Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2241-2252.doi: 10.3864/j.issn.0578-1752.2020.11.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMEN • Previous Articles     Next Articles

Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato

ZHU Yan,CAI HuanJie(),SONG LiBing,SHANG ZiHui,CHEN Hui   

  1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University/Institute of Water-saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University/College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2019-08-26 Accepted:2019-09-24 Online:2020-06-01 Published:2020-06-09
  • Contact: HuanJie CAI E-mail:caihj@nwsuaf.edu.cn

Abstract:

【Objective】 Oxygation is defined as the delivery of aerated water directly to the root zone by subsurface drip irrigation (SDI) and is recognized to increase yield and water use efficiency (WUE) through improving soil aeration around SDI drippers. The specific objective was to assess the effects of oxygation under different irrigation amounts and trickle-buried depths conditions on fruit yield and quality and IWUE (irrigation water use efficiency) of greenhouse tomato, and then the optimal treatment was explored through principal component analysis. 【Method】 Greenhouse-based experiments were conducted during tomato growing season (from Aug. 18, 2016 to Jan. 9, 2017) under the oxygation (O) and unaerated SDI (S, CK) conditions, which included three different irrigation levels correlated with crop-pan coefficients (kcp) being 0.6 (W1), 0.8 (W2) and 1.0 (W3) and two different emitter depths of 15 cm (D1) and 25 cm (D2), respectively. Consequently, there was a total of 12 treatments (W1D1O, W1D1S, W2D1O, W2D1S, W3D1O, W3D1S, W1D2O, W1D2S, W2D2O, W2D2S, W3D1S and W3D2S) and replied 3 times. 【Result】 The results showed that yield per plant, fruit weight, IWUE, the content of lycopene, vitamin C, soluble sugar and sugar-acid ratio in fruit with oxygation were significantly increased by 21.2%, 23.9%, 21.0%, 28.1%, 36.0%, 22.8% and 28.0%, respectively (P<0.05), compared with the CK. In the principal component analysis, the first principal component was positively affected by lycopene, Vc, IWUE and sugar-acid ratio, and W2D1O and W2D2O were ranked the first and second, respectively. Therefore, compared with other treatments, W2D1O and W2D2O were better in both reducing irrigation water application and improving nutritional quality of tomato fruits. The second principal component was positively influenced by yield per plant and negatively affected by the content of organic acid. Meanwhile, the content of organic acid showed no significant differences among all treatments. What’s more, the yield per plant under W3D1O was the highest. Consequently, the score of the second principal component of W3D1O was the highest. The comprehensive scores of W3D1O were ranked the first among the 12 treatments. 【Conclusion】 Therefore, in this experiment, the combination of kcp being 1.0 with emitter depths of 15 cm under oxygation conditions could best meet the requirements of reducing irrigation water application and improving fruit yield and quality. In a word, the exploration of optimal treatment provided a theoretical basis for the applying of oxygation.

Key words: oxygation, irrigation level, emitter depths, the principal component analysis, yield, quality, tomato, greenhouse

Fig. 1

Schematic of the experimental block There were a total of 36 plots in the experiment, and only 8 plots were shown in the figure"

Table 1

Information about evaporation amount, irrigation time and irrigation amount"

移植后天数
Days after transplanting (d)
2次灌水期间蒸发量
Evaporation between 2 irrigations (mm)
灌水量Irrigation water volume (mm) 移植后天数
Days after
transplanting (d)
2次灌水期间蒸发量
Evaporation between 2 irrigations (mm)
灌水量Irrigation water volume (mm)
W1O
(W1S)
W2O
(W2S)
W3O
(W3S)
W1O
(W1S)
W2O
(W2S)
W3O
(W3S)
13 12.5 7.5 10.0 12.5 81 3.8 2.3 3.0 3.8
17 17.8 10.7 14.2 17.8 88 5.5 3.3 4.4 5.5
24 19.4 11.6 15.5 19.4 91 3.3 2.0 2.6 3.3
28 11.2 6.7 9.0 11.2 94 1.5 0.9 1.2 1.5
32 6.8 4.1 5.4 6.8 98 2.4 1.4 1.9 2.4
39 9.3 5.6 7.4 9.3 101 1.7 1.0 1.4 1.7
42 2.6 1.6 2.1 2.6 108 5.7 3.4 4.6 5.7
46 7.2 4.3 5.8 7.2 113 5.5 3.3 4.4 5.5
49 5.8 3.5 4.6 5.8 120 5.2 3.1 4.2 5.2
52 1.3 0.8 1.0 1.3 123 2.6 1.6 2.1 2.6
55 1.5 0.9 1.2 1.5 127 2.0 1.2 1.6 2.0
63 6.2 3.7 5.0 6.2 130 2.4 1.4 1.9 2.4
70 3.7 2.2 3.0 3.7 133 2.1 1.3 1.7 2.1
74 1.9 1.1 1.5 1.9 141 4.8 2.9 3.8 4.8
78 3.7 2.2 3.0 3.7 总计 Total 159.8 95.9 127.8 159.8

