Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4127-4136.doi: 10.3864/j.issn.0578-1752.2020.20.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment and Application of Multiple PCR Detection System for Glyphosate-Tolerant Gene EPSPS/GAT in Soybean

WEN Jing1,2(),GUO Yong2,QIU LiJuan1,2   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm & Biotechnology (MOA), Beijing 100081
  • Received:2020-01-03 Accepted:2020-03-07 Online:2020-10-16 Published:2020-10-26

Abstract:

【Objective】This study aims to establish an accurate and efficient high-throughput detection method for herbicide-resistant genes of G2-EPSPS and GAT, providing technical support for the application of transgenic soybean ZH10-6.【Method】Based on the molecular characteristics of glyphosate-resistant soybean ZH10-6 and ZH10, specific primers for endogenous reference genes (Actin), exogenous genes (G2-EPSPS and GAT) and flank sequences (G2EPSPS-2/ZH10P2 and ZH10P1/GAT-2) were designed for testing their specificity and applicability by PCR amplification. The optimal PCR amplified condition of the multiplex PCR system were screened by adjusting primer ratio, DNA template amount, dNTP content, annealing temperature and elongation temperature. The different mix of transgenic soybean ZH10-6 and ZH10 were prepared according to the mass ratio and formed DNA samples of 100%, 50%, 10%, 5%, 1%, 0.5%, 0.1% and 0 for sensitivity detection. Eleven derived lines of transgenic soybean ZH10-6 from different geographical sources were detected for evaluation of its application potential.【Result】Primers of GmActin11 F/R, G2-EPSPS F/R, GAT F/R, ZH10P1/GAT and G2/ZH10P2 were amplified the specific target fragments of 126, 430, 338, 810 and 1 626 bp in the multiple PCR method in transgenic soybean ZH10-6. In addition to the 126 bp target fragment amplified by ZH10 with GmActin11 F/R, the 632 bp target fragments were amplified by ZH10P1/ ZH10P2. The optimal system for multiple PCR amplification included 100 ng DNA template, 5 U·μL-1 Ex Taq 0.2 μL, 10×ExTaq Buffer 2.5 μL, 2.5 mmol·L-1 dNTP 2 μL, 10 μmol·L-1 primers(GmActin11 F/R 0.4 μL, G2-EPSPS F/R 0.6 μL, GAT F/R 0.4 μL, ZH10P1/GAT 0.6 μL and G2/ZH10P2 0.6 μL), ddH2O supplemented 25 μL. The optimal multiplex PCR amplification procedure: 95℃ for 5 min; 95℃ 30 s, 60℃ 30 s, 68℃ 1 min20 s, 35 cycles; 72℃ 12 min. The sensitivity of the multiplex PCR system is 0.5%, which meets the requirements of the European Union for the labeling of transgenic products. The multiplex PCR method is high specificity and detected ZH10, ZH10-6 and eleven ZH10-6 derived lines successfully. 【Conclusion】The multiple PCR system of EPSPS/GAT were established, which had advantage of high throughput, strong specificity, simple operation and wide application. It can detect transgenic soybean ZH10-6 and its derived lines quickly and accurately.

Key words: transgenic soybean, herbicide resistance, foreign genes, flanking sequence, multiplex PCR

Table 1

The markers for multiplex PCR and their related information"

基因/标记名称
Gene/Marker name
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
产物大小
Fragment size (bp)
内源参考基因Actin
Endogenous gene Actin
GmActin11F ATCTTGACTGAGCGTGGTTATTCC 126
GmActin11R GCTGGTCCTGGCTGTCTCC
侧翼序列ZH10P1/GAT-2
Flanking sequence ZH10P1/GAT-2
ZH10P1 TAATAGTAGAATGGGACTGGTGGAT 810
GAT GCGGACTTGCTTTGGTGTAAT
侧翼序列G2EPSPS-2/ZH10P2
Flanking sequence G2EPSPS-2/ZH10P2
G2 CCCGAATCATCAGGCAAACA 1626
ZH10P2 AACACATCATAGTATTCTAAAACGCTT
外源基因G2-EPSPS
Exogenous gene G2-EPSPS
G2-EPSPS F CAAATCCATTACCAACCGTGC 430
G2-EPSPS R ACCACCATCAATCTCGAAACG
外源基因GAT
Exogenous gene GAT
GAT F CTCAGACCAAACCAGCCGATAG 338
GAT R GTGTCGAATACCTCTCCCTGCTC

