Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (5): 965-976.doi: 10.3864/j.issn.0578-1752.2020.05.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution

ZHANG WeiLi1,ZHANG RenLian1,JI HongJie1,KOLBE H2,CHEN YinJun1   

  1. 1 Institute of Agricultural Resources and Agricultural Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 S?chsische Landesanstalt für Landwirtschaft, Waldheimer Stra?e 219, D-01683, Germany
  • Received:2019-12-04 Accepted:2020-02-13 Online:2020-03-01 Published:2020-03-14

Abstract:

A lot of studies has demonstrated that preventing nitrogen and phosphorus from agricultural production into water and atmospheric environments has become one of the largest challenges facing modern agriculture. In order to understand status and problems existing in pollution control from agricultural sources in China, a comparative study between China and Germany on the control systems for agricultural source pollution was carried out. The relevant laws, regulations and technical standards issued by China and Germany were reviewed and summarized, and implementation effects of these regulations in recent years were compared. Study showed that similar to China, because of the short of per capita arable land resources in Germany, the family farm has been the main management form for agriculture in Germany. Farmers in Germany had always to face several problems, such as relatively small management scale, scattered fields, high risks and low profits, due to meteorological and marketing uncertainties. Financial subsidy by government has been essential to farmer’s surviving and agricultural development in Germany. Thus, attentions should always be paid not only on environmental objectives, but also on farmer’s interests, agricultural surviving and food security. In such conditions, main approach for agricultural source pollution control was to establish and running the control system and mechanisms with institutional guarantee, instead of simply adopting administrative punitive measures to farmers, such as closing, stopping, merging and turning over. For improving farmer’s knowledge and techniques of fertilization with the purpose to cut down fertilizer application amount, the most effective way was to design a complete quantitative criterions for best farmer’s fertilization practices with differentiated regions and classes’ specifications. These simple quantitative criterions were easy to be understood by farmers and applicable to soil and climate conditions in different regions. Subsequently, these quantitative criterions were easy to be disseminated and have contributed greatly in improving crop yield by decreased fertilizer application. For prevention of nitrogen and phosphorus releasing from agriculture into water and atmosphere, main measures in Germany were establishing and implementing a series of technical specifications with legal restriction and punishments, in which nitrogen input, nitrogen and phosphorus surplus of crop land, fertilizing seasons, fertilizing approach as well as crop rotations were clearly regulated. At the same time, new and more effective monitoring and management methods have been studied continuously in the purpose to enhance economic leverage’s role, to encourage and to help farmers for accepting more accurate and environmentally friendly technique alternatives. Through implementing agricultural source pollution control strategies, the fertilizer input of Germany has been reduced by 50% since the 1980s. The average fertilizer application amount in terms of farmland area (arable land area and long-term crop area) has been reduced from 404 kg·hm -2 to 192 kg·hm -2, which was 53% of the current value of China. In the same period, the average grain yield in Germany increased by 56%, from 4 779 kg·hm -2 to 7 464 kg·hm -2, which was about 37% higher than the current value of China. For improving farmer’s knowledge and techniques of fertilization with the purpose to cut down fertilizer application amount, the most effective approach was to design and complete a set of quantitative criterions for best farmer’s fertilization practices with differentiated regions and classes’ specifications. These simple quantitative criterions were easy to be understand by the farmers and applicable to soil and climate conditions in different regions. Subsequently, these quantitative criterions were easy to be disseminated and played important role in improving farmers' fertilization techniques and increasing crop yield continuously by decreased fertilizer amount. Up to now, there has been a lack of quantitative criterions for best fertilization practices designed for farmers in China, which were suitable for farmers' cognition and direct use. Also, there has been no technical specifications related to the national and local government's reward and punishment policies issued. Whether in nationwide or in a watershed case, it was still difficult to operate agricultural source pollution control with institutional guarantee. The area of vegetable, fruit, flowers and other cash crops accounted for 23.6% of the total cropping area in China, which was very common for farmers to apply fertilizer blindly or excessively. In such crop field, the nitrogen and phosphorus nutrient surplus far exceeds the environmental safety limit (50 kg N·hm -2, 10 kg P2O5·hm -2) given by German fertilizer regulations. Up to now, there has been a lack of quantitative criterions for the best fertilization practices designed for farmers in China, which were suitable for farmers' cognition and direct use. Also, there has been no technical specifications issued, which was related to the state or local government's reward and punishment policies for environment protection. Whether in nationwide or in a watershed case, it was still difficult to operate agricultural source pollution control with institutional guarantee. Analysis showed that the core for agricultural source pollution control was to issue and implement relevant laws, regulations, technical standards and monitoring methods by innovative research works. In recent years, however, the concerning research work has been weakened up due to homogenization and fragmentation of the research institutions, who are originally specialized for applied research works for soil and fertilization. Also, the quantitative evaluation system for scientific contribution and the excessive dependence on papers with high SCI-index has negative influences on the researches for practical use. This needs to be improved urgently.

