Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (21): 4087-4101.doi: 10.3864/j.issn.0578-1752.2018.21.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Combined Application of Various Organic Materials and Chemical Fertilizer on Soil Nitrogen Formation and Greenhouse Gas Emission Under Equal Nitrogen Rates from Purple Soil

Rong HUANG(),Ming GAO(),JiaCheng LI,GuoXin XU,FuHua WANG,Jiao LI,ShiQi CHEN   

  1. College of Resources and Environment, Southwest University, Chongqing 400715
  • Received:2018-04-02 Accepted:2018-08-10 Online:2018-11-01 Published:2018-11-01
  • Contact: Rong HUANG,Ming GAO E-mail:277840241@qq.com;gaoming@swu.edu.cn

Abstract:

【Objective】In this study, the effects of agricultural organic materials combined with chemical fertilizer on soil nitrogen species (ammonium nitrogen, nitrate nitrogen, available nitrogen and total nitrogen) and greenhouse gases (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) emission were investigated to provide knowledge for chemical fertilizer reduction and friendly environment according to the same nitrogen rate addition. From the aspect of greenhouse gases mitigation, theoretical suggestions were also provided for dry land fertilization strategy. 【Method】 A vegetable rotation cropping experiment (lettuce-cabbage-chili rotation) with six treatments was carried out on purple soil in the field, and the treatments were control without any chemical fertilizer and organic material (CK), conventional fertilizing (F), straw returning with chemical fertilizing (SF), mushroom dregs returning with chemical fertilizing (MF), biochar returning with chemical fertilizing (BF), and cow dung returning with chemical fertilizing (CF). The variations of mineral nitrogen, available nitrogen and total nitrogen contents and the emissions of CO2, CH4 and N2O from soil were monitored from November 2016 to September 2017.【Result】 In the condition of equal nitrogen rates, organic materials could change the formation of soil nitrogen. The contents of ammonium nitrogen increased after organic materials application in SF and MF treatments. CF treatment could increase the content of ammonium nitrogen during lettuce and cabbage growth seasons, and BF treatment increased the content of nitrate nitrogen and available nitrogen during chili growth season. Seasonal dependent CO2, CH4 and N2O emission was found and high emission mainly occurred during summer. Fertilization and irrigation events also increased CO2, CH4 and N2O emission. Compared with F treatment, N2O emission reduced by 7.5% under BF treatment, but significantly increased by 233.5% under CF treatment. Combined application of organic materials and chemical fertilizer could increase the CO2 emission. Significant increases of CO2 emission were found under MF and CF treatments, which increased the mean CO2 emission flux of 35.6% and 31.3% compared with F treatment, respectively. However, biochar returning delayed the emission peak of CO2 and increased the CO2 emission during summer. Negative CH4 emission was found in most treatments, indicating a CH4 adsorption by soil itself. Moreover, the emission of CH4 fluctuated during the chili growth season and the highest CH4 emission (668.7 μg·m -2·h -1) appeared under BF treatment with the condition of high temperature and intensive precipitation. However, the mean CH4 emission flux under SF, MF and BF increased significantly by 104.85%, 175.2% and 77.5%, respectively. Moreover, SF and MF treatment could promote CH4 consumption and reduce mean CH4 emission flux of -0.1 and -1.3 kg·hm -2, respectively. Compared with CK and F treatment, organic materials combined with chemical fertilizer application could increase the global warming potential (GWP) by 26.7%-52.4% and18.1%-42.0% respectively. The lowest GWP was found under SF treatment.【Conclusion】Combined application of organic materials and chemical fertilizer had different greenhouse gases emission characters and soil nitrogen speciation. Biochar and straw returning combined with chemical fertilizer could reduce the greenhouse gases emission and increase available nitrogen content. However, cow dung returning with chemical fertilizing increased greenhouse gases emission.