Table 2

Effects of oxygation under different irrigation levels and emitter depths conditions on fruit yield factors of greenhouse tomato"

产量指标
Yield factors
处理
Treatment
W1 W2 W3 D1 D2 平均值
Mean value
FF-value
O W D
单株产量
Fruit yield per plant (g)
O 696.7±22.8 820.4±33.2 924.5±34.6 818.0±28.7 809.8±26.4 813.9±19.4B 46.41** 22.03** 0.338
S 530.2±17.0 685.2±33.0 707.8±24.5 653.0±24.7 629.1±21.4 641.1±16.3A
平均值
Mean value
613.5±16.8a 752.8±24.4b 816.2±24.2c 735.5±20.2A 719.5±18.8A
单株果数
Fruit number per plant
O 7.90±0.34 8.02±0.31 8.40±0.30 8.05±0.26 8.17±0.26 8.11±0.18A 1.656 1.107 0.026
S 8.29±0.39 8.38±0.39 8.81±0.43 8.51±0.31 8.48±0.35 8.49±0.23A
平均值
Mean value
8.10±0.26a 8.20±0.25a 8.61±0.26a 8.28±0.20A 8.33±0.22A

单果重
Fruit weight
(g)
O 91.9±2.91 103.1±2.18 110.7±1.78 102.9±2.17 100.9±2.10 101.9±1.51B 157.32** 21.20** 0.285
S 67.2±2.11 82.1±1.28 83.5±1.86 77.9±1.55 77.3±1.89 77.6±1.22A
平均值
Mean value
79.5±2.24a 92.6±1.70b 97.1±1.97b 90.4±1.74A 89.1±1.76A
IWUE
(g·mm-1)
O 52.0±1.70 45.9±1.86 41.4±1.55 46.4±1.43 46.5±1.56 46.5±1.05B 52.05** 14.02** 0.148
S 39.6±1.27 38.4±1.27 31.7±1.10 37.2±1.29 35.9±1.20 36.6±0.88A
平均值
Mean value
45.8±1.26c 42.2±1.37b 36.6±1.08a 41.8±1.04A 41.2±1.09A

Table 3

Effects of oxygation under different irrigation levels and emitter depths conditions on fruit quality factors of greenhouse tomato"

