Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3567-3575.doi: 10.3864/j.issn.0578-1752.2020.17.013

• HORTICULTURE • Previous Articles     Next Articles

Application of Fulvic Acid and Phosphorus Fertilizer on Tomato Growth, Development, and Phosphorus Utilization in Neutral and Alkaline Soil

ZHANG LiLi(),SHI QingHua,GONG Biao()   

  1. College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong
  • Received:2020-01-19 Accepted:2020-05-09 Online:2020-09-01 Published:2020-09-11
  • Contact: Biao GONG E-mail:z1551931811@163.com;gongbiao@sdau.edu.cn

Abstract:

【Objective】The phosphorus uptake and utilization of plants are reduced in alkaline soil. Fulvic acid (FA) application has effect on activating the hard-soluble phosphorus in soil. This study used FA to improve the utilization rate of phosphorus fertilizer in alkaline soil, so as to provide a new approach to reduce phosphorus fertilizer application. 【Method】The tomato (Solanum lycopersicum L.) cultivar of Luo La was used as plant material, which were cultivated in the big pots with two kinds soil. Two levels of soil pH (6.5 and 8.0) with four levels of phosphorus (P2O5) fertilizer application (0, 0.1325, 0.265 and 0.53 g·kg-1, separately marked as 0% P, 25% P, 50% P and 100% P), with or without 0.08 g·kg-1 FA were set in this experiment. Then, it was studied the effects of 0.08 g·kg-1 FA and phosphorus fertilizer on plant growth, yield, fruit quality and phosphorus utilization in neutral and alkaline soil. 【Result】The tomato plant growth, yield, phosphorus concentrations, phosphorus uptake and fertilizer contribution were significantly reduced in alkaline soil. However, the tomato fruit quality was improved in alkaline soil. The tomato plant growth, yield and fruit quality, as well as phosphorus concentrations, phosphorus uptake and fertilizer contribution were also reduced by reducing phosphorus application. However, the phosphorus fertilizer utilization was improved in lower phosphorus levels. Application of FA had significant effects on improving phosphorus uptake and concentrations, which promoted the plant growth, yield and quality formation. Application of FA had little effect on phosphorus fertilizer utilization, which reduced fertilizer contribution in neutral soil. However, the phosphorus fertilizer utilization and fertilizer contribution were significantly enhanced by FA treatment in alkaline soil. In addition, application of FA increased levels of tomato growth and yield under 50% P treatment to that under 100% P treatment, while this enhanced effect was more significant in high pH soil. Application of FA to 100% P treatment had significant effects on improving tomato plant growth, yield in alkaline soil, which showed similar effects on that in 0% P without FA treatment in neutral soil.【Conclusion】Application of FA could improve phosphorus utilization, tomato plant growth, yield and fruit quality, which hit the mark of reducing phosphorus fertilizer application. Additionally, phosphorus fertilizer with FA application had mitigative effect of tomato growth and yield inhibition in alkaline soil.

Key words: tomato, fulvic acid, growth, yield, quality, phosphorus utilization

Table 1

Effects of fulvic acid and P fertilizer on plant growth in neutral and alkaline soil"

