Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3573-3584.doi: 10.3864/j.issn.0578-1752.2019.20.008

• SPECIAL FOCUS: HIGH-YIELDING AND HIGH NUTRIENT EFFICIENT SPRING MAIZE IN NORTHEAST CHINA • Previous Articles     Next Articles

Research on Optimum Phosphorus Fertilizer Rate Based on Maize Yield and Phosphorus Balance in Soil Under Film Mulched Drip Irrigation Conditions

YunPeng HOU,LiChun WANG,Qian LI,CaiXia YIN,YuBo QIN,Meng WANG,YongJun WANG(),LiLi KONG()   

  1. Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Agro-Environment in Northeast China, Ministry of Agriculture, Changchun 130033
  • Received:2018-07-22 Accepted:2018-10-16 Online:2019-10-16 Published:2019-10-28
  • Contact: YongJun WANG,LiLi KONG E-mail:yjwang2004@126.com;kongll2000@126.com

Abstract:

【Objective】 In order to improve phosphorus efficiency and reduce environmental risk due to a large number of phosphorus application under mulched drip irrigation in northeast semi-arid region for maize production, a 3-year field experiment was conducted to investigate the effects of different phosphorus application rates on maize yield, phosphorus utilization efficiency and soil phosphorus supply ability, so as to provide scientific references for rational phosphorus fertilizer application in this region. 【Method】 The field experiment was conducted in semi-arid maize production region of Jilin province (Qian'an county) from 2015 to 2017. Six treatments of phosphorus application rate (P2O) were designed in the field experiments, including 0 (P0), 40 kg·hm -2 (P40), 70 kg·hm -2 (P70), 100 kg·hm -2 (P100), 130 kg·hm -2 (P130) and 160 kg·hm -2 (P160), which were used for the calculation of phosphorus uptake, phosphorus utilization efficiencies and apparent phosphorus balance in the soil-crop system. The measurement indexes contained maize yield and its components, phosphorus content of plant at mature stage and soil available phosphorus concentration. 【Result】 The result showed that the maize yield with phosphorus application were significantly increased by 6.2%-21.2% (2015), 9.0%-20.6% (2016) and 12.9%-30.3% (2017) respectively, and increment by 9.2%-23.9% in average three years. The yield was enhanced by increasing grains per ear, 100-kernel weight and harvest index by applying phosphorus fertilizer. Maize yield increased at first and decreased later with increasing of phosphorus application rate, and the highest yield value was found under P100 treatment. Phosphorus recovery efficiency and partial productivity declined, however, phosphorus agronomic efficiency increased at first and decreased later with increasing of phosphorus application rate. Available phosphorus content in soil layer (0-40 cm) was improved with the increasing of phosphorus application rate and period compared with P0 treatment, and the content under P100 treatment was very close to its initialization value. The apparent phosphorus balance in soil was negative in the P0, P40 and P70 treatments after a three-year continuous maize-cropping, and the phosphorus deficient amount was decreased with the increment of phosphorus application rate. While the apparent phosphorus balance in soil was positive under the P100, P130 and P160 treatments, and phosphorus surplus amount was increasing with the increment of phosphorus application rate. When surplus rate was 0, phosphorus application rate, maize yield, available phosphorus content in 0-20 cm and 20-40 cm soil, phosphorus recovery efficiency, agronomic efficiency and partial productivity were 92.4 kg·hm -2, 12 497 kg·hm -2, 34.6 mg·kg -1, 28.4 mg·kg -1, 24.1%, 21.9 kg·kg -1 and 146.1 kg·kg -1, respectively, by simulating between phosphorus application rate (y1), soil available phosphorus content (y2), phosphorus utilization efficiency (y3) and surplus rate (x), respectively. These results were similar to maize yield, soil available phosphorus content and phosphorus utilization efficiency under the maximum yield under the P100 treatment. The optimum phosphorus application rate was at the range of 88-97 kg·hm -2 under 95% confidence levels, when theoretical surplus rate was 0. 【Conclusion】 The results suggested that the recommended phosphorus application rate was at the range of 88-97 kg·hm -2, which could not only ensure higher maize yield, but also keep soil phosphorus balance under this experimental conditions. The research provided phosphorus fertilizer management for both high-yielding maize production and friendly environment under mulched drip irrigation conditions in northeast semi-arid region of Jilin province.