Key words: agricultural source pollution, fertilization technique, agricultural environment standard, technique criterions for farmers, pollution control system, China, Germany

[1] 张维理, 武淑霞, 冀宏杰, Kolbe H. 中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计. 中国农业科学, 2004,37(7):1008-1017.
ZHANG W L, WU S X, JI H J, KOLBE H . Estimation of agricultural non-point source pollution in China and the alleviating strategies I: Estimation of agricultural non-point source pollution in China in early 21 century. Scientia Agricultura Sinica, 2004,37(7):1008-1017. (in Chinese)
[2] FRICK F . Feinstaub vom Acker. Bild der Wissenschaft, 2019(9):78-81. (in German)
[3] THOMPSON R L, LASSALETTA L, PATRA P K, WILSON C, WELLS K C, GRESSENT A, KOFFI E N, CHIPPERFIELD M P, WINIWARTER W, DAVIDSON E A, TIAN H, CANADELL J G. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019. http://doi.org/ 10.1038/s41558-019-0613-7.
[4] FAO-Statistics. 1980-2017.
[5] 张维理, 徐爱国, 冀宏杰, Kolbe H. 中国农业面源污染形势估计及控制对策 III. 中国农业面源污染控制中存在问题分析. 中国农业科学, 2004,37(7):1026-1033.
ZHANG W L, XU A G, JI H J, KOLBE H . Estimation of agricultural non-point source pollution in China and the alleviating strategies III. A review of policies and practices for agricultural non-point source pollution control in China. Scientia Agricultura Sinica, 2004,37(7):1026-1033. (in Chinese)
[6] 中国农业年鉴2017. 北京: 中国农业出版社, 2018.
China Agriculture Statistical Yearbook 2017. Beijing: China Agriculture Press, 2018. ( in Chinese)
[7] NONYM. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung -DüV). Germany: Bundesministerium der Justiz und für Verbraucherschutz, 2017: 1-46. . (in German)
[8] 张维理, 冀宏杰, Kolbe H, 徐爱国. 中国农业面源污染形势估计及控制对策II. 欧美国家农业面源污染状况及控制. 中国农业科学, 2004,37(7):1018-1025.
ZHANG W L, JI H J, KOLBE H, XU A G . Estimation of agricultural non-point source pollution in China and the alleviating strategies II. Status of agricultural non-point source pollution and the alleviating strategies in European and American countries. Scientia Agricultura Sinica, 2004,37(7):1018-1025. (in Chinese)
[9] FINK A . Festschrift zum 100jarhrigen Bestehen des Verbandes Duetscher Landwirtscaftlicher Untersuchungungs- und Forschungsanstalten e.V. Darmstadt. Germany: VDLUFA, 1988: 1-147. (in German)
[10] ANONYM. Statistik und Berichte des BMEL. Germany: BMEL, 2019. https://www.bmel-statistik.de/. (in German)
[11] ANONYM. Richtlinie zum Schutz der Gewässer vor Verunreinigung durch Nitrat aus landwirtschaftlichen Quellen Council Directive 91/676/EEC of 12 December 1991. Brussels: EU Council Directive, 1991: 1-13https://eur-lex.europa.eu/legal-content/. (in German)
[12] ANONYM. Richtlinie 2001/81/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2001 über nationale Emissionshöchst- mengen für bestimmte Luftschadstoffe. Brussels: EU Council Directive, 2001: 1-9. https://eur-lex.europa.eu/legal-content/. (in German)
[13] ANONYM. Düngegesetz. vom 9. Januar 2009 (BGBl. I S. 54, 136). Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2009: 1-13. https://dejure.org/BGBl/2009/BGBl._I_S._54/. (in German)
[14] ANONYM. Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln. Germany: Bundesministeriums der Justiz und für Verbraucherschutz. 2017: 1-116. https://www.gesetze-im-internet.de/. (in German)
[15] ANONYM. Neue Schadstoffregelungen für Düngemittel,Bodenhilfsstoffe, Kultursubstrate und Pflanzenhilfsmittel. Germany: Bundesministeriums für Ernaehrung. Landwirtschaft und Verbraucherschutz, 2011: 1-7. https://www.bmel.de/. (in German)