Key words: purple soil, organic materials, nitrogen speciation, greenhouse gases, global warming potential

Table 1

Planting and fertilization"

蔬菜
Vegetable
常规需氮(N)量
Conventional nitrogen requirement
(kg·hm-2)
常规需磷(P2O5)量
Conventional phosphate requirement (kg·hm-2)
常规需钾(K2O)量
Conventional potassium requirement
(kg·hm-2)
种植及施肥情况
Planting and fertilization
莴笋
Lettuce
300 90 150 2016年10月20日施入有机物料并翻耕,10月27日移栽莴笋苗,10月30日施基肥(氮肥60%,磷肥和钾肥一次性施入),12月9日追肥(氮肥40%),2017年1月9日收获莴笋
Organic material was incorporated into soil and plowed on 20 October 2016. The lettuce was transplanted on 27 October 2016. A total of P and K fertilizers were applied as basis along with 60% of N fertilizer on 30 October 2016, and 40% of N fertilizer was applied on 9 December 2016. The lettuce was harvested on 9 January 2017
卷心菜
Cabbage
300 70 300 2017年1月10日施基肥(氮肥40%,钾肥40%,磷肥一次性施入),1月11日移栽卷心菜苗,2月21日第一次追肥(氮肥30%,钾肥30%),3月27日第二次追肥(氮肥30%,钾肥30%),5月4日收获卷心菜
A total of P fertilizer, 40% of N fertilizer and 40% of K fertilizer was applied as basis on 10 January 2017. The cabbage was transplanted on 1 January 2017. The remaining N and K fertilizers were split into two parts of the same amount and top-dressed on 21 February and 27 March 2017, respectively. The cabbage was harvested on 4 May 2017
辣椒
Chili
300 80 150 2017年5月5日施入有机物料并翻耕,5月10日施基肥(氮肥50%,钾肥50%,磷肥一次性施入),5月11日移栽辣椒苗,6月19日追肥(氮肥50%,钾肥50%),7月20日、8月18日、9月14日收获辣椒
Organic material was incorporated into soil and plowed on 5 May 2017. A total of P fertilizer, 50% of N fertilizer and 50% of K fertilizer was applied as basis on 10 May 2017. The chili was transplanted on 11 May 2017. The remaining of N and K fertilizers were applied on 19 June 2017. The chili was harvested on 20 July, 18 August and 14 September 2017, respectively

Fig. 1

Changes of soil nitrogen formation under different treatments The different small letters indicate significant differences between treatments at P<0.05. The different capital letters indicate significant differences between planting at P<0.01"

Fig. 2

Emission fluxes of N2O, CO2 and CH4 under different treatments"

Fig. 3

Cumulative emission of N2O, CO2 and CH4 under different treatments The different small letters indicate significant differences between treatments at P<0.05. The different capital letters indicate significant differences between planting at P<0.01"

Table 2

Changes of mean greenhouse gas emission flux and GWP under different treatments"

处理
Treatment
平均排放通量 Mean greenhouse gas emission flux (kg·hm-2) GWP
(kg CO2-e·hm-2)
N2O CO2 CH4
CK 3.7±0.1e 55537±2735c 2.0±0.21a 56578±2704d
F 15.6±0.3d 56544±1803c 1.7±0.28b 60716±1901d
SF 30.0±1.4c 63761±3623b -0.1±0.0d 71697±3989c
MF 34.7±0.9b 76675±1720a -1.3±0.2e 85828±1957a
BF 16.8±0.4d 75254±867a 0.4±0.0c 79709±883b
CF 47.1±4.0a 73665±2603a 2.1±0.2a 86216±3679a

Fig. 4

Variation characteristics of 5 cm soil temperature, air temperature and soil moisture content under different treatments"

Table 3

Correlation analysis of greenhouse gas emission and temperature, moisture content"

