孟祥兵, 李卫华, 徐秀德, 王斌, 郭宝太 . 玉米骨干亲本黄早四抗病基因遗传传递规律的初步研究. 玉米科学, 2008,16(6):15-18.
ZHAO F, MENG X B, LI W H, XU X D, WANG B, GUO B T . Inheritance relation of maize resistant genes among foundation parent Huangzaosi and its derivative lines and hybrids. Journal of Maize Sciences, 2008,16(6):15-18. (in Chinese)
[4] 戴景瑞, 鄂立柱 . 百年玉米, 再铸辉煌——中国玉米产业百年回顾与展望. 农学学报, 2018,8(1):74-79.
DAI J R, E L Z. From the past centennial progress to more brilliant achievements in the future: the history and prospects of maize industrialization in China. Journal of Agriculture, 2018,8(1):74-79. (in Chinese)
[5] 黎裕, 王天宇 . 中国玉米育种种质基础与骨干亲本的形成. 玉米科学, 2010,18(5):1-8.
LI Y, WANG T Y . Germplasm base of maize breeding in china and formation of foundation parents. Journal of Maize Sciences, 2010,18(5):1-8. (in Chinese)
[6] 段民孝, 赵久然, 李云伏, 王元东, 邢锦丰, 张华生, 刘新香, 刘春阁, 张雪原, 张春原 . 高产早熟耐密抗倒伏宜机收玉米新品种‘京农科728’的选育与配套技术研究. 农学学报, 2015,5(2):10-14.
DUAN M X, ZHAO J R, LI Y F, WANG Y D, XING J F, ZHANG H S, LIU X X, LIU C G, ZHANG X Y, ZHANG C Y . Study on the breeding and supporting technology of new maize variety ‘Jingnongke 728’. Journal of Agriculture, 2015,5(2):10-14. (in Chinese)
[7] 王元东, 张华生, 段民孝, 赵久然, 李云伏, 刘春阁, 陈传永, 成光雷, 崔铁英 . 玉米新品种京农科728全程机械化生产技术. 中国种业, 2014(10):68-69.
WANG Y D, ZHANG H S, DUAN M X, ZHAO J R, LI Y F, LIU C G, CHEN C Y, CHENG G L, CUI T Y . The whole process mechanized production technology of the new maize variety Jingnongke728.China Seed Industry, 2014(10):68-69. (in Chinese)
[8] 王荣焕, 王元东, 赵久然, 徐田军, 陈传永, 刘新香, 崔铁英 . 玉米品种京农科728北京密云地区制种技术. 中国种业, 2017(2):60-62.
WANG R H, WANG Y D, ZHAO J R, XU T J, CHEN C Y, LIU X X, CUI T Y . Seed production technology of corn variety Jingnongke 728 in Miyun area of Beijing.China Seed Industry, 2017(2):60-62. (in Chinese)
[9] PAN Q C, LI L, YANG X H, TONG H, XU S T, LI Z G, LI W Y, MUEHLBAUER G J, LI J S, YAN J B . Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytologist, 2016,210:1083-1094.
doi: 10.1111/nph.13810 pmid: 26720856
[10] LAI J S, LI R Q, XU X, JIN W W, XU M L, ZHAO H N, XIANG Z K, SONG W B, YING K, ZHANG M, JIAO Y P, NI P X, ZHANG J G, LI D, GUO X S, YE K X, JIAN M, WANG B, ZHENG H S, LIANG H Q, ZHANG X Q, WANG S C, CHEN S J, LI J S, FU Y, SPRINGER N M, YANG H M, WANG J, DAI J R, SCHNABLE P S, WANG J . Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 2010,42:1027-1030.
doi: 10.1038/ng.684 pmid: 20972441
[11] ZHANG R Y, XU G, LI J S, YAN J B, LI H H, YANG X H . Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theoretical and Applied Genetics, 2018,131:1207-1221.
doi: 10.1007/s00122-018-3072-z pmid: 29492618
[12] WU X, LI Y X, SHI Y S, SONG Y C, WANG T Y, HUANG Y B, LI Y . Fine genetic characterization of elite maize germplasm using Highthroughput SNP genotyping. Theoretical and Applied Genetics, 2014,127:624-631.