[16] ANONYM. Verordnung über die Verwertung von Klärschlamm, Klärschlammgemisch und Klärschlammkompost (Klärschlammverordnung. Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-47.https://www.gesetze-im-internet.de/. (in German)
[17] ANONYM. Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz- BBodSchG) Ausfertigungsdatum: 17.03.1998 Zuletzt geändert durch 27.9.2017. 2017, Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-11.https://www.gesetze-im-internet.de/. (in German)
[18] ANONYM. Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) Ausfertigungsdatum: 12.07.1999 vom 27. September 2017 (BGBl. I S. 3465). Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-33.https://www.gesetze-im-internet.de/. (in German)
[19] ANONYM. Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz - BImSchG). Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-57.https://www.gesetze-im-internet.de/. (in German)
[20] ANONYM. Vierte Verordnung zur Durchführung des Bundes- Immissionsschutzgesetzes (Verordnung übergenehmigungsbedürftige Anlagen - 4. BImSchV). Germany: Bundesministeriums der Justiz und für Verbraucherschutz. 2017: 1-32.https://www.gesetze-im-internet.de/. (in German)
[21] ANONYM. Futtermittelverordnung FuttMV 1981 die zuletzt durch Artikel 2 der Verordnung vom 18. Juli 2018 (BGBl. I S. 1219). Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-39.https://www.gesetze-im-internet.de/. ( (in German)
[22] ANONYM. No 1275/2013 of 6 December 2013 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, cadmium, lead, nitrites, volatile mustard oil and harmful botanical impurities. Brussels: EU Council Directive, 2017: 1-7.https://eur-lex.europa.eu/legal-content/. (in German)
[23] ANONYM. 2019/1869 of 7 November 2019 amending and correcting Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for certain undesirable substances in animal feed. Brussels: EU Council Directive, 2017: 1-5.https://eur-lex.europa.eu/legal-content/. (in German)
[24] ANONYM. Düngeberatung-Anforderungen und Perspektiven. Tagung des Verbandes der Landwirtschaftskammern e.V. (VLK) und des Bundesarbeitskreises Düngung (BAD), Germany: Bundesarbeitskreis Düngung (BAD), 2006: 1-84.www.duengung.net. (in German)
[25] ANONYM. Umsetzung der Düngeverordnung. Sächsische Landesanstalt für Landwirtschaft. Dresden, Germany: Sächsische Landesanstalt für Landwirtschaft, 2007: 1-166.https://www.Landwirtschaft.Sachsen.de/ LFL. (in German)
[26] ANONYM. Phosphor- und Kaliumdün-gung: brauchen wir neue Düngekonzepte. Germany: Verbandes der Landwirtschaftskammern e. V. (VLK) und des Bundesarbeitskreises Düngung (BAD), 2010: 1-169. https://www.iva.de/sites/default/files/benutzer/uid/publikationen/tb2010_0.pdf. (in German)
[27] DLG. Grundduengung effizirt gestalten DLG-Merkblaetter, 2008(349):1-85. . (in German)
[28] DLG. Die Düngeverordnung umsetzen. DLG-Merkblatt, 2008(426):1-6. https://www.dlg.org/. (in German)
[29] DLG. Grundduengung effizirt gestalten. DLG-Merkblaetter, 2008(349):1-85.https://www. dlg.org/. (in German)
[30] ANONYM. Düngebedarfsermittlung und N-Düngung auf Ackerland im Herbst ab 2017. Thüringer Germany: Thüringer Landesanstalt für Landwirtschaft. 2017:1-5.http://www.tll.de/www/daten/pflanzenproduktion/ duengung/. (in German)
[31] DLG. Technik zur Ausbringung fester Mineral Duegung. DLG- Merkblatt 410, 2017. https://www.dlg.org.
