Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4113-4126.doi: 10.3864/j.issn.0578-1752.2020.20.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Dissection of Heterosis for Huangzaosi, a Foundation Parental Inbred Line of Maize in China

LI YongXiang1(),LI ChunHui1(),YANG JunPin2,YANG Hua3,CHENG WeiDong4,WANG LiMing5,LI FengYan6,LI HuiYong7,WANG YanBo8,LI ShuHua9,HU GuangHui10,LIU Cheng11,LI Yu1(),WANG TianYu1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066
    3Maize Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329
    4Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
    5Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
    6College of Agronomy, Northwest Agricultural and Forestry University, Yangling 712100, Shaanxi
    7Cereal Crop Research Institute, Henan Academy of Agricultural Science, Zhengzhou 450002
    8Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
    9Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
    10Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086
    11Institute of Cereal Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000
  • Received:2019-11-20 Accepted:2020-02-11 Online:2020-10-16 Published:2020-10-26
  • Contact: Yu LI,TianYu WANG E-mail:liyongxiang@caas.cn;lichunhui@caas.cn;liyu03@caas.cn;wangtianyu@caas.cn

Abstract:

【Objective】The utilization of heterosis is an important approach for high yield breeding in maize. Genetic dissection of heterosis for Huangzaosi (HZS), a foundation parental inbred line of HZS Group, would provide valuable information for its efficient use and high yield maize breeding. 【Method】 A nested association mapping population (NAM), developed from Huangzaosi (HZS) as common parent and 11 diverse inbred lines as other parents and consisting of 2 000 recombinant inbred lines (RILs), were test-crossed with Zheng58 (Z58) and Chang7-2 (CH7), the representative tester in the heterotic pattern of "Improved Reid Group × HZS derived Group" in Chinese maize breeding, respectively. Phenotypic data of two NAM test-cross (NAM-TC) populations were collected at 10 locations across four major corn growing areas of China. Correlations among phenotypic traits and among the NAM and its TC populations, were analyzed. Quantitative trait loci (QTL) mapping of yield and related traits for the NAM and its two TC populations were separately conducted using the model of Joint stepwise regression. Meanwhile, multi-allelic effects of yield related QTL were conducted. Finally, the recombination rates around QTL regions were estimated and compared. 【Result】 Plant height (PH) and yield related traits (mainly refer to kernel number per row, KRPR; kernel weight per hundred, KWPH) simultaneously appeared highly positive correlations with plot yield for both the NAM and its two NAM-TC populations. Compared to the CH7-TC population (with weak heterosis), the lower correlation was observed between the yield performance of the NAM and its Z58-TC population. This meant that the NAM RILs contributed less genetic effects for the yield performance of hybrids in Z58-TC population. A smaller number of QTL were detected for each of the NAM-TC populations. However, the QTL of the NAM-TC populations explained more phenotypic variations than those detected in the NAM per se. Only about 27% of the CH7-TC population QTL and 25% of the Z58-TC population QTL overlapped or neighbored the QTL detected by using the NAM per se. The results of multi-allelic effects of grain yield per ear related QTL showed that HZS contributed about 68.69% of the favorable alleles among those QTL mapped in the Z58-TC population. On the contrary, HZS contributed more adverse alleles among those QTL mapped in the CH7-TC population. A total of 13 yield related genomic regions were identified in the Z58-TC population, whose favorable alleles were mostly contributed by HZS. These genomic regions might play important roles in the formation of yield heterosis of HZS. Moreover, QTL detected in the Z58-TC population tended to locate at the regions with low recombination rate, which was consistent with the feature of heterosis related loci tending to distribute at the genomic regions with low recombination rates. 【Conclusion】 Under the background of Z58, a tester with strong heterosis with HZS, the alleles from HZS greatly contributed to the high yield of hybrids. The QTL detected in the Z58-TC population would tightly associate with the yield heterosis of maize.

Key words: maize (Zea mays L.), yield, heterosis, quantitative trait loci (QTL)

Table 1

Statics of yield and important agronomic traits for Chinese maize NAM test-cross populations"

性状
Trait
昌7-2组合 CH7-TCs 郑58组合 Z58-TCs
Mean ± SD CV (%) h2 Mean ± SD CV (%) h2
吐丝期 DTS 69.44±1.27 1.87 0.76 64.33±1.29 2.02 0.80
株高 PH (cm) 248.31±11.61 4.67 0.85 224.14±13.94 6.20 0.92
穗行数 KRN 15.49±0.87 5.81 0.87 14.11±0.90 6.38 0.90
行粒数 KNPR 33.04±1.59 4.85 0.72 33.12±1.92 5.74 0.80
百粒重 KWPH (g) 26.90±1.68 6.32 0.82 34.78±2.18 6.32 0.76
单穗产量Ear yield (g) 136.06±9.41 6.91 0.69 155.19±10.80 6.96 0.73
小区产量Plot yield (kg) 2.38±0.17 8.33 0.65 2.83±0.24 7.14 0.74