品质指标
Quality factors
处理
Treatment
W1 W2 W3 D1 D2 平均值
Mean value
FF-value
O W D
番茄红素Lycopene
(μg·g-1)
O 29.2±2.55 33.8 ±3.02 27.0 ±2.93 30.3 ±1.66 29.7 ±2.35 30.0 ±12.2B 18.96** 2.86 0.412
S 22.8±1.91 23.6 ±1.92 18.4 ±1.05 22.7 ±1.13 20.5 ±1.65 21.6 ±7.35A
平均值
Mean value
26.0±1.66ab 28.7 ±1.96b 22.7 ±1.70a 26.5 ±1.40A 25.1 ±1.56A
Vc
(mg·100g-1)
O 2.77±0.35 3.40±0.33 2.48±0.23 2.97±0.22 2.80±0.29 2.88±1.34B 19.70** 2.75 0.402
S 1.94±0.26 2.06±0.25 1.56±0.24 1.93±0.18 1.77±0.23 1.85±1.06A
平均值
Mean value
2.36±0.23ab 2.73±0.23b 2.02±0.18a 2.45±0.16A 2.29±0.20A
可溶性糖
Soluble sugar (%)
O 3.10±0.30 2.68±0.42 2.28±0.22 2.77±0.24 2.60±0.30 2.68±1.39B 6.85* 3.17* 0.095
S 2.36±0.14 2.12±0.36 1.74±0.11 2.07±0.19 2.08±0.20 2.07±1.00A
平均值
Mean value
2.73±0.17b 2.40±0.28ab 2.01±0.13a 2.42±0.16A 2.34±0.18A
有机酸
Titrable acid
(%)
O 0.62±0.03 0.57±0.05 0.54±0.05 0.58±0.04 0.57±0.03 0.58±0.19A 2.22 2.86 0.104
S 0.73±0.06 0.61±0.06 0.58±0.04 0.65±0.05 0.63±0.04 0.64±0.25A
平均值
Mean value
0.68±0.04b 0.59±0.04ab 0.56±0.03a 0.61±0.03A 0.60±0.03A
糖酸比
Sugar-acid ratio
O 5.00±0.41 4.55±0.49 4.90±0.70 5.23±0.51 4.40±0.34 4.81±2.28B 13.43** 0.246 1.51
S 3.65±0.34 3.44±0.44 3.25±0.30 3.52±0.32 3.38±0.26 3.45±1.51A
平均值
Mean value
4.32±0.29a 4.00±0.34a 4.08±0.40a 4.37±0.32A 3.89±0.23A

Table 4

Effects of different treatments on fruit yield and quality factors of greenhouse tomato"

处理
Treatment
单株产量
Fruit yield per (g/plant)
单株果数
Fruit number per plant
单果重
Fruit weight (g)
IWUE
(g·mm-1)
番茄红素
Lycopene
(μg·g-1)
Vc
(mg·100 g-1)
可溶性糖
Soluble sugar (%)
有机酸
Titrable acid (%)
糖酸比
Sugar-acid ratio
W1D1O 666.0±30.03b 7.76±0.511a 89.8±4.03cd 6.94±0.313fg 30.1±4.33cd 2.84±0.42cd 3.16±0.34c 0.65±0.06a 5.00±0.53bc
W1D1S 537.8±17.56a 8.19±0.429a 67.3±1.91a 5.61±0.183cd 23.3±1.85abc 2.01±0.30abc 2.24±0.10abc 0.73±0.10a 3.60±0.52ab
W1D2O 727.5±33.79bcd 8.05±0.460a 93.9±4.26d 7.59±0.352g 28.3±2.95bcd 2.70±0.59bcd 3.04±0.50c 0.60±0.04a 4.99±0.65bc
W1D2S 522.6±29.48a 8.38±0.664a 67.0±3.83a 5.45±0.307cd 22.3±3.47abc 1.87±0.45abc 2.48±0.27abc 0.73±0.08a 3.70±0.48ab
W2D1O 837.5±52.73de 8.10±0.462a 103.9±3.20e 6.55±0.413ef 33.1±3.52d 3.45±0.48d 2.85±0.53bc 0.57±0.09a 5.07±0.64bc
W2D1S 692.6±56.12bc 8.62±0.667a 81.2±2.40b 5.42±0.439bcd 25.3±2.32abcd 2.15±0.35abc 2.09±0.55abc 0.62-±0.10a 3.36±0.71ab
W2D2O 803.2±41.39cde 7.95±0.428a 102.4±3.03e 6.29±0.324def 34.6±5.12d 3.34±0.49d 2.50±0.69abc 0.57-±0.05a 4.04±0.75abc
W2D2S 677.7±36.02b 8.14±0.416a 83.1±0.92bc 5.30±0.212bc 21.8±3.07abc 1.98±0.37abc 2.16±0.49abc 0.60-±0.09a 3.52±0.55ab
W3D1O 950.5±44.11f 8.29±0.403a 115.0±1.24f 5.95±0.28cde 27.6±4.70bcd 2.60±0.16abcd 2.29±0.32abc 0.53±0.08a 5.62±1.35c
W3D1S 728.5±34.19bcd 8.71±0.508a 85.2±2.07bc 4.56±0.214ab 19.3±1.13ab 1.64±0.30ab 1.87±0.14ab 0.59±0.07a 3.59±0.50ab
W3D2O 898.6±53.79ef 8.52±0.461a 106.4±3.09e 5.62±0.337cd 26.3±3.78abcd 2.36±0.43abcd 2.27±0.33abc 0.54±0.06a 4.18±0.32abc
W3D2S 687.1±35.30b 8.90±0.707a 81.7±3.10bc 4.30±0.221a 17.5±1.80a 1.48±0.38a 1.60±0.17a 0.57±0.05a 2.92±0.31a