处理
Treatment
株高
Plant height
(m)
茎粗
Stem diameter (mm)
根鲜重
Fresh weight of root (g)
茎鲜重
Fresh weight of stem (g)
叶鲜重
Fresh weight of leaves (g)
平均隶属度Average membership degree 排名
Ranking
-FA +FA -FA +FA -FA +FA -FA +FA -FA +FA -FA +FA -FA +FA
pH 6.5 0%P 1.75f 1.91d 13.25e 13.42e 83.43hi 94.60fg 189.82h 196.03g 348.61h 376.31e 0.38 0.49 10 8
25%P 1.84e 1.96c 14.02d 14.06d 92.62fg 104.68d 204.04f 240.20c 366.81f 388.24d 0.49 0.64 7 4
50%P 1.86e 1.96c 14.06d 15.58b 99.76e 113.82c 215.36e 267.20b 393.90d 436.14b 0.57 0.81 5 2
100%P 2.05b 2.17a 14.83c 16.73a 120.11b 139.90a 224.61d 278.92a 420.12c 449.80a 0.73 1.00 3 1
pH 8.0 0%P 1.35k 1.56hi 11.04h 11.86g 56.92k 80.31i 154.73k 176.78i 279.70m 313.86 0.00 0.21 16 14
25%P 1.45j 1.61h 11.74g 12.70f 71.64j 92.76fg 166.27j 191.12gh 288.03l 334.03i 0.11 0.33 15 12
50%P 1.52i 1.77f 12.67f 13.30e 84.34hi 95.60f 188.26h 212.60e 303.67k 357.99g 0.25 0.46 13 9
100%P 1.67g 1.84e 13.27e 14.09d 91.35g 104.91d 195.41g 226.29d 335.82i 365.69f 0.37 0.56 11 6

Fig. 1

Effects of fulvic acid and P fertilizer on tomato yield and fertilizer contribution in neutral and alkaline soil Values followed by different letters den·te significant differences among treatments at the 5% level. The same as below"

Table 2

Effects of fulvic acid and P fertilizer on P contents of root, stem, leaf and fruit in neutral and alkaline soil"

处理
Treatment

P concentrations of root (mmol·g-1 DW)

P concentrations of stem (mmol·g-1 DW)

P concentrations of leaf (mmol·g-1 DW)

P concentrations of fruit (mmol·g-1 DW)
平均隶属度
Average membership degree
排名Ranking
-FA +FA -FA +FA -FA +FA -FA +FA -FA +FA -FA +FA
pH 6.5 0%P 0.62g 0.72d 0.48jk 0.63de 0.37f 0.45cd 0.093f 0.10e 0.33 0.62 12 6
25%P 0.64g 0.76c 0.56g 0.66cd 0.41e 0.48c 0.099e 0.11cd 0.47 0.73 9 3
50%P 0.69ef 0.82b 0.59f 0.70b 0.44de 0.52b 0.11d 0.11bc 0.59 0.87 7 2
100%P 0.76c 0.86a 0.62e 0.75a 0.47c 0.57a 0.11ab 0.12a 0.73 1.00 3 1
pH 8.0 0%P 0.46j 0.55hi 0.43l 0.50ij 0.26h 0.36f 0.073h 0.079g 0.00 0.22 16 14
25%P 0.47j 0.62g 0.45kl 0.56fg 0.30g 0.38f 0.077gh 0.090f 0.076 0.40 15 10
50%P 0.54i 0.67f 0.52hi 0.58fg 0.36f 0.46cd 0.079g 0.093f 0.23 0.51 13 8
100%P 0.57h 0.71de 0.55gh 0.67e 0.38f 0.46cd 0.090f 0.099e 0.35 0.65 11 5

Fig. 2

Effects of fulvic acid and P fertilizer on P uptake and P fertilizer utilization in neutral and alkaline soil"

Table 3

Effects of fulvic acid and P fertilizer on fruit quality in neutral and alkaline soil"