[13] LI C H, SONG W, LUO Y F, GAO S H, ZHANG R Y, SHI Z, WANG X Q, WANG R H, WANG F G, WANG J D, ZHAO Y X, SU A G, WANG S, LI X, LUO M J, WANG S S, ZHANG Y X, GE J R, TAN X Y, YUAN Y, BI X C, HE H, YAN J B, WANG Y D, HU S N, ZHAO J R . The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize. Molecular Plant, 2019,12(3):402-409.
doi: 10.1016/j.molp.2019.02.009 pmid: 30807824
[14] 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊 . 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018,51(4):626-634.
doi: 10.3864/j.issn.0578-1752.2018.04.003
ZHAO J R, LI C H, SONG W, WANG Y D, ZHANG R Y, WANG J D, WANG F G, TIAN H L, WANG R . Genetic diversity and population structure of important chinese maize breeding germplasm revealed by SNP-chips. Scientia Agricultura Sinica, 2018,51(4):626-634. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.04.003
[15] 赵久然, 李春辉, 宋伟, 王元东, 邢锦丰, 张如养, 易红梅, 杨扬, 石子, 王继东 . 利用SSR标记解析京科968等系列玉米品种的杂优模式. 玉米科学, 2017,25(5):1-8.
ZHAO J R, LI C H, SONG W, WANG Y D, XING J F, ZHANG R Y, YI H M, YANG Y, SHI Z, WANG J D . Elaboration of heterotic pattern in a series of maize varieties by SSR markers. Journal of Maize Sciences, 2017,25(5):1-8. (in Chinese)
[16] ROGERS S O, BENDICH A J . Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol., 1985,5:69-76.
doi: 10.12692/ijb/5.1.69-73
[17] 张天真 . 作物育种学总论. 北京: 中国农业出版社, 2003.
ZHANG T Z . General Crop Breeding. Beijing: China Agriculture Press, 2003. (in Chinese)
[18] 黄远樟, 刘来福 . 作物数量遗传学基础–六、配合力:不完全双列杂交. 遗传, 1980,2(2):43-46.
HUANG Y Z, LIU L F . Crop quantitative genetics-Six, incomplete diallel cross. Hereditas, 1980,2(2):43-46. (in Chinese)
[19] LI H, DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[20] LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R . 1000 genome project data processing subgroup: The sequence alignment/map format and SAMtools. Bioinformatics, 2009,25:2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[21] SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F, PASTERNAK S, LIANG C, ZHANG J, FULTON L, GRAVES T A, MINX P, REILY A D, COURTNEY L, KRUCHOWSKI S S, TOMLINSON C, STRONG C, DELEHAUNTY K, FRONICK C, COURTNEY B, ROCK S M, BELTER E, DU F, KIM K, ABBOTT R M, COTTON M, LEVY A, MARCHETTO P, OCHOA K, JACKSON S M, GILLAM B, CHEN W, YAN L, HIGGINBOTHAM J, CARDENAS M, WALIGORSKI J, APPLEBAUM E, PHELPS L, FALCONE J, KANCHI K, THANE T, SCIMONE A, THANE N, HENKE J, WANG T, RUPPERT J, SHAH N, ROTTER K, HODGES J, INGENTHRON E, CORDES M, KOHLBERG S, SGRO J, DELGADO B, MEAD K, CHINWALLA A, LEONARD S, CROUSE K, COLLURA K, KUDRNA D, CURRIE J, HE R, ANGELOVA A, RAJASEKAR S, MUELLER T, LOMELI R, SCARA G, KO A, DELANEY K, WISSOTSKI M, LOPEZ G, CAMPOS D, BRAIDOTTI M, ASHLEY E, GOLSER W, KIM H, LEE S, LIN J, DUJMIC Z, KIM W, TALAG J, ZUCCOLO A, FAN C, SEBASTIAN A, KRAMER M, SPIEGEL L, NASCIMENTO L, ZUTAVERN T, MILLER B, AMBROISE C, MULLER S, SPOONER W, NARECHANIA A, REN L, WEI S, KUMARI S, FAGA B, LEVY M J, MCMAHAN L, VAN BUREN P, VAUGHN M W, YING K, YEH C T, EMRICH S J, JIA Y, KALYANARAMAN A, HSIA A P, BARBAZUK W B, BAUCOM R S, BRUTNELL T P, CARPITA N C, CHAPARRO C, CHIA J M, DERAGON J M, ESTILL J C, FU Y, JEDDELOH J A, HAN Y, LEE H, LI P, LISCH D R, LIU S, LIU Z, NAGEL D H, MCCANN M C, SANMIGUEL P, MYERS A M, NETTLETON D, NGUYEN J, PENNING B W, PONNALA L, SCHNEIDER K L, SCHWARTZ D C, SHARMA A, SODERLUND C, SPRINGER N M, SUN Q, WANG H, WATERMAN M, WESTERMAN R, WOLFGRUBER T K, YANG L, YU Y, ZHANG L, ZHOU S, ZHU Q, BENNETZEN J L, DAWE R K, JIANG J, JIANG N, PRESTING G G, WESSLER S R, ALURU S, MARTIENSSEN R A, CLIFTON S W, MCCOMBIE W R, WING R A, WILSON R K . The B73 maize genome: Complexity, diversity, and dynamics. Science, 2009,362:1112-1115.