Table 5

Correlations among various fruit yield factors and fruit quality factors"

指标
Index
单株产量
Fruit yield per plant
单株果数
Fruit number per plant
单果重
Fruit weight
IWUE
番茄红素
Lycopene
Vc
可溶性糖
Soluble sugar
有机酸
Titrable acid
糖酸比
Sugar-acid ratio
单株产量Fruit yield per plant 1 -0.008 0.970** 0.193 0.459 0.502 0.059 -0.910** 0.565
单株果数Fruit number per plant 1 -0.228 -0.834** -0.751** -0.740** -0.860** -0.184 -0.622*
单果重Fruit weight 1 0.394 0.620* 0.660* 0.272 -0.851** 0.703*
IWUE 1 0.803** 0.795** 0.937** -0.004 0.776**
番茄红素Lycopene 1 0.986** 0.757** -0.233 0.695*
Vc 1 0.754** -0.304 0.724**
可溶性糖Soluble sugar 1 0.146 0.742**
有机酸Titrable acid 1 -0.311
糖酸比Sugar-acid ratio 1

Table 6

Eigenvalue and variance contribution rates based on the principal component analysis"

主成分
Principal component
特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累计方差贡献率
Cumulative variance contribution rate (%)
1 5.582 62.02 62.02
2 2.6 28.89 90.91
3 0.419 4.65 95.56
4 0.159 1.77 97.32
5 0.151 1.68 99.00
6 0.051 0.57 99.57
7 0.031 0.34 99.91
8 0.006 0.06 99.97
9 0.002 0.03 100.00

Table 7

Component matrix"

指标
Index
主成分 Principal components
1 2
单株产量Fruit yield per plant (g) 0.587 0.801
单株果数Fruit number per plant -0.76 0.547
单果重Fruit weight (g) 0.752 0.652
IWUE (g·mm-1) 0.871 -0.39
番茄红素Lycopene (μg·g-1) 0.929 -0.102
Vc (mg·100 g-1) 0.944 -0.05
可溶性糖Soluble sugar (%) 0.813 -0.52
有机酸Titrable acid (%) -0.37 -0.893
糖酸比Sugar-acid ratio 0.885 0.033

Table 8

Comprehensive score of different treatment based on fruit yield and quality of greenhouse tomato"