N2O排放量
N2O emission flux
CO2排放量
CO2 emission flux
CH4排放量
CH4 emission flux
5 cm土温
5 cm soil temperature
气温
Air temperature
土壤含水量
Soil moisture content
N2O排放量
N2O emission flux
1 0.207** 0.148** 0.127* 0.121* 0.074
CO2排放量
CO2 emission flux
1 0.020 0.563** 0.609** -0.357**
CH4排放量
CH4 emission flux
1 .075 0.066 0.111*
5 cm土温
5 cm soil temperature
1 0.975** -0.637**
气温
Air temperature
1 -0.629**
土壤含水量
Soil moisture content
1
[1] 王斌, 李玉娥, 万运帆, 秦晓波, 高清竹 . 控释肥和添加剂对双季稻温室气体排放影响和减排评价. 中国农业科学, 2014,47(2):314-323.
doi: 10.3864/j.issn.0578-1752.2014.02.011
WANG B, LI Y E, WAN Y F, QIN X B, GAO Q Z . Effect and assessment of controlled release fertilizer and additive treatments on greenhouse gases emission from a double rice field. Scientia Agricultura Sinica, 2014,47(2):314-323. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.02.011
[2] ZHENG X H, HAN S H, HUANG Y, WANG Y S, WANG M X . Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18. GB2018. doi: 10.1029/2003GB002167.
doi: 10.1029/2003GB002167
[3] HUANG Y, TANG Y H . An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Global Change Biology, 2010,16(11):2958-2970.
[4] ZHAO Y C, WANG M Y, HU S J, ZHANG X D, OUYANG Z, ZHANG G L, HUANG B, ZHAO S W, WU J S, XIE D T, ZHU B, YU D S, PAN G X, XU S X, SHI X Z . Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. PNAS, 2018,115:4045-4050.
doi: 10.1073/pnas.1700292114 pmid: 29666318
[5] WANG J Y, XIONG Z Q, YAN X Y . Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmospheric Environment, 2011,45:6923-6929.
doi: 10.1016/j.atmosenv.2011.09.045
[6] JAMTGARD S, NASHOLM T, HUSS-DANELL K . Nitrogen compounds in soil solutions of agricultural land. Soil Biology & Biochemistry, 2010,42(12):2325-2330.
doi: 10.1016/j.soilbio.2010.09.011
[7] 李柘锦, 隋鹏, 龙攀, 严玲玲, 王彬彬, 陈源泉 . 不同有机物料还田对农田系统净温室气体排放的影响. 农业工程学报, 2016,32(S2):111-116.
doi: 10.11975/j.issn.1002-6819.2016.z2.015
LI Z J, SUI P, LONG P, YAN L L, WANG B B, CHEN Y Q . Effects of different organic wastes application on net greenhouse gas emission in farmland system. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(S2):111-116. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2016.z2.015
[8] 黄容, 高明, 吕盛, 徐国鑫, 黎嘉成 . 锯木灰渣改良退化菜园紫色土壤的效果研究. 土壤学报, 2018,55(3):710-720.
HUANG R, GAO M, LV S, XU G X, LI J C . Effect of saw dust ash ameliorating degraded vegetable garden purple soil. Acta Pedologica Sinica, 2018,55(3):710-720. (in Chinese)
[9] KEMMITT S J, LANYON C V, WAITE I S, WEN Q, ADDISCOTT T M, BIRD N R A, O’Donnell A G, BROOKES P C . Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective. Soil Biology & Biochemistry, 2008,40:61-73.
doi: 10.1016/j.soilbio.2007.06.021
[10] 黄容, 高明, 黎嘉成, 徐国鑫, 吕盛, 罗梅 . 秸秆与化肥减量配施对菜地土壤温室气体排放的影响. 环境科学, 2018, 39(10): 1-17. .
HUANG R, GAO M, LI J C, XU G X, LV S, LUO M . Effect of straw residues in combination with reducing fertilization rate on greenhouse gas emission in vegetable field. Environmental Science, 2018, 39(10): 1-17. . (in Chinese)
[11] 黄容, 高明, 万毅林, 田冬, 陶睿, 王芳丽 . 秸秆还田与化肥减量配施对稻-菜轮作下土壤养分及酶活性的影响. 环境科学, 2016,37(11):4446-4456.
HUANG R, GAO M, WAN Y L, TIAN D, TAO R, WANG F L . Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils. Environmental Science, 2016,37(11):4446-4456. (in Chinese)