处理
Treatment
干物质含量
Dry matter concentration (%)
番茄红素含量
Lycopene concentration (mg·g-1)
维生素C含量
Vitamine C concentration (mg·kg-1)
可溶性糖含量
Soluble sugar concentration (mg·g-1)
可滴定酸含量
Titratable acid concentration (mg·g-1)
糖酸比
Ratio of sugar to acid
平均隶属度Average membership degree 排名
Ranking
-FA +FA -FA +FA -FA +FA -FA +FA -FA +FA -FA +FA -FA +FA -FA +FA
pH 6.5 0%P 5.40i 5.63h 0.63h 0.73e 75.86k 93.11h 50.04m 83.84h 6.28l 7.93i 7.97e 10.57b 0.026 0.38 16 12
25%P 5.72gh 6.03f 0.64gh 0.75de 80.62j 97.84gh 56.19l 97.97f 6.48l 8.97h 8.67d 10.92ab 0.12 0.51 15 9
50%P 5.73gh 6.05f 0.63h 0.76cd 85.48i 101.56g 59.73l 105.05e 6.95k 9.62g 8.59d 10.91ab 0.14 0.56 14 8
100%P 5.83g 6.08f 0.66g 0.79b 93.45h 111.22f 66.04k 112.95d 7.35j 9.96f 8.98d 11.33a 0.23 0.65 13 5
pH 8.0 0%P 6.42e 6.83c 0.71f 0.78bc 119.43e 125.83cd 74.69j 110.87d 10.17f 11.38d 7.34f 9.73c 0.40 0.71 11 4
25%P 6.60d 7.10b 0.71f 0.82a 122.99de 130.49bc 79.17i 129.28c 10.75e 12.07c 7.36f 10.72b 0.45 0.87 10 3
50%P 6.85c 7.16ab 0.75de 0.82a 129.01c 134.96b 85.23gh 136.22b 10.96e 12.47b 7.77ef 10.93ab 0.56 0.92 7 2
100%P 6.86c 7.31a 0.74de 0.84a 133.86b 141.98a 88.66g 143.61a 11.53d 12.77a 7.69ef 11.24a 0.58 1.00 6 1
[1] 曹志洪, 周健民. 中国土壤质量. 北京: 科学出版社, 2008: 3090.
CAO Z H, ZHOU J M. China Soil Quality Beijing: Science Press, 2008: 3090. (in Chinese)
[2] 张子璐, 刘峰, 侯庭钰. 我国稻田氮磷流失现状及影响因素研究进展. 应用生态学报, 2019,30(10):3292-3302.
doi: 10.13287/j.1001-9332.201910.029 pmid: 31621215
ZHANG Z L, LIU F, HOU T Y. Current status of nitrogen and phosphorus losses and related factors in Chinese paddy fields: A review. Chinese Journal of Applied Ecology, 2019,30(10):3292-3302. (in Chinese)
doi: 10.13287/j.1001-9332.201910.029 pmid: 31621215
[3] GONG B, WEN D, BLOSZIES S, LI X, WEI M, YANG F J, SHI Q H, WANG X F. Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots. Acta Physiologiae Plantarum, 2014,36(8):2167-2181.
doi: 10.1007/s11738-014-1593-x
[4] KUMAR A, SHAHBAZ M, KOIRALA M, BLAGODATSKAYA E, SEIDEL S J, KUZYAKOV Y, PAUSCH J. Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. Journal of Plant Nutrition and Soil Science, 2019,182(6):1-8.
doi: 10.1002/jpln.v182.1
[5] 李文雪. 生物炭添加对盐碱土水气传导的影响[D]. 烟台: 鲁东大学, 2018.
LI W X. Effect of biochar addition on water and air conduction in saline alkali soil[D]. Yantai: Ludong University, 2018. (in Chinese)
[6] 冯涛, 周国华, 池风龙, 王邦杰. 亚临界水解处理有机废弃物对天津滨海盐碱地的改良作用. 湖北农业科学, 2019,58(10):74-77.
FENG T, ZHOU G H, CHI F L, WANG B J. Improvement of subcritical hydrolysis of organic waste on coastal saline alkali soil in Tianjin. Hubei Agricultural Sciences, 2019,58(10):74-77. (in Chinese)
[7] 李冬初, 王伯仁, 黄晶, 张杨珠, 徐明岗, 张淑香, 张会民. 长期不同施肥红壤磷素变化及其对产量的影响. 中国农业科学, 2019,52(21):3830-3841.