Fig. 1

Correlation analysis of yield and important agronomic traits for NAM test-cross populations DTS: Days to silking; PH: Plant height; KRN: Kernel row number; KNPR: Kernel number per row; KWPH: Kernel weight per hundred; Ear yield: Yield per ear; Plot yield: Yield per plot. The same as below"

Fig. 2

Correlation analysis of NAM and its test-cross populations for yield and important agronomic traits RIL: NAM population per se; Z58: Zheng58 test-cross population; CH7: Chang7-2 test-cross population. The same as below"

Table 2

QTL analysis of yield and important agronomic traits for NAM and its test-cross populations"

性状
Trait
NAM重组自交系 NAM-RILs 昌7-2 组合 CH7-TCs 郑58组合 Z58-TCs
数量Count PVE (%) 数量Count PVE (%) 数量Count PVE (%)
吐丝期DTS 17 55.23 11 64.80 6 68.11
株高PH 22 68.52 10 62.89 9 71.34
穗行数KRN 19 67.47 13 63.42 20 79.07
行粒数KNPR 13 45.18 10 52.47 9 62.45
百粒重KWPH 16 50.90 12 62.49 9 58.37
单穗产量Ear yield 11 39.27 11 62.51 9 60.12
小区(单株)产量Plot (Per plant) yield 14 42.17 8 56.06 10 57.29
单株产量Per plant yield 小区产量Plot yield 小区产量Plot yield

Fig. 3

Distributions of yield and important agronomic traits related QTL for NAM and its test-cross populations"

Fig. 4

Multiple-allelic effects of ear yield related QTL for NAM and its test-cross populations The multiple-allelic effects of the mapped ear yield related QTL in NAM population (a, b, c), and its Chang7-2 test-cross population (d, e, f) and Zheng58 test-cross population (g, h, i), respectively (the part within red frame stands for the effects of the QTL in its mapped population). PVE: Phenotypic variance explained; FAR: Favorable allele ratio from Huangzaosi"

Table 3

QTL related to ear yield and plot yield for test-cross population of Zheng 58"

性状
Trait
标记
Marker
染色体
Chr.
物理位置a
Pos. (Mb)
P
P-value
贡献率
PVE (%)
染色体区间
Interval (Mb)
有利等位变异来源b
Source of favorable allele
单穗产量
Ear yield
m81 1 14.95 6.03E-07 4.63 14.80—16.35 HZS
m325 1 167.86 7.79E-07 4.57 152.50—180.61 HZS
m595 1 266.37 1.45E-06 4.43 265.52—269.51 HZS
m802 2 6.60 3.42E-05 3.51 5.92—7.22 HZS
m1194 2 208.38 8.79E-08 4.87 208.12—210.06 HZS
m1548 3 158.90 7.82E-15 8.72 156.48—160.01 None-HZS
m2957 6 32.46 8.34E-07 4.55 7.04—36.62 HZS
m3973 8 121.80 7.74E-07 4.57 106.85—131.35 HZS
m4334 9 77.02 5.22E-08 4.99 56.13—91.77 None-HZS
小区产量
Plot yield
m81 1 14.95 1.55E-04 3.79 12.86—15.91 HZS
m295 1 89.28 2.20E-06 4.94 86.67—91.25 HZS
m593 1 265.59 8.95E-06 4.57 257.97—268.17 HZS
m1550 3 159.68 9.80E-15 9.90 156.48—162.18 None-HZS
m2330 5 0.90 1.02E-06 4.93 0.89—1.34 HZS
m2481 5 26.10 6.80E-06 4.43 25.71—32.09 HZS
m2960 6 35.32 6.71E-05 4.02 3.91—36.62 HZS
m3973 8 121.80 2.19E-08 6.15 121.67—128.75 HZS
m4381 9 107.33 3.55E-06 4.60 89.39—107.55 None-HZS
m4837 10 137.28 7.38E-07 5.23 134.59—137.50 HZS

Fig. 5

Analysis of recombination rates within QTL regions for NAM and its test-cross populations"