Fig. 1

DNA detection results of 1% agarose gel electrophoresis M: 2K Plus II; 1: ZH10; 2: ZH10-6"

Fig. 2

Single gene specific test results M: 2K Plus II; 1: ZH10; 2: ZH10-6; GmActin11, G2-EPSPSP, GAT, ZH10P1/GAT and G2/ZH10P2 were PCR amplification primers, and 5 Pairs of Primers were equal combinations of GmActin11, G2-EPSPSP, GAT, ZH10P1/GAT and G2/ZH10P2"

Fig. 3

Results of gradient multiple PCR M: 2K Plus II; 1: ZH10; 2: ZH10-6"

Fig. 4

Single and multiple PCR detection of ZH10-6 and ZH10 M: 2K Plus II; 1: ZH10; 2: ZH10-6; GmActin11, G2-EPSPSP, GAT, ZH10P1/GAT and G2/ZH10P2 were PCR amplification primers, and 5 Pairs of Primers were equal combinations of GmActin11, G2-EPSPSP, GAT, ZH10P1/GAT and G2/ZH10P2"

Fig. 5

Results of multiple PCR sensitivity detection M: 2K Plus II; 1-7: The mass fraction of ZH10-6: 100%, 50%, 10%, 5%, 1%, 0.5%, 0.1%; 8: ZH10"

Fig. 6

Test results of ZH10-6 derivative lines"

Table 2

The derived lines of ZH10-6"