doi: 10.3864/j.issn.0578-1752.2019.21.012
LI D C, WANG B R, HUANG J, ZHANG Y Z, XU M G, ZHANG S X, ZHANG H M. Changes of phosphorus in red soil and its effect to grain yield under long-term different fertilizations. Scientia Agricultura Sinica, 2019,52(21):3830-3841. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.21.012
[8] 孙运朋, 杨劲松, 姚荣江, 陈小兵. 生物炭和黄腐酸对滨海滩涂盐碱地土壤性质的提升. 中国农业科技导报, 2019,21(8):115-121.
SUN Y P, YANG J S, YAO R J, CHEN X B. Effects of biochar and fulvic acid application on soil properties in tidal flat reclamation region. Journal of Agricultural Science and Technology, 2019,21(8):115-121. (in Chinese)
[9] 唐晓乐, 李兆君, 马岩, 梁永超. 低温条件下黄腐酸和有机肥活化黑土磷素机制. 植物营养与肥料学报, 2012,18(4):893-899.
doi: 10.11674/zwyf.2012.11380
TANG X L, LI Z J, MA Y, LIANG Y C. Mechanism of fulvic acid-and organic manure-mediated phosphorus mobilization in black soil at low temperature. Journal of Plant Nutrition and Fertilizers, 2012,18(4):893-899. (in Chinese)
doi: 10.11674/zwyf.2012.11380
[10] 李志坚, 林治安, 赵秉强, 袁亮, 李燕婷, 温延臣. 增值磷肥对潮土无机磷形态及其变化的影响. 植物营养与肥料学报, 2013,19(5):1183-1191.
doi: 10.11674/zwyf.2013.0518
LI Z J, LIN Z A, ZHAO B Q, YUAN L, LI Y T, WEN Y C. Effects of value-added phosphate fertilizers on transformation of inorganic phosphorus in calcareous soils. Journal of Plant Nutrition and Fertilizer, 2013,19(5):1183-1191. (in Chinese)
doi: 10.11674/zwyf.2013.0518
[11] 张丽丽, 刘德兴, 史庆华, 巩彪. 黄腐酸对番茄幼苗适应低磷胁迫的生理调控作用. 中国农业科学, 2018,51(8):1547-1555.
doi: 10.3864/j.issn.0578-1752.2018.08.012
ZHANG L L, LIU D X, SHI Q H, GONG B. Physiological regulatory effects of fulvic acid on stress tolerance of tomato seedlings against phosphate deficiency. Scientia Agricultura Sinica, 2018,51(8):1547-1555. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.08.012
[12] 刘佳欢, 王倩, 罗人杰, 陈喜, 孙淑娟. 黄腐酸肥料对小麦根际土壤微生物多样性和酶活性的影响. 植物营养与肥料学报, 2019,25(10):1808-1816.
LIU J H, WANG Q, LUO R J, CHEN X, SUN S J. Effect of fulvic acid fertilizer on microbial diversity and enzyme activity in wheat rhizosphere soil. Journal of Plant Nutrition and Fertilizers, 2019,25(10):1808-1816. (in Chinese)
[13] 李亚杰, 罗磊, 姚彦红, 王娟, 李丰先, 李城德, 边彩燕, 董爱云, 刘惠霞, 马瑞, 李德明. 黄腐酸菌肥与常规肥料配比对西北旱作区马铃薯根系形态及土壤酶活性的影响. 土壤与作物, 2019,8(3):293-301.
LI Y J, LUO L, YAO Y H, WANG J, LI F X, LI C D, BIAN C Y, DONG A Y, LIU H X, MA R, LI D M. The effects of fulvic acid fertilizer and conventional fertilizer ratio on potato root development and soil enzyme activity in arid land of northwest China. Soil and Crop, 2019,8(3):293-301. (in Chinese)
[14] 张彦才, 李若楠, 王丽英, 刘孟朝, 武雪萍, 吴会军, 李银坤. 磷肥对日光温室番茄磷营养和产量及土壤酶活性的影响. 植物营养与肥料学报, 2008,14(6):1193-1199.
doi: 10.11674/zwyf.2008.0626