[1] 王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种质杂种优势群的划分及其改良利用. 华北农学报, 1998,13(1):74-80.
WANG Y B, WANG Z H, WANG Y P, ZHANG X, LU L X. Division, utilization and the improvement of main germplasm heterosis of maize in China. Acta Agriculturae Boreali-Sinica, 1998,13(1):74-80. (in Chinese)
[2] 滕文涛, 曹靖生, 陈彦惠, 刘向辉, 景希强, 张发军, 李建生. 十年来中国玉米杂种优势群及其模式变化的分析. 中国农业科学, 2004,37(12):1804-1811.
TENG W T, CAO J S, CHEN Y H, LIU X H, JING X Q, ZHANG F J, LI J S. Analysis of maize heterotic groups and patterns during past decade in China. Scientia Agricultura Sinica, 2004,37(12):1804-1811. (in Chinese)
[3] SHULL G H. The composition of a field of maize. Journal of Heredity, 1908,4:298-301.
[4] 李遂生. 玉米“黄早四”的选育过程及其应用. 北京农业科学, 1997,15(1):19-21.
LI S S. Development process and its application of maize inbred line "Huangzaosi". Bejing Agricultural Sciences, 1997,15(1):19-21. (in Chinese)
[5] 黎裕, 王天宇. 我国玉米育种种质基础与骨干亲本的形成. 玉米科学, 2010,18(5):1-8.
LI Y, WANG T Y. Germplasm base of maize breeding in China and formation of foundation parents. Journal of Maize Science, 2010,18(5):1-8. (in Chinese)
[6] WU X, LI Y X, SHI Y S, SONG Y C, WANG T Y, HUANG Y B, LI Y. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theoretical and Applied Genetics, 2014,127:621-631.
pmid: 24343198
[7] LI C H, LI Y X, SUN B C, PENG B, LIU C, LIU Z Z, YANG Z Z, LI Q C, TAN W W, ZHANG Y, WANG D, SHI Y S, SONG Y C, WANG T Y, LI Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013,193:303-316.
[8] CHEN L, LI Y X, LI C H, WU X, QIN W W, LI X, JIAO F C, ZHANG X J, ZHANG D F, SHI Y S, SONG Y C, LI Y, WANG T Y. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biology, 2016,16:81.
[9] 高星, 李永祥, 杨明涛, 李琲琲, 李春辉, 宋燕春, 张登峰, 王天宇, 黎裕, 石云素. 基于高密度遗传图谱的玉米籽粒灌浆特性遗传解析. 中国农业科学, 2017,50(21):4087-4099.
GAO X, LI Y X, YANG M T, LI B B, LI C H, SONG Y C, ZHANG D F, WANG T Y, LI Y, SHI Y S. Genetic dissection of grain filling related traits based on a high-density map in maize. Scientia Agricultura Sinica, 2017,50(21):4087-4099. (in Chinese)
[10] LI C, SONG W, LUO Y, GAO S, ZHANG R, SHI Z, WANG X, WANG R, WANG F, WANG J, ZHAO Y, SU A, WANG S, LI X, LUO M, WANG S, ZHANG Y, GE J, TAN X, YUAN Y, BI X, HE H, YAN J, WANG Y, HU S, ZHAO J. The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize. Molecular Plant, 2019,12(3):402-409.
pmid: 30807824
[11] 杨钊钊, 李永祥, 刘成, 刘志斋, 李春辉, 李清超, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕. 基于多个相关群体的玉米雄穗相关性状QTL分析. 作物学报, 2012,38(8):1435-1442.
YANG Z Z, LI Y X, LIU C, LIU Z Z, LI C H, LI Q C, PENG B, ZHANG Y, WANG D, TAN W W, SUN B C, SHI Y S, SONG Y C, WANG T Y, LI Y. QTL analysis of tassel-related traits in maize (Zea mays L.) using multiple connected populations. Acta Agronomica Sinica, 2012,38(8):1435-1442. (in Chinese)
[12] 李清超, 李永祥, 杨钊钊, 刘成, 刘志斋, 李春辉, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 张志明, 潘光堂, 黎裕, 王天宇. 基于多重相关RIL群体的玉米株高和穗位高QTL定位. 作物学报, 2013,39(9):1521-1529.
LI Q C, LI Y X, YANG Z Z, LIU C, LIU Z Z, LI C H, PENG B, ZHANG Y, WANG D, TAN W W, SUN B C, SHI Y S, SONG Y C, ZHANG Z M, PAN G T, LI Y, WANG T Y. QTL mapping for plant height and ear height by using multiple related RIL populations in maize. Acta Agronomica Sinica, 2013,39(9):1521-1529. (in Chinese)
[13] LI Y X, LI C H, BRADBURY P J, LIU X L, ROMAY C M, GLAUBITZ J C, WU X, PENG B, SHI Y S, SONG Y C, ZHANG D F, BUCKLER E S, ZHANG Z W, LI Y, WANG T Y. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. The Plant Journal, 2016,86:391-402.
[14] LI C, SUN B, LI Y, LIU C, WU X, ZHANG D, SHI Y, SONG Y, BUCKLER E S, ZHANG Z, WANG T, LI Y. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations.BMC Genomics, 17(1):894.