[12] 段鹏鹏, 丛耀辉, 徐文静, 张玉玲, 虞娜, 张玉龙 . 氮肥与有机肥配施对设施土壤可溶性氮动态变化的影响. 中国农业科学, 2015,48(23):4717-4727.
doi: 10.3864/j.issn.0578-1752.2015.23.013
DUAN P P, CONG Y H, XU W J, ZHANG Y L, YU N, ZHANG Y L . Effect of combined application of nitrogen fertilizer and manure on the dynamic of soil soluble N in greenhouse cultivation. Scientia Agricultura Sinica, 2015,48(23):4717-4727. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.23.013
[13] 石生伟, 李玉娥, 李明德, 万运帆, 高清竹, 彭华, 秦晓波 . 不同施肥处理下双季稻田CH4和N2O排放的全年观测研究. 大气科学, 2011(4):707-720.
doi: 10.3878/j.issn.1006-9895.2011.04.10
SHI S W, LI Y E, LI M D, WAN Y F, GAO Q Z, PENG H, QIN X B . Annual CH4 and N2O emissions from double rice cropping systems under various fertilizer regimes in Hunan Province, China.Chinese Journal of Atmospheric Sciences, 2011(4):707-720. (in Chinese)
doi: 10.3878/j.issn.1006-9895.2011.04.10
[14] 张斌, 刘晓雨, 潘根兴, 郑聚锋, 池忠志, 李恋卿, 张旭辉, 郑金伟 . 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化. 中国农业科学, 2012,45(23):4844-4853.
doi: 10.3864/j.issn.0578-1752.2012.23.011
ZHANG B, LIU X Y, PAN G X, ZHENG J F, CHI Z Z, LI L Q, ZHANG X H, ZHENG J W . Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles. Scientia Agricultura Sinica, 2012,45(23):4844-4853. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.23.011
[15] 范靖尉, 白晋华, 任寰宇, 韩雪, 刁田田, 郭李萍 . 减氮和施生物炭对华北夏玉米-冬小麦田土壤CO2和N2O排放的影响. 中国农业气象, 2016,37(2):121-130.
FAN J W, BAI J H, REN H Y, HAN X, DIAO T T, GUO L P . Effects of reducing nitrogen and biochar application on CO2 and N2O emissions from summer maize-winter wheat field in North China. Chinese Journal of Agrometeorology, 2016,37(2):121-130. (in Chinese)
[16] 潘凤娥, 胡俊鹏, 索龙, 王小淇, 季雅岚, 孟磊 . 添加玉米秸秆及其生物质炭对砖红壤N2O 排放的影响. 农业环境科学学报, 2016,35(2):396-402.
doi: 10.11654/jaes.2016.02.026
PAN F E, HU J P, SUO L, WANG X Q, JI Y L, MENG L . Effect of corn stalk and its biochar on N2O emissions from latosol soil. Journal of Agro-Environment Science, 2016, 2016,35(2):396-402. (in Chinese)
doi: 10.11654/jaes.2016.02.026
[17] 刘杏认, 张星, 张晴雯, 李贵春, 张庆忠 . 施用生物炭和秸秆还田对华北农田CO2、N2O 排放的影响. 生态学报, 2017,37(20):6700-6711.
doi: 10.5846/stxb201607281546
LIU X R, ZHANG X, ZHANG Q W, LI G C, ZHANG Q Z . Effects of biochar and straw return on CO2 and N2O emissions from farmland in the North China Plain. Acta Ecologica Sinica, 2017,37(20):6700-6711. (in Chinese)
doi: 10.5846/stxb201607281546
[18] 张旭博, 徐明岗, 张文菊, 林昌虎, 段英华, 蔡泽江, 张崇玉 . 添加有机物料后红壤 CO2释放特征与微生物生物量动态. 中国农业科学, 2011,44(24):5013-5020.
doi: 10.3864/j.issn.0578-1752.2011.24.006
ZHANG X B, XU M G, ZHANG W J, LIN C H, DUAN Y H, CAI Z J, ZHANG C Y . Characteristics of CO2 emission and microbial biomass dynamics after adding various organic materials in red soil. Scientia Agricultura Sinica, 2011,44(24):5013-5020. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.24.006
[19] 刘四义, 梁爱珍, 杨学明, 张晓平, 贾淑霞, 陈学文, 张士秀, 孙冰洁, 陈升龙 . 不同部位玉米秸秆对两种质地黑土CO2排放和微生物量的影响. 环境科学, 2015,36(7):2686-2694.
doi: 10.13227/j.hjkx.2015.07.048
LIU S Y, LIANG A Z, YANG X M, JIA S X, CHEN X W, ZHANG S X, SUN B J, CHEN S L . Effects of different residue part inputs of corn straws on CO2 efflux and microbial biomass in clay loam and sandy loam black soils. Environmental Science, 2015,36(7):2686-2694. (in Chinese)
doi: 10.13227/j.hjkx.2015.07.048