衍生品系类型 Derived strain type 引物名称 The name of the primers 衍生品系名称
The name of the derivative lines
GmActin11 G2-EPSPS GAT ZH10P1/GAT G2/ZH10P2 ZH10P1/ZH0P2
类型1 Type 1 NZG700、ZH10
类型2 Type 2 NZK100、NZK180、NZJ77、NZJ110、SUN100、ZH10-6
类型3 Type 3 NZC400
类型4 Type 4 NZK001
类型5 Type 5 NZC100、NZK150、NZM150
[1] REDENBAUGH K, HIATT W, MARTINEAU B, EMLAY D. Regulatory assessment of the FLAVR SAVR tomato. Trends in Food Science & Technology, 1994,5(4):105-110.
doi: 10.1016/0924-2244(94)90197-X
[2] JAMES C. 2018年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2019,39(8):1-6.
JAMES C. Global status of commercialized biotech/GM crops in 2018. China Biotechnology, 2019,39(8):1-6. (in Chinese)
[3] DLUGOSCH K M, WHITTON J. Can we stop transgenes from taking a walk on the wild side? Molecular Ecology, 2008,17(5):1167-1169.
doi: 10.1111/j.1365-294X.2008.03663.x pmid: 18302682
[4] YASSEEN Y M, BARRINGER S A, SPLITTSTOESSER W E, COSTANZA S. The role of seed coats in seed viability. The Botanical Review, 1994,60(4):426-439.
doi: 10.1007/BF02857926
[5] KOSIR A B, SPILSBERQ B, HOLST J A, ZEI J, DOBNIK. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Scientific Reports, 2017,7(1):8601-8611.
doi: 10.1038/s41598-017-09377-w pmid: 28819142
[6] JENSEN A H. Testing for genetically modified organisms (GMOs): Past, present and future perspectives. Biotechnology Advances, 2009,27(6):1071-1082.
doi: 10.1016/j.biotechadv.2009.05.025
[7] 瞿勇, 武玉花, 吴刚, 曹应龙, 卢长明. 转基因玉米MON88017转化事件特异性定性PCR检测方法及其标准化. 农业生物技术学报, 2010,18(6):1208-1214.
QU Y, WU Y H, WU G, CAO Y L, LU C M. Event-specific PCR detection method of transgenic maize line MON88017 and its standardization. Journal of Agricultural Biotechnology, 2010,18(6):1208-1214. (in Chinese)
[8] GERMINI A, ZANETTI A, SALATI C, ROSSI S, FORRE C, SCHMID S, MARCHELLI R. Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. Journal of Agricultural and Food Chemistry, 2004,52(11):3275-3280.
doi: 10.1021/jf035052x pmid: 15161182
[9] MARKOULATOS P, SIAFAKAS N, MONCANY M. Multiplex polymerase chain reaction: A practical approach. Journal of Clinical Laboratory Analysis, 2002,16(1):47-51.
pmid: 11835531
[10] 吕山花, 常汝镇, 陶波, 李向华, 栾凤侠, 郭珊花, 邱丽娟. 抗草甘膦转基因大豆PCR检测方法的建立与应用. 中国农业科学, 2003,36(8):883-887.
LÜ S H, CHANG R Z, TAO B, Li X H, LUAN F X, GUO S H, QIU L J. Methodological research on PCR based detection of genetically modified soybean resistant to glyphosate. Scientia Agricultura Sinica, 2003,36(8):883-887. (in Chinese)
[11] 沈苏南. 一种多重PCR技术在转基因大豆检测中的应用研究[D]. 苏州: 苏州大学, 2016.
SHEN S N. A novel multiplex-PCR assay to identify genetically modified soybean events[D]. Suzhou: Soochoow University, 2016. (in Chinese)
[12] 鲁军, 李刚, 赵建宁, 杨殿林, 修伟明. 多重PCR技术在转基因成分检测中的最新研究进展. 生物学杂志, 2018,35(5):87-90.
LU J, LI G, ZHAO J N, YANG D L, XIU W M. Review on multiplex polymerase chain reaction for the detection of genetically modified components. Journal of Biology, 2018,35(5):87-90. (in Chinese)
[13] TIAN F, WANG X, TENG D, YANG Y, GUAN Q, AO C, WANG J. Optimization of a multiplex PCR assay for detecting transgenic soybean components in feed products. Applied Biochemistry & Biotechnology, 2011,165(6):1225-1234.
[14] LEE, HUN S. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops. Journal of the Science of Food and Agriculture, 2014,94(14):2856-2862.
doi: 10.1002/jsfa.6625
[15] GUO J C, CHEN L L, LIU X, GAO Y, ZHANG D B, YANG L T. A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs. Food Chemistry, 2012,132(3):1566-1573.