doi: 10.1186/s12864-016-3170-8 pmid: 27825295
[15] BUCKLER E S, HOLLAND J B, BRADBURY P J, ACHARYA C B, BROWN P J, BROWNE C, ERSOZ E, FLINT-GARCIA S, GARCIA A, GLAUBITZ J C, GOODMAN M M, HARJES C, GUILL K, KROON D E, LARSSON S, LEPAK N K, LI H, MITCHELL S E, PRESSOIR G, PEIFFER J A, ROSAS M O, ROCHEFORD T R, ROMAY M C, ROMERO S, SALVO S, SANCHEZ VILLEDA H, DA SILVA H S, SUN Q, TIAN F, UPADYAYULA N, WARE D, YATES H, YU J, ZHANG Z, KRESOVICH S, MCMULLEN M D. The genetic architecture of maize flowering time. Science, 2009,325:714-718.
[16] LI H H, YE G Y, WANG J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2006,175:361-374.
[17] ELSHIRE R J, GLAUBITZ J C, SUN Q, POLAND J A, KAWAMOTO K, BUCKLER E S, MITCHELL S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011,6(5):e19379.
[18] LI C H, LI Y, BRADBURY P J, WU X, SHI Y S, SONG Y C, ZHANG D F, RODGERS-MELNICK E, BUCKLER E S, ZHANG Z W, LI Y, WANG T Y. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize. BMC Biology, 2015,13:78.
pmid: 26390990
[19] BROWN P J, UPADYAYULA N, MAHONE G S, TIAN F, BRADBURY P J, MYLES S, HOLLAND J B, FLINT-GARCIA S, MCMULLEN M D, BUCKLER E S, ROCHEFORD T R. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genetics, 2011,7(11):e1002383.
pmid: 22125498
[20] YANG J L, MEZMOUK S, BAUMGARTEN A, BUCKLER E S, GUILL K E, MCMULLEN M D, MUMM R H, ROSS-IBARRA J. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genetics, 2017,13(9):e1007019.
[21] YU J, HOLLAND J B, MCMULLEN M D, BUCKLER E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008,178:539-551.
doi: 10.1534/genetics.107.074245 pmid: 18202393
[22] TIAN F, BRADBURY P J, BROWN P J, HUNG H, SUN Q, FLINT-GARCIA S, ROCHEFORD T R, MCMULLEN M D, HOLLAND J B, BUCKLER E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011,43(2):159-162.
[23] KUMP K L, BRADBURY P J, WISSER RJ, BUCKLER E S, BELCHER A R, OROPEZA-ROSAS M A, ZWONITZER J C, KRESOVICH S, MCMULLEN M D, WARE D, BALINT-KURTI P J, HOLLAND J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nature Genetics, 2011,43(2):163-168.
[24] POLAND J A, BRADBURY P J, BUCKLER E S, NELSON R J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011,17:6893-6898.
[25] PEIFFER J A, ROMAY M C, GORE M A, FLINT-GARCIA S A, ZHANG Z, MILLARD M J, GARDNER C A C, MCMULLEN M D, HOLLAND J B, BRADBURY P J, BUCKLE E S. The genetic architecture of maize height. Genetics, 2014,196:1337-1356.
[26] WU X, LI Y, SHI Y, SONG Y, ZHANG D, LI C, BUCKLER E S, LI Y, ZHANG Z, WANG T. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnology Journal, 2016,14(7):1551-1162.
pmid: 26801971
[27] WANG L, BEISSINGER T M, LORANT A, ROSS-IBARRA C, ROSS-IBARRA J, HUFFORD M B. The interplay of demography and selection during maize domestication and expansion. Genome Biology, 2015,18(1):215.
pmid: 29132403
[28] MÔRO G V, SANTOS M F, JR. C L D S. Use of genomic and phenotypic selection in lines for prediction of testcrosses in maize II: Grain yield and plant traits. Euphytica, 2017,213:128.
[29] HUANG X, YANG S, GONG J, ZHAO Y, FENG Q, GONG H, LI W, ZHAN Q, CHENG B, XIA J, CHEN N, HAO Z, LIU K, ZHU C, HUANG T, ZHAO Q, ZHANG L, FAN D, ZHOU C, LU Y, WENG Q, WANG Z X, LI J, HAN B. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015,6:6258.
pmid: 25651972
[30] HUANG X, YANG S, GONG J, ZHAO Q, FENG Q, ZHAN Q, ZHAO Y, LI W, CHENG B, XIA J, CHEN N, HUANG T, ZHANG L, FAN D, CHEN J, ZHOU C, LU Y, WENG Q, HAN B. Genomic architecture of heterosis for yield traits in rice. Nature, 2016,537(7622):629-633.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!