处理
Treatment
主因子1
Main factor 1 Z1
主因子2
Main factor 2 Z2
综合得分
Comprehensive score Z
综合排名
Comprehensive ranking
W1D1O 0.979 -1.261 0.243 6
W1D1S -0.789 -1.421 -0.900 11
W1D2O 0.976 -0.596 0.433 5
W1D2S -0.871 -1.403 -0.945 12
W2D1O 1.329 0.176 0.875 2
W2D1S -0.618 0.098 -0.355 8
W2D2O 0.987 0.134 0.651 3
W2D2S -0.520 -0.101 -0.352 7
W3D1O 0.888 1.362 0.944 1
W3D1S -1.055 0.751 -0.437 9
W3D2O 0.230 1.229 0.498 4
W3D2S -1.536 1.032 -0.655 10
[1] CAMP C R . Subsurface drip irrigation: A review. Transactions of the ASAE, 1998,41:1353.
doi: 10.13031/2013.17309
[2] CAMP C R, LAMM F R, EVANS R G, PHENE C J . Subsurface drip irrigation-past, present, and future. National Irrigation Symposium Decennial Symposium. 2000.
[3] 黄兴法, 李光永 . 地下滴灌技术的研究现状与发展. 农业工程学报, 2002,18(2):176-181.
HANG X F, LI G Y . Present situation and development of subsurface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2002,18(2):176-181. (in Chinese)
[4] BHATTARAI S P, MIDMORE D J, PENDERGAST L . Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrigation Science, 2008,26(5):439-450.
doi: 10.1007/s00271-008-0112-5
[5] KLEPPER B . Crop root system response to irrigation. Irrigation Science, 1991,12(3):105-108.
[6] HANS-PETER KLäRING, ZUDE M . Sensing of tomato plant response to hypoxia in the root environment. Scientia Horticulturae, 2009,122(1):17-25.
doi: 10.1016/j.scienta.2009.03.029
[7] MACHADO R M A, MARIA D R, OLIVEIRA G, Portas, C A M . Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant and Soil, 2003,255(1):333-341.
doi: 10.1023/A:1026191326168
[8] BHATTARAI S P, SU N, MIDMORE D J . Oxygation unlocks yield potentials of crops in oxygen-limited soil environments. Advances in Agronomy, 2005,88:313-377.
[9] BHATTARAI S P, PENDERGAST L, MIDMORE D J . Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils. Scientia Horticulturae, 2006,108(3):278-288.
[10] 朱艳, 蔡焕杰, 宋利兵, 陈慧 . 加气灌溉对番茄植株生长、产量和果实品质的影响. 农业机械学报, 2017,48(8):199-210.
ZHU Y, CAI H J, SONG L B, CHEN H . Impacts of oxygation on plant growth, yield and fruit quality of tomato. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(8):199-210. (in Chinese).
[11] 卢泽华, 蔡焕杰, 王健, 李志军 . 不同生育时期根际加气对温室番茄生长及产量的影响. 中国农业科学, 2012,45(7):1330-1337.
LU Z H, CAI H J, WANG J, LI Z J . Effects of rhizosphere ventilation at different growth stages on plant growth and yield of greenhouse tomato. Scientia Agricultura Sinica, 2012,45(7):1330-1337. doi: 10.3864/j.issn.0578-1752.2012.07.010. (in Chinese)
[12] BEN-NOAH I, FRIEDMAN S P . Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments. Agricultural Water Management, 2016,176(6):222-233.
doi: 10.1016/j.agwat.2016.06.015
[13] BEN-NOAH I, FRIEDMAN S P . Oxygation of clayey soils by adding hydrogen peroxide to the irrigation solution: Lysimetric experiments. Rhizosphere, 2016,2:1-11.
doi: 10.1016/j.rhisph.2016.10.001
[14] ZHU Y, CAI H J, SONG L B, CHEN H. Oxygation improving soil aeration around tomato root zone in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 163-172. Doi: 10.11975/j.issn.1002-6819.2017.21.019 http://www.tcsae.org.(in Chinese)
[15] LI Y, NIU W Q, WANG J W, LIU L, ZHANG M Z, XU J . Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato. Soil Science Society of America Journal, 2016,80(5):1208-1221.
[16] CHEN H, HOU H J, WANG X Y, ZHU Y, QAISAR S, WANG Y F, CAI H J . The effects of aeration and irrigation regimes on soil CO2, and N2O emissions in a greenhouse tomato production system. Journal of Integrative Agriculture, 2018,17(2):449-460.
doi: 10.1016/S2095-3119(17)61761-1
[17] CHEN H, HOU H J, HU H W, SHANG Z H, ZHU Y, CAI H J, QAISAR S . Aeration of different irrigation levels affects net global warming potential and carbon footprint for greenhouse tomato systems. Scientia Horticulturae, 2018,242:10-19.