doi: 10.1016/j.foodchem.2011.11.096
[16] JAMES D, SCHMIDT A M, WALL E, GREEN M, MASRI S. Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. Journal of Agricultural and Food Chemistry, 2003,51(20):5829-5834.
doi: 10.1021/jf0341159 pmid: 13129280
[17] 尹全, 李忆, 宋君, 王东, 张富丽, 刘文娟, 常丽娟, 刘勇. 多重PCR检测抗草甘膦大豆GTS40-3-2. 大豆科学, 2016,35(4):666-671.
YIN Q, LI Y, SONG J, WANG D, ZHANG F L, LIU W J, CHANG L J, LIU Y. Multiplex PCR for detection of roundup-ready soybean GTS40-3-2. Soybean Science, 2016,35(4):666-671. (in Chinese)
[18] AO J, LI Q, GAO X, YU Y, LI L, ZHANG M. A multiplex nested PCR assay for the simultaneous detection of genetically modified soybean, maize and rice in highly processed products. Food Control, 2011,22(10):1617-1623.
doi: 10.1016/j.foodcont.2011.03.018
[19] KIM J H, JEONG D, KIM Y R, KWON Y K, RHEE G S, ZHANG D B, KIM H Y. Development of a multiplex PCR method for testing six GM soybean events. Food Control, 2013,31(2):366-371.
doi: 10.1016/j.foodcont.2012.10.015
[20] 付伟, 任娇, 魏霜, 袁俊杰, 周广彪, 吴希阳, 朱水芳, 刘中勇. 转基因大豆DAS44406-6多重荧光定量PCR检测方法的建立. 食品工业科技, 2017,38(4):63-67.
FU W, REN J, WEI S, YUAN J J, ZHOU G B, WU X Y, ZHU S F, LIU Z Y. Multiplex real-time PCR for the detection of genetically modified soybean DAS44406-6. Science and Technology of Food Industry, 2017,38(4):63-67. (in Chinese)
[21] 鲁军, 李刚, 赵建宁, 杨殿林, 修伟明. 5种转基因油菜转化体特异性多重PCR检测方法. 生物安全学报, 2017,26(3):244-250.
LU J, LI G, ZHAO J N, YANG D L, XIU W M. Event-specific multiplex PCR detection method for five genetically modified canola lines. Entomological Journal of East China, 2017,26(3):244-250. (in Chinese)
[22] JENSEN A H. Testing for genetically modified organisms (GMOs): Past, present and future perspectives. Biotechnology Advances, 2009,27(6):1071-1082.
doi: 10.1016/j.biotechadv.2009.05.025
[23] YANG L T, GUO J C, PAN A H, ZHANG H B, ZHANG K W, WANG Z M, ZHANG D. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. Journal of Agricultural and Food Chemistry, 2007,55(1):15-24.
pmid: 17199308
[24] LI Y J, LI J, WU Y H, CAO Y L, LI J, ZHU L, LI X F, HUANG S M, WU G. Successful detection of foreign inserts in transgenic rice TT51-1 (BT63) by RNA-sequencing combined with PCR. Journal of the Science of Food and Agriculture, 2016,97(5):1634-1639.
doi: 10.1002/jsfa.7913 pmid: 27436567
[25] RANDHAWA G J, CHHABRA R, SINGH M. Decaplex and real-time PCR based detection of MON531 and MON15985 Bt cotton events. Journal of Agricultural & Food Chemistry, 2010,58(18):9875-9881.
doi: 10.1021/jf100466n pmid: 20687600
[26] ROY A, FAYAD A, BARTHE G, BRLANSKY R H. A multiplex polymerase chain reaction method for reliable, sensitive and simultaneous detection of multiple viruses in citrus trees. Journal of Virological Methods, 2005,129(1):47-55.
pmid: 15951030
[27] YAN W. Multiplex PCR primer design for simultaneous detection of multiple pathogens. Methods in Molecular Biology, 2015,1275:91-101.
pmid: 25697653
[28] 赵红庆, 苑锡铜, 黄留玉. 多重PCR技术在病原检测中的应用. 生物技术通讯, 2007,18(5):863-865.
ZHAO H Q, YUAN X T, HUANG L Y. Application of multiplex PCR in detection of pathogens. Letters in Biotechnology, 2007,18(5):863-865. (in Chinese)
[29] 曹洪志, 颜其贵, 郭万柱, 樊汶樵, 肖雪, 李成贤. 多重PCR技术在动物疫病诊断中的应用. 中国动物检疫, 2007,24(1):45-47.
CAO H Z, YAN Q G, GUO W Z, FAN W Q, XIAO X, LI C X. Application of multiplex PCR in the diagnosis of animal diseases. China Journal of Animal Quarantine, 2007,24(1):45-47. (in Chinese)
[30] 刘志杰, 李如举, 曾智勇, 周莉, 汤德元, 李谦, 肖超能. 多重PCR反应的影响因素及其优化. 黑龙江畜牧兽医, 2011,13(7):26-28.