ZHANG Y C, LI R N, WANG L Y, LIU M C, WU X P, WU H J, LI Y K. Effect of phosphorus fertilization on tomato phosporous nutrition, yield and soil enzyme activities. Journal of Plant Nutrition and Fertilizer, 2008,14(6):1193-1199. (in Chinese)
doi: 10.11674/zwyf.2008.0626
[15] GONG B, LI X, VANDENLANGENBERG K M, WEN D, SUN S S, WEI M, LI Y, YANG F J, SHI Q H, WANG X F. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnology Journal, 2014,12(6):694-708.
doi: 10.1111/pbi.12173 pmid: 24605920
[16] 区惠平, 周柳强, 黄金生, 曾艳, 朱晓晖, 谢如林, 谭宏伟, 黄碧燕. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响. 中国农业科学, 2018,51(10):1931-1939.
doi: 10.3864/j.issn.0578-1752.2018.10.012
QU H P, ZHOU L Q, HUANG J S, ZENG Y, ZHU X H, XIE R L, TAN H W, HUANG B Y. Effects of long-term different fertilization on sugarcane yield stability, fertilizer contribution rate and nutrient loss. Scientia Agricultura Sinica, 2018,51(10):1931-1939. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.10.012
[17] 曹兵, 倪小会, 肖强, 徐凯, 杨俊刚, 衣文平, 李丽霞. 包膜尿素对温室番茄产量、品质和经济效益的影响. 植物营养与肥料学报, 2014,20(2):389-395.
CAO B, NI X H, XIAO Q, XU K, YANG J G, YI W P, LI L X. Impact of coated urea on yield, quality and economic returns of greenhouse tomato. Journal of Plant Nutrition and Fertilizer, 2014,20(2):389-395. (in Chinese)
[18] 高方胜, 王磊, 徐坤. 砧木与嫁接番茄产量品质关系的综合评价. 中国农业科学, 2014,47(3):605-612.
doi: 10.3864/j.issn.0578-1752.2014.03.020
GAO F S, WANG L, XU K. Comprehensive evaluation of relationship between rootstock and yield and quality in grafting tomato. Scientia Agricultura Sinica, 2014,47(3):605-612. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.03.020
[19] 张钧恒, 马乐乐, 李建明. 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响. 中国农业科学, 2018,51(14):2788-2798.
doi: 10.3864/j.issn.0578-1752.2018.14.015
ZHNAG J H, MA L L, LI J M. Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato. Scientia Agricultura Sinica, 2018,51(14):2788-2798. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.015
[20] 谷端银, 王秀峰, 杨凤娟, 焦娟, 魏珉, 史庆华. 纯化腐植酸对低氮胁迫下黄瓜幼苗生长及养分吸收的影响. 应用生态学报, 2016,27(8):2535-2542.
GU D Y, WANG X F, YANG F J, JIAO J, WEI M, SHI Q H. Effects of purified humic acid on growth and nutrient absorption of cucumber (Cucumis sativus) seedlings under low nitrogen stress. Chinese Journal of Applied Ecology, 2016,27(8):2535-2542. (in Chinese)
[21] 刘德兴, 荆鑫, 焦娟, 魏珉, 隋申利, 赵利华, 李艳玮, 赵娜, 巩彪, 史庆华. 嫁接对番茄产量、品质及耐盐性影响的综合评价. 园艺学报, 2017,44(6):1094-1104.
LIU D X, JING X, JIAO J, WEI M, SUI S L, ZHAO L H, LI Y W, ZHAO N, GONG B, SHI Q H. Comprehensive evaluation of yield, quality and salt tolerance in grafting tomato. Acta Horticulturae Sinica, 2017,44(6):1094-1104. (in Chinese)