doi: 10.1126/science.aav7479 pmid: 30523095
[22] JIAO Y P, PELUSO P, SHI J H, LIANG T, STITZER M C, WANG B, CAMPBELL M S, STEIN J C, WEI X H, CHIN C S, GUILL K, REGULSKI M, KUMARI S, OLSON A, GENT J, SCHNEIDER K L, WOLFGRUBER T K, MAY M R, SPRINGER N M, ANTONIOU E, MCCOMBIE W R, PRESTING G G, MCMULLEN M, ROSS- IBARRA J, DAWE R K, HASTIE A, RANK D R, WARE D . Improved maize reference genome with single-molecule technologies. Nature, 2017,546:524-527.
doi: 10.1038/nature22971 pmid: 28605751
[23] MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A . The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010,20:1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[24] VILELLA A J, SEVERIN J, URETA-VIDAL A, HENG L, DURBIN R, BIRNEY E. ENSEMBLCOMPARA G . Complete, duplication- aware phylogenetic trees in vertebrates. Genome Research, 2009,19(2):327-335.
doi: 10.1101/gr.073585.107 pmid: 19029536
[25] YANG J, LEE S H, GODDARD M E, VISSCHER P M . GCTA: A tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 2011,88(1):76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468
[26] BROWNING B L, BROWNING S R . Detecting identity by descent and estimating genotype error rates in sequence data. The American Journal of Human Genetics, 2013,93(5):840-851.
doi: 10.1016/j.ajhg.2013.09.014 pmid: 24207118
[27] 孙轩, 吉玉龙, 张如养, 王继东, 宋伟, 赵久然 . 玉米自交系京92遗传改良研究. 北京农学院学报, 2019,34(1):28-33.
SUN X, JI Y L, ZHANG R Y, WANG J D, SONG W, ZHAO J R . Genetic improvement of inbred line Jing 92 in maize. Journal of Beijing University of Agriculture, 2019,34(1):28-33. (in Chinese)
[28] 赵久然 . 优良玉米自交系选育新方法. 玉米科学, 2005,13(2):31-32.
ZHAO J R . New method of elite inbred line breeding in corn. Journal of Maize Sciences, 2005,13(2):31-32. (in Chinese)
[29] JIAO Y P, ZHAO H N, REN L H, SONG W B, ZENG B, GUO J J, WANG B B, LIU Z P, CHENG J, LI W, ZHANG M, XIE S J, LAI J S . Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 2012,44(7):812-815.
doi: 10.1038/ng.2312
[30] HUFFORD M B, XU X, HEERWAARDEN J V, PYHÄJÄRVI T, CHIA J M, CARTWRIGHT R A, ELSHIRE R J, GLAUBITZ J C, GUILL K E, KAEPPLER S M, LAI J S, MORRELL P L, SHANNON L M, SONG C, SPRINGER N M, SWANSON-WAGNER R A, TIFFIN P, WANG J, ZHANG G Y, DOEBLEY J, MCMULLEN M D, WARE D, BUCKLER E S, YANG S, ROSS-IBARRA J. Comparative population genomics of maize domestication and improvement. Nature Genetics, 2012,44(7):808-811.
doi: 10.1038/ng.2309
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!