[20] KHOSA M K, SIDHU B S, BENBI D K . Effect of organic materials and rice cultivars on methane emission from rice field. Journal of Environmental Biology, 2010,31(3):281-285.
doi: 10.2112/JCOASTRES-D-09-00120.1 pmid: 21046997
[21] ZHU T B, ZHANG J B, YANG W Y, CAI Z C . Effects of organic material amendment and water content on NO, N2O, and N2 emissions in a nitrate-rich vegetable soil. Biology & Fertility of Soils, 2013,49(2):153-163.
doi: 10.1007/s00374-012-0711-4
[22] SHAN J, YAN X . Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013,71(3):170-175.
doi: 10.1016/j.atmosenv.2013.02.009
[23] 张福锁, 陈新平, 陈清 . 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009.
ZHANG F S, CHEN X P, CHEN Q. Guide to Fertilization of Major Crops in China. Beijing: China Agricultural University Press, 2009. ( in Chinese)
[24] HUTCHINSON G L, LIVINGSTON G P . Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. European Journal of Soil Science, 2001,52, 675-682.
doi: 10.1046/j.1365-2389.2001.00415.x
[25] IPCC. Climate Change 2013: The physical science basis[R]. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
[26] 杨剑虹 . 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008.
YANG J H. Agricultural Soil Analysis and Environmental Monitoring. Beijing: China Land Press, 2008. ( in Chinese)
[27] LEMKE R, VANDEN B A, CAMPBELL C, LAFOND G, GRANT B . Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on audicboroll. Agriculture, Ecosystems & Environment, 2010,135(1):42-51.
[28] CHEN Q H, FENG Y, ZHANG Y P, ZHANG Q C, SHAMSI I H, ZHANG Y S, LIN X Y . Short-term responses of nitrogen mineralization and microbial community to moisture regimes in greenhouse vegetable soils. Pedosphere, 2012,22(2):263-272.
doi: 10.1016/S1002-0160(12)60013-7
[29] HOPKINS D W, SHIEL R S . Size and activity of soil microbial communities in long-term experimental grassland plots treated with manure and inorganic fertilizers. Biology and Fertility of Soils, 1996,22(1/2):66-70.
doi: 10.1007/BF00384434
[30] 祁乐, 高明, 郭晓敏, 牛海东, 李婷, 孙涛, 曹群羚, 唐镓豪 . 生物炭施用量对紫色水稻土温室气体排放的影响. 环境科学, 2018,36(5):1-11.
QI L, GAO M, GUO X M, NIU H D, LI T, SUN T, CAO Q L, TANG J H . Effects of biochar application rates on greenhouse gas emission in the purple paddy soil. Environmental Science, 2018,36(5):1-11. (in Chinese)
[31] 李燕青, 唐继伟, 车升国, 温延臣, 孙文彦, 赵秉强 . 长期施用有机肥与化肥氮对华北夏玉米N2O 和CO2排放的影响. 中国农业科学, 2015,48(21):4381-4389.
doi: 10.3864/j.issn.0578-1752.2015.21.018
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q . Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China Plain. Scientia Agricultura Sinica, 2015,48(21):4381-4389. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.21.018
[32] 朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎 . 农田土壤N2O 产生的关键微生物过程及减排措施. 环境科学, 2014,35(2):792-800.
ZHU Y G, WANG X H, YANG X R, XU H J, JIA Y . Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. Environmental Science, 2014,35(2):792-800. (in Chinese)
[33] ZHANG M Y, WANG F J, CHEN F, MALEMELA M P, ZHAN H L . Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production, 2013,54:101-107.
doi: 10.1016/j.jclepro.2013.04.033
[34] YANG H S, XU M M, KOIDE R T, LIU Q, DAI Y J, LIU L, BIAN X M . Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system. Journal of the Science of Food & Agriculture, 2015,96(4):1141-1149.
doi: 10.1002/jsfa.7196 pmid: 25847361