doi: 10.1016/j.scienta.2018.07.021
[18] 陈慧, 李亮, 蔡焕杰, 朱艳, 王云霏, 徐家屯 . 加气条件下土壤N2O排放对硝化/反硝化细菌数量的响应. 农业机械学报, 2018,49(4):303-311.
CHEN H, LI L, CAI H J, ZHU Y, WANG Y F, XU J T . Response of soil N2O fluxes to soil nitrifying and denitrifying bacteria under aerated irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(4):303-311. (in Chinese)
[19] 李元, 牛文全, 吕望, 古君, 邹小阳, 王京伟, 刘璐, 张明智, 许健 . 加气灌溉改善大棚番茄光合特性及干物质积累. 农业工程学报, 2016,32(18):125-132.
LI Y, NIU W Q, LÜ W, GU J, ZOU X Y, WANG J W, LIU L, ZHANG M Z, XU J . Aerated irrigation improving photosynthesis characteristics and dry matter accumulation of greenhouse tomato. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(18):125-132. Doi: 10.11975/j.issn.1002-6819.2016.18.017. (in Chinese)
[20] 谢恒星, 蔡焕杰, 张振华 . 温室甜瓜加氧灌溉综合效益评价. 农业机械学报, 2010,41(11):79-83.
XIE H X, CAI H J, ZHANG Z H . Evaluation of comprehensive benefit in greenhouse muskmelon under aeration irrigation. Transactions of the Chinese Society for Agricultural Machinery, , 2010, 41(11):79-83. (in Chinese)
[21] CHEN X, DHUNGEL J, BHATTARAI S P, TORABI M, PENDERGAST L, MIDMORE D J . Impact of oxygation on soil respiration, yield and water use efficiency of three crop species. Journal of Plant Ecology, 2011,4(4):236-248.
doi: 10.1093/jpe/rtq030
[22] 雷宏军, 胡世国, 潘红卫, 臧明, 刘鑫, 李轲 . 土壤通气性与加氧灌溉研究进展. 土壤学报, 2017,54(2):297-308.
LEI H J, HU S G, PAN H W, ZANG M, LIU X, LI K . Advancement in research on soil aeration and oxygation. Acta Pedologica Sinica, 2017,54(2):297-308. (in Chinese)
[23] 杜娅丹, 张倩, 崔冰晶, 谷晓博, 牛文全 . 加气灌溉水氮互作对温室芹菜地N2O排放的影响. 农业工程学报, 2017, 33(16): 127-134.
DU Y D, ZHANG Q, CUI B J, GU X B, NIU W Q. Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 127-134. Doi: 10.11975/j.issn.1002-6819.2017.16.017 http://www.tcsae.org.(in Chinese)
[24] BHATTARAI S P, MIDMORE D J, SU N . Sustainable Irrigation to Balance Supply of Soil Water, Oxygen, Nutrients and Agro-chemicals. Netherlands: Springer, 2010: 253-286.
[25] LI Y, NIU W, DYCK M, WANG J W, ZOU X Y . Yields and nutritional of greenhouse tomato in response to different soil aeration volume at two depths of subsurface drip irrigation. Scientific Reports, 2016,6(1):39307.
doi: 10.1038/srep39307
[26] 李元, 牛文全, 许健, 张若婵, 王京伟, 张明智 . 加气滴灌提高大棚甜瓜品质及灌溉水分利用效率. 农业工程学报, 2016,32(1):147-154.
LI Y, NIU W Q, XU J, ZHANG R C, WANG J W, ZHANG M Z . Aerated irrigation enhancing quality and irrigation water use efficiency of muskmelon in plastic greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(1):147-154. Doi: 10.11975/j.issn.1002-6819.2016.01.020. (in Chinese)
[27] 康跃虎 . 实用型滴灌灌溉计划制定方法. 节水灌溉, 2004(3):11-12.
KANG Y H . Applied method for drip irrigation scheduling. Water Saving Irrigation, 2004(3):11-12. (in Chinese)
[28] ERTEK A, SENSOY S, GEDIK I, KUCUKYUMUK C . Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions. Agricultural Water Management, 2006,81(1/2):170-172.
[29] 赵伟霞, 蔡焕杰, 单志杰, 陈新明, 王健 . 无压灌溉日光温室番茄高产指标. 农业工程学报, 2009,25(3):16-21.
ZHAO W X, CAI H J, SHAN Z J, CHEN X M, WANG J . High yield indicators of greenhouse tomato under non-pressure irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(3):16-21. (in Chinese)
[30] 朱艳, 蔡焕杰, 宋利兵, 侯会静, 陈慧 . 加气灌溉下气候因子和土壤参数对土壤呼吸的影响. 农业机械学报, 2016,47(12):223-232.
ZHU Y, CAI H J, SONG L B, HOU H J, CHEN H . Effects of climatic factors and soil parameters on soil respiration under oxygation conditions. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(12):223-232. (in Chinese)
[31] 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006.
GAO J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. ( in Chinese)