[32] ANONYM. Stallgebäude erfolgreich errichten Ein Leitfaden für die Landwirtschaft . Germany: Bayerische Landesanstalt für Landwirtschaft. 2014:1-31.https://www.lfl.bayern.de/ilt/umwelttechnik/. (in German)
[33] VDLUFA. Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf. Germany: VDLUFA-Standpunkt, 1997:1-8.https://www.vdlufa.de/de/ index.php/fachinformation. (in German)
[34] VDLUFA. Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf. Germany: VDLUFA-Standpunkt, 2018:1-11.https://www.vdlufa.de/ de/index.php/fachinformation. (in German)
[35] VDLUFA. Kalium-Düngung nach Bodenuntersuchung und Pflanzenbedarf. Germany: VDLUFA-Standpunkt, 1999: 1-5. https://www.vdlufa.de/ de/index.php/fachinformation. (in German)
[36] VDLUFA. Nährstoffbilanzierung im landwirtschaftlichen Betrieb. Germany: VDLUFA-Standpunkt, 2007: 1-9.https://www.vdlufa.de/de/ index.php/fachinformation. (in German)
[37] VDLUFA. Humusbilanzierung: Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Germany: VDLUFA-Standpunkt, 2004: 1-12. https://www.vdlufa.de/de/index.php/fachinformation. (in German)
[38] VDLUFA. Humusbilanzierung-Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland . Germany: VDLUFA-Standpunkt, 2014: 1-12. . (in German)
[39] VDLUFA. Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Germany: VDLUFA-Standpunkt, 2000: 1-8. https://www.vdlufa.de/de/ index.php/fachinformation. (in German)
[40] ANONYM. Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (Bodenschätzungsgesetz -BodSchätzG). Germany: Bundesministerium der Justiz und für Verbraucherschutz. 2007: 1-10.https://www.juris.de. (in German)
[41] ANONYM. Bodenschätzungsdurchführungsverordnung-BodSchätzDV. Germany: Bundesministerium der Justiz und für Verbraucherschutz. 2014: 1-114.https://www.juris.de. (in German)
[42] 中国农村统计年鉴2018. 北京: 中国统计出版社, 2019.
China Rural Statistical Yearbook 2018. Beijing: China Statistics Press, 2019. ( in Chinese)
[43] 张怀志, 唐继伟, 袁硕, 黄绍文 . 津冀设施蔬菜施肥调查分析. 中国土壤与肥料, 2018(2):54-60.
ZHANG H Z, TANG J W, YUAN S, HUANG S W . Investigation and analysis of greenhouse vegetable fertilization in Tianjin and Hebei Province. Soil and Fertilizer Sciences in China, 2018(2):54-60. (in Chinese)
[44] 中华人民共和国环境保护部. 标准化肥使用环境安全技术导则: HJ 555—2010. 北京: 中国环境科学出版社, 2010: 1-6.
People’s Republic of China Environment Protection Ministry. Technical Guideline on Environmental Safety Application of Chemical Fertilizer:HJ 555—2010. Beijing: China Environmental Science Press, 2010: 1-6. (in Chinese)
[45] 中华人民共和国农业行业标准NY/T 1118—2006. 测土配方施肥技术规范. 2006: 1-13.
People’s Republic of China Agricultural Standard NY/T 1118—2006. Technical Specification of Balanced Fertilization by Soil Testing. 2006: 1-13. (in Chinese)
[46] 宁省地方标准DB21/T 1288—2008. 测土配方施肥技术规程. 2008: 1-16. (in Chinese)
Local Standard of Liaoning Province DB21/T 1288—2008. Technical Specification of Balanced Fertilization by Soil Testing, 2008: 1-16. (in Chinese)
[47] 四川省地方标准DB51/T 1048—2010. 土壤样品采集技术规范. 2010: 1-8.
Local Standard of Sichuan Province DB51/T 1048—2010. Technical Specification for Soil Sample Collection. 2010:1-8. (in Chinese)
[48] 甘肃省地方标准DB62/T 2273—2012. 绿色农业县域循环模式技术规范. 2012: 1-9.
Local Standard of Gansu Province DB62/T 2273—2012. Technical Specifications for Green Agriculture Recycling County Mode. 2012:1-9. (in Chinese)
[49] 安徽省地方标准DB34/T 1019—2009. 中籼稻施肥技术规程. 2009: 1-6.
Local Standard of Anhui Province DB34/T 1019—2009. Technical Regulation of Fertilization for Middle-season Indica Rice. 2009: 1-6. (in Chinese)
[50] 安徽省地方标准DB34/T 1226—2010. 水稻土壤养分分区与一季中稻推荐施肥技术. 2010: 1-6.