[35] LI H, QIU J, WANG L, TANG H, LI C, RANST E V . Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agriculture, Ecosystems and Environment, 2010,135(1):24-33.
doi: 10.1016/j.agee.2009.08.003
[36] CASE S D C, MCNAMARA N P, REAY D S, WHITAKER J . The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil-The role of soil aeration. Soil Biology and Biochemistry, 2012,51:125-134.
doi: 10.1016/j.soilbio.2012.03.017
[37] NADELHOFFER K J, EMMETT B A, GUNDERSEN P, KJøNAAS O J, KOOPMANS C J, SCHLEPPI P, WRIGHT R F . Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 1999,398(6723):145-148.
doi: 10.1038/18205
[38] BOWDEN R D, DAVIDSON E, SAVAGE K, ARABIA C, STEUDLER P . Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004,196(1):43-56.
doi: 10.1016/j.foreco.2004.03.011
[39] 栗方亮, 王煌平, 张青, 王利民, 安梦鱼, 罗涛 . 室内恒温条件下稻田土壤中菌渣的分解过程及CO2释放特征. 中国生态业学报, 2017,25(2):267-275.
doi: 10.13930/j.cnki.cjea.160678
LI F L, WANG H P, ZHANG Q, WANG L M, AN M Y, LUO T . Decomposition process and CO2 release characteristics of spent mushroom substrate in paddy soils. Chinese Journal of Eco-Agriculture, 2017,25(2):267-275. (in Chinese)
doi: 10.13930/j.cnki.cjea.160678
[40] KEILUWEIT M, NICO P S, JOHNSON M G, KLEBER M . Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science &Technology, 2010,44(4):1247-1253.
doi: 10.1021/es9031419 pmid: 20099810
[41] 王娟, 张丽君, 姚槐应 . 添加秸秆和黑炭对水稻土碳氮转化及土壤微生物代谢图谱的影响. 中国水稻科学, 2013,27(1):97-104.
doi: 10.3969/j.issn.10017216.2013.01.014
WANG J, ZHANG L J, YAO H Y . Effects of straw and black carbon addition on C-N transformation and microbial metabolism profile in paddy soil. Chinese Journal of Rice Science, 2013,27(1):97-104. (in Chinese)
doi: 10.3969/j.issn.10017216.2013.01.014
[42] LU W W, DING W X, ZHANG J H, LI Y, LUO J F, BOLAN N, XIE Z B . Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biology & Biochemistry, 2014,76:12-21.
[43] CROSS A, SOHI S P . The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology & Biochemistry, 2011,43(10):2127-2134.
[44] 张凯莉, 郝庆菊, 冯迪, 石将来, 石孝均, 江长胜 . 地膜覆盖对蔬菜地甲烷排放的影响. 环境科学, 2017,38(8):3451-3462.
doi: 10.13227/j.hjkx.201701002
ZHANG K L, HAO Q J, FENG D, SHI J L, SHI X J, JIANG C S . Effect of plastic film mulching on methane emission from a vegetable field. Environmental Science, 2017,38(8):3451-3462. (in Chinese)
doi: 10.13227/j.hjkx.201701002
[45] 韩圆圆, 曹国军, 耿玉辉, 叶青, 王振华, 黄岩 . 农业废弃物还田对黑土温室气体排放及全球增温潜势的影响. 华南农业大学学报, 2017,38(5):36-42.
HAN Y Y, CAO G J, GENG Y H, YE Q, WANG Z H, HUANG Y . Effects of agricultural wastes on greenhouse gas emission and global warming potential in black soil. Journal of South China Agricultural University, 2017,38(5):36-42. (in Chinese)
[46] 宋利娜, 张玉铭, 胡春胜, 张喜英, 董文旭, 王玉英, 秦树平 . 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应. 中国生态农业学报, 2013(3):297-307.
doi: 10.3724/SP.J.1011.2013.00297
SONG L N, ZHANG Y M, HU C S, ZHANG X Y, DONG W X, WANG Y Y, QIN S P . Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain.Chinese Journal of Eco-Agriculture, 2013(3):297-307. (in Chinese)
doi: 10.3724/SP.J.1011.2013.00297
[47] CHAN A S K, STEUDLER P A . Carbon monoxide uptake kinetics in unamended and long-term nitrogen-amended temperate forest soils. FEMS Microbiology Ecology, 2006,57(3):343-354.
doi: 10.1111/j.1574-6941.2006.00127.x pmid: 16907749