[32] 刘明池, 张慎好, 刘向莉 . 亏缺灌溉时期对番茄果实品质和产量的影响. 农业工程学报, 2005,21(增刊):92-95.
LIU M C, ZHANG S H, LIU X L . Effects of different deficit irrigation periods on yield and fruit quality of tomato. Transactions of the Chinese Society of Agricultural Engineering, 2005,21(Suppl.):92-95. (in Chinese)
[33] 李毅琳, 胡敏予, 瞿树林, 周光宇, 黄亿明 . 番茄红素简便测定方法的应用与分析. 食品科学, 2007,28(3):268-270.
LI Y L, HU M Y, QU S L, ZHOU G Y, HUANG Y M . Application and analysis on method of lycopene assay. Food Science, 2007, 28(3):268-270. ( in Chinese)
[34] 胡晓波, 温辉梁, 许全, 刘崇波 . 番茄红素含量测定. 食品科学, 2005,26(9):566-569.
HU X B, WEN H L, XU Q, LIU C B . Determination of lycopene's concent. Food Science, 2005, 26(9):566-569. ( in Chinese)
[35] DU Y D, NIU W Q, GU X B, ZHANG Q, CUI B J, ZHAO Y . Crop yield and water use efficiency under aerated irrigation: A meta- analysis. Agricultural Water Management, 2018,210:158-164.
doi: 10.1016/j.agwat.2018.07.038
[36] CHEN J, KANG S Z, DU T S, QIU R J, GUO P, CHEN R Q . Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 2013,129(11):152-162.
doi: 10.1016/j.agwat.2013.07.011
[37] TOOR R K, SAVAGE G P, HEEB A . Influence of different types of fertilisers on the major antioxidant components of tomatoes. Journal of Food Composition and Analysis, 2006,19(1):20-27.
doi: 10.1016/j.jfca.2005.03.003
[38] FRUSCIANTE L, CARLI P, ERCOLANO M R, PERNICE R, DI M A, FOGLIANO V, PELLEGRINI N . Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 2010,51(5):609-617.
[39] RAO A V, AMANAT A . Biologically active phytochemicals in human health:Lycopene. International Journal of Food Properties, 2007,10(2):279-288.
doi: 10.1080/10942910601052673
[40] 臧明, 雷宏军, 潘红卫, 刘欢, 徐建新 . 增氧地下滴灌改善土壤通气性促进番茄生长. 农业工程学报, 2018,34(23):109-118.
ZANG M, LEI H J, PAN H W, LIU H, XU J X . Aerated subsurface drip irrigation improving soil aeration and tomato growth. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23):109-118. doi: 10.11975/j.issn.1002-6819.2018.23.013. (in Chinese)
[41] WOLF B . The fertile triangle: The interrelationship of air, water, and nutrients in maximizing soil productivity. Soil Science, 2000,165(8):677-679.
doi: 10.1097/00010694-200008000-00009
[42] 赵旭, 李天来, 孙周平 . 番茄基质通气栽培模式的效果. 应用生态学报, 2010,21(1):74-78.
ZHAO X, LI T L, SUN Z P . Effects of substrate-aeration cultivation pattern on tomato growth. Chinese Journal of Applied Ecology, 2010,21(1):74-78. (in Chinese)
[43] 赵丰云, 郁松林, 孙军利, 蒋宇, 刘怀峰, 于坤 . 加气灌溉对温室葡萄生长及不同形态氮素吸收利用影响. 农业机械学报, 2018,49(1):228-234.
ZHAO F Y, YU S L, SUN J L, JIANG Y, LIU H F, YU K . Effect of rhizosphere aeration on growth and absorption, distribution and utilization of NH4 +-N and NO3 --N of Red Globe grape seedling . Transactions of the Chinese Society for Agricultural Machinery, 2018,49(1):228-234. (in Chinese)
[44] 张钧恒, 马乐乐, 李建明 . 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响. 中国农业科学, 2018,51(14):2788-2798.
doi: 10.3864/j.issn.0578-1752.2018.14.015
ZHANG J H, MA L L, LI J M . Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato. Scientia Agricultura Sinica, 2018,51(14):2788-2798. Doi: 10.3864/j.issn.0578-1752.2018.14.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.015
[45] 齐红岩, 李天来, 张洁, 王磊, 陈元宏 . 亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响. 中国农业科学, 2004,37(7):1045-1049.
QI H Y, LI T L, ZHANG J, WANG L, CHEN Y H . Effects of irrigation on sucrose metabolism, dry matter distribution and fruit quality of tomato under water deficit. Scientia Agricultura Sinica, 2004,37(7):1045-1049. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[14] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[15] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!