Local Standard of Anhui Province DB34/T 1226—2010. Subarea of Paddy Soil and Recommend Fertilization Techniques in Single Mid-Season Rice . 2006:1-6. (in Chinese)
[51] 安徽省地方标准DB34/T 1225—2010. 水稻–油菜轮作区油菜高效施肥推荐. 2010: 1-8.
High Efficiency Fertilization of Rapeseed in Rapeseed-Rice Rotation Field. High Efficiency Fertilization of Rapeseed in Rapeseed-Rice Rotation Field. 2010: 1-8. (in Chinese)
[52] 安徽省地方标准DB34/T 1427—2011. 环巢湖地区水稻氮磷减量控制栽培技术规程. 2011: 1-9.
Local Sandard of Anhui Province DB34/T 1427—2011. Technical Regulation of Rice Nitrogen and Phosphorus Reduction Control cultivation in Chaohu Area. 2011:1-9. (in Chinese)
[53] 河北省地方标准DB13/T 775—2006. 冬小麦节肥节水技术规程. 2006: 1-11.
LLocal Standard of Hebei Province DB13/T775—2006. Technical Specification for Saving Fertilizer and Water of Winter Wheat. 2006: 1-11. (in Chinese)
[54] 南京市地方标准DB3201/T 071—2004. 无公害农产品肥料施用规程. 2004: 1-6.
Local Standard of Nanjing City DB3201/T 071—2004. Fertilization Specification for Pollution-Free Agricultural Products. 2004:1-6. (in Chinese)
[55] 天津市地方标准DB12/T 728—2017. 设施果菜类蔬菜高效安全施肥技术规程. 2017: 1-5.
Local Standard of Tianjin City DB12/T 728—2017. Technical Regulation for Efficient and Safe Fertilization of Fruit Vegetables in Greenhouse. 2017:1-5. (in Chinese)
[56] 安徽省地方标准DB34/T 1426—2011. 环巢湖地区保护地氮磷减量施肥技术规程. 2011: 1-7.
Local Standard of Anhui Province DB34/T 1426—2011. Technical Regulation of Reduced Nitrogen and Phosphorus Fertilization in Covered Field in Chaohu Area. 2011: 1-7. (in Chinese)
[57] 中华人民共和国农业行业标准NY/T 1105—2006. 肥料合理使用准则-氮肥. 2006: 1-7.
People’s Republic of China Agricultural Standard NY/T 1105—2006. The Rule of Rational Fertilization Nitrogen Fertilizer. 2006: 1-7. (in Chinese)
[58] 河北省地方标准 DB13/T 608—2005. 无公害果品肥料使用准则. 2005: 1-10.
Local Standard of Hebei Province DB13/T 608—2005. The Rule of Fertilization for Pollution-Free Fruit Products. 2005: 1-10. (in Chinese)
[59] 山东省淄博市地方标准DB3703/T 003—2005. 无公害蔬菜生产投入品使用准则. 2005: 1-6.
Local Standard of Hebei Province Zibo City DB3703/T 003-2005. The Rule of Material Input for Pollution-Free Vegetables. 2005: 1-6. (in Chinese)
[60] KAGERMEIER E . Deutsche Schweine für China. Zeit online, . (in German)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[5] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[6] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[7] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[8] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[9] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[10] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[11] YANG JunHao,LUO YongLi,CHEN Jin,JIN Min,WANG ZhenLin,LI Yong. Effects of Main Food Yield Under Straw Return in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4415-4429.
[12] LI BaoXin,YANG LiPing,LU YanLi,SHI XiaoXin,DU GuoQiang. Status of Soil Fertility in Main Grape Producing Areas of China [J]. Scientia Agricultura Sinica, 2020, 53(17): 3553-3566.
[13] ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
[14] XIN XiaoPing,DING Lei,CHENG Wei,ZHU XiaoYu,CHEN BaoRui,LIU ZhongLing,HE GuangLi,QING GeLe,YANG GuiXia,TANG HuaJun. Biomass Carbon Storage and Its Effect Factors in Steppe and Agro-Pastoral Ecotones in Northern China [J]. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768.
[15] LI DongChu,HUANG Jing,MA ChangBao,XUE YanDong,GAO JuSheng,WANG BoRen,ZHANG YangZhu,LIU KaiLou,HAN TianFu,ZHANG HuiMin. Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!