LIU Z J, LI R J, ZENG Z Y, ZHOU L, TANG D Y, LI Q, XIAO C N. Factors influencing multiple PCR reactions and their optimization. Heilongjiang Animal Science and Veterinary Medicine, 2011,13(7):26-28. (in Chinese)
[31] LIU Z B, GAO Q R, WANG R X, QIAO X L, QIU X M. Application of multiplex PCR to studies on plant biology. Molecular Plant Breeding, 2005,2(3):261-268.
[32] HENEGARIU O, HEEREMA N A, DLOUHY S R, VOGT P H. Multiplex PCR: Critical parameters and step-by-step protocol. Bio Techniques, 1997,23(3):504-511.
[33] 陈贞, 芦春斌, 杨梦婕, 马骏, 白卫斌, 吴希阳. 多重PCR检测转基因菜籽粕中的转基因成分. 植物检疫, 2011,25(3):35-38.
CHEN Z, LU C B, YANG M J, MA J, BAI W B, WU X Y. Multiplex PCR for detection of genetically modified components of rapeseed meal. Plant Quarantine, 2011,25(3):35-38. (in Chinese)
[34] 董立明, 李葱葱, 邢珍娟, 邵改革, 夏蔚, 闫伟, 李飞武. 利用多重PCR技术快速检测五个转基因大豆品系. 大豆科学, 2016,35(6):1002-1007.
DONG L M, LI C C, XING Z J, SHAO G G, XIA W, YAN W, LI F W. Rapid detection of five genetically modified soybean lines by multiplex PCR method. Soybean Science, 2016,35(6):1002-1007. (in Chinese)
[1] HuiLin YU,Fang JIA,ZongHua QUAN,HaiLan CUI,XiangJu LI. Effects of Glyphosate on Weed Control, Soybean Safety and Weed Occurrence in Transgenic Herbicide-Resistant Soybean [J]. Scientia Agricultura Sinica, 2020, 53(6): 1166-1177.
[2] HAO QingTing,ZHANG Fei,JI XiaJie,XUE JinAi,LI RunZhi. Phenotypic Analysis of Epoxygenase-Transgenic Soybeans [J]. Scientia Agricultura Sinica, 2019, 52(2): 191-200.
[3] ZHANG Min-xiu, XIE Zhi-xun, DENG Xian-wen, XIE Zhi-qin, XIE Li-ji, HUANG Li, HUANG Jiao-ling . Establishment of a GeXP Analyser-Based Multiplex PCR Assay for Detection of Eight Reproductive and Respiratory Swine Pathogens [J]. Scientia Agricultura Sinica, 2015, 48(24): 4996-5006.
[4] LIN Kang-xue, LIU Xiu-jie, SUN Shi, CHEN Li, HAN Tian-fu, HOU Wen-sheng. Salt Tolerance Analysis of TaNHX2 Over-Expression Transgenic Soybean [J]. Scientia Agricultura Sinica, 2015, 48(20): 3998-4007.
[5] HE Wei-Ling, ZHANG Chi, YANG Jing, HUANG Ming, YANG Jun. A Quick Multiplex PCR Method for the Identification of Four Meat Ingredients in Food Products [J]. Scientia Agricultura Sinica, 2012, 45(9): 1873-1880.
[6] XIE Nan-nan,QIAO Yong,ZHAO Jin,LIU Meng-jun
. A SON-PCR Technique Suitable to Amplificating the Flanking Regions of Gene of Chinese Jujube
[J]. Scientia Agricultura Sinica, 2011, 44(4): 781-788 .
[7] XU Rong-qi,WANG Jia-ni,CHEN Jie-yin,DAI Xiao-feng
. Analysis of T-DNA Insertional Flanking Sequence and Mutant Phenotypic Characteristics in Verticillium Dahliae
[J]. Scientia Agricultura Sinica, 2010, 43(3): 489-496 .
[8] WANG Hu-hu,XU Xing-lian.

Detection of Pathogenic Microorganisms in Fresh Chicken Meat by Multiplex PCR

[J]. Scientia Agricultura Sinica, 2010, 43(17): 3608-3615 .
[9]

. Current Advances in Research on Herbicide Resistance
[J]. Scientia Agricultura Sinica, 2009, 42(4): 1274-1289 .
[10] LU Zong-zhi,ZHANG Chao-xian,FU Jun-fan,LI Mao-hai,LI Gui-jun
. Molecular Basis of Resistance to Bensulfuron-Methyl in Monochoria korsakowii
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3516-3521 .
[11] ,,,,,. Genetics, Development and Application of Cytoplasmic Herbicide Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2006, 39(05): 879-885 .
[12] ,. Multiplex PCR Detection of Allele on Benzimidazole-Resistance or -Susceptibity in Natural Populations of Haemonchus contortus [J]. Scientia Agricultura Sinica, 2005, 38(04): 826-830 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!