[48] LAVILLE P, LEHUGER S, LOUBET B, CHAUMARTIN F, CELLIER P . Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agricultural & Forest Meteorology, 2011,151(2):228-240.
doi: 10.1016/j.agrformet.2010.10.008
[49] KURGANOVA I N, GERENYU V O L D . Effect of the temperature and moisture on the N2O emission from some arable soils. Eurasian Soil Science, 2010,43(8):919-928.
doi: 10.1134/S1064229310080090
[50] 田冬, 高明, 黄容, 吕盛, 徐畅 . 油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物炭还田的响应. 环境科学, 2017,38(7):2988-2999.
TIAN D, GAO M, HUANG R, LV S, XU C . Response of soil respiration and heterotrophic respiration to returning of straw and biochar in rape-maize rotation systems. Environmental Science, 2017,38(7):2988-2999. (in Chinese)
[51] SCHULZE E D, LUYSSAERT S, CIAIS P . Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance.Nature Geoscience, 2009(2):842-850.
doi: 10.1038/ngeo686
[52] KNORR W, PRENTICE I C, HOUSE J I, HOLLAND E A . Long-term sensitivity of soil carbon turnover to warming. Nature, 2005,433(7023):298-301.
doi: 10.1038/nature03226
[53] SOLOMON S. Climate Change 2007- The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press, 2007.
[54] 李露, 周自强, 潘晓健, 熊正琴 . 不同时期施用生物炭对稻田N2O和CH4排放的影响. 土壤学报, 2015,52(4):839-848.
doi: 10.11766/trxb201407160357
LI L, ZHOU Z Q, PAN X J, XIONG Z Q . Effects of biochar on N2O and CH4 emissions from paddy field under rice-wheat rotation during rice and wheat growing seasons relative to timing of amendment. Acta Pedologica Sinica, 2015,52(4):839-848. (in Chinese)
doi: 10.11766/trxb201407160357
[1] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[2] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[3] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[4] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[5] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[6] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[7] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[8] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[9] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[10] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[11] LIU Qiao,JI YanZhi,GUO YanJie,ZHANG LiJuan,ZHANG Jie,HAN Jian. Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil [J]. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424.
[12] ZHAO LiLi,LI LuSheng,CAI HuanJie,SHI XiaoHu,XUE ShaoPing. Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability [J]. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057.
[13] SONG ZiRong,E ShengZhe,YUAN JinHua,JIA WuXia,ZENG XiBai,SU ShiMing,BAI LingYu. Heavy Metal Accumulation in Irrigated Desert Soils and Their Crop Effect After Applying Different Organic Materials [J]. Scientia Agricultura Sinica, 2019, 52(19): 3367-3379.
[14] CHENG YongYi, LI ZhongYi, BAI YingYan, LIU Li . Acidification Characteristics of Purple Soil, Yellow Soil and Latosol with Electrodialysis Method [J]. Scientia Agricultura Sinica, 2018, 51(7): 1325-1333.
[15] FENG XiaoJie, ZHENG ZiCheng, LI TingXuan, FAN Li. Characteristics of Nitrogen Loss in Sloping Cropland of Purple Soil During Maize Growth Stage Under Rainstorm [J]. Scientia Agricultura Sinica, 2018, 51(4): 738-749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!