[22] GONG B, WEN D, WANG X F, WEI M, YANG F J, LI Y, SHI Q H. S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. Plant and Cell Physiology, 2015,56(4):790-802.
pmid: 25634962
[23] 张瑜, 王若楠, 邱小倩, 杨金水, 李宝珍, 袁红莉. 生物刺激素腐植酸对植物生理代谢的影响. 腐植酸, 2019(3):1-6, 33.
ZHANG Y, WANG R N, QIU X Q, YANG J S, LI B Z, YUAN H L. Effects of biostimulant humic acid on physiological metabolism of plant. Humic Acid, 2019(3):1-6, 33. (in Chinese)
[24] ZHANG X Z, SCHMIDT R E. Hormone-containing products' impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Science, 2000,40(5):1344-1349.
[25] 回振龙, 李朝周, 史文煊, 张俊莲, 王蒂. 黄腐酸改善连作马铃薯生长发育及抗性生理的研究. 草业学报, 2013,22(4):130-136.
HUI Z L, LI C Z, SHI W X, ZHANG J L, WANG D. A study on the use of fulvic acid to improve growth and resistance in continuous cropping of potato. Acta Prataculturae Sinica, 2013,22(4):130-136. (in Chinese)
[26] 杨凯, 关连珠, 颜丽, 朱教君, 贺婧. 外源腐殖酸对三种土壤磷吸附与解吸特性的影响. 生态学杂志, 2009,28(7):1303-1307.
YANG K, GUAN L Z, YAN L, ZHU J J, HE J. Effects of exogenous humic acids on soil phosphorus adsorption and desorption. Chinese Journal of Ecology, 2009,28(7):1303-1307. (in Chinese)
[27] 李粉茹, 于群英, 邹长明. 设施菜地土壤pH值、酶活性和氮磷养分含量的变化. 农业工程学报, 2009,25(1):217-222.
LI F R, YU Q Y, ZOU C M. Variations of pH value, enzyme activity and nitrogen phosphorus content in protected vegetable soils. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(1):217-222. (in Chinese)
[28] 陈宝成, 周华敏, 梁海, 王桂伟, 韩哲, 满晟群. 黄腐酸复合肥对盐碱地小麦生长、产量、效益及土壤理化性质的影响. 腐植酸, 2019(3):19-24.
CHEN B C, ZHOU H M, LIANG H, WANG G W, HAN Z, MAN S Q. Effects of fulvic acid compound fertilizer on growth, yield, benefit of wheat and soil physicochemical properties in saline-alkali soil. Humic Acid, 2019(3):19-24. (in Chinese)
[29] 王艳丹, 方海东, 李建查, 张明忠, 岳学文, 张雷, 潘志贤, 李坤, 史亮涛. 不同水肥管理对番茄品质和产量的影响. 农学学报, 2019,9(6):39-45.
WANG Y D, FANG H D, LI J C, ZHANG M Z, YUE X W, ZHANG L, PAN Z X, LI K, SHI L T. Effects of water and fertilizer management modes on quality and yield of tomato. Journal of Agriculture, 2019,9(6):39-45. (in Chinese)
[30] 李邵, 苏炜宣, 宋少恒, 孙小进, 丁小明, 常军盛, 李树辉. 光温耦合对日光温室番茄生长、产量与品质的影响. 中国农学通报, 2019,35(6):122-128.
LI S, SU W X, SONG S H, SUN X J, DING X M, CHANG J S, LI S H. Effects of light-temperature coupling on growth, yield and quality of tomato in solar greenhouse. Chinese Agricultural Science Bulletin, 2019,35(6):122-128. (in Chinese)
[31] 黄立华, 梁正伟, 陈渊. 苏打盐碱胁迫对番茄果实品质的影响. 吉林农业大学学报, 2007,29(1):74-77.
HUANG L H, LIANG Z W, CHEN Y. Effect of saline-sodic stress on quality of tomato fruit. Journal of Jilin Agricultural University, 2007,29(1):74-77. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[13] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!