Key words: phosphorus application rate, phosphorus utilization efficiency, maize yield, available phosphorus content, phosphorus balance

Fig. 1

Precipitation and air temperature during growing season of maize from 2015 to 2017"

Table 1

The basic fertility of tested soil"

土层
Soil layer
有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
碱解氮
Available N (mg·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
pH
0-20 cm 17.4 12.2 102.4 35.9 109.4 8.1
20-40 cm 14.1 9.0 83.9 28.1 91.1 7.9

Table 2

Maize yield and its component under different phosphorus application treatments"

年份
Year
处理
Treatment
产量
Yield (kg·hm-2)
收获指数
Harvest index
穗数
Actual ears number (ear/hm2)
穗粒数
Grains per ear
百粒重
100-kernel weight (g)
2015 P0 10131±360d 48.4±0.7b 72000±1072a 485.3±8.7d 32.1±0.5c
P40 11041±259c 49.8±1.5ab 71667±1347a 512.2±5.3c 34.4±0.4b
P70 11737±99b 51.1±1.1a 72000±882a 523.5±9.1abc 35.3±0.6ab
P100 12221±204a 52.0±1.0a 72667±1388a 536.9±7.1a 36.3±0.7a
P130 12035±310ab 51.0±1.5a 72333±1333a 533.0±5.3ab 36.0±0.8a
P160 11676±274b 50.9±2.1a 73000±694a 517.5±10.6bc 34.8±0.6b
2016 P0 10992±370d 47.4±0.7b 72111±1365a 508.3±7.0c 33.8±0.2c
P40 11675±183c 49.6±1.2ab 72889±1502a 526.9±5.6b 34.7±0.7bc
P70 12671±265b 51.1±2.3a 72333±1856a 538.2±4.3ab 36.3±0.8a
P100 13321±208a 51.5±2.4a 73556±1711a 543.7±8.8a 37.0±0.4a
P130 13178±255a 51.3±0.8a 73667±2333a 542.3±5.2a 36.2±1.3a
P160 12595±309b 50.1±1.1a 73333±822a 535.6±5.6ab 35.9±1.0ab
2017 P0 9889±234d 49.5±1.5b 72222±2082a 489.8±7.5e 31.4±0.6e
P40 11164±290c 49.9±0.9b 72778±1732a 510.2±2.2d 34.3±0.2d
P70 12141±185b 51.1±0.8ab 72667±882a 519.3±4.3cd 35.1±0.8cd
P100 12883±361a 52.9±1.8a 72556±1252a 539.9±6.6a 36.8±0.2a
P130 12585±271ab 51.0±1.3ab 73000±979a 532.8±8.4ab 36.3±0.3ab
P160 12306±242b 50.1±0.7b 72556±1502a 526.8±4.6bc 35.6±0.9bc
均值 Mean P0 10337±203d 48.4±0.2b 72111±1160a 494.5±0.7d 32.4±0.2d
P40 11293±168c 49.8±1.1ab 72444±839a 516.4±2.5c 34.5±0.2c
P70 12117±42b 51.1±1.1ab 72333±619a 527.0±5.0b 35.5±0.4b
P100 12808±180a 52.1±1.1a 72926±548a 540.2±7.4a 36.7±0.3a
P130 12599±125a 51.1±1.1a 73000±778a 536.0±2.8a 36.2±0.5ab
P160 12181±112b 50.3±0.7ab 72963±739a 526.6±2.5b 35.4±0.5b
方差分析 ANOVA
年份 Year (Y) ** NS NS ** **
施磷处理 Fertilization (P) ** ** NS ** **
年份×施磷处理 Y×P * NS NS NS NS

Fig. 2

Phosphorus utilization efficiency under different phosphorus application treatments The different small letters indicate significant differences between treatments at 0.05 level. The same as below"

Fig. 3

Available phosphorus content in 0-20 cm and 20-40 cm soil layer"

Table 3

Phosphorus apparent balance under different phosphorus application treatments"

年份
Year
处理
Treatment
施磷量
P application rate
(kg·hm-2)
地上部磷积累量
Aboveground P accumulation (kg·hm-2)
磷素表观平衡
Apparent P balance (kg·hm-2)
磷素盈余率
P surplus rate
(%)
2015 P0 0 68.3±3.2e -68.3±3.2f -100.0±0.0 f
P40 40 79.8±2.5d -39.8±2.5e -49.8±1.6 e
P70 70 84.8±1.9c -14.8±1.9d -17.5±1.9 d
P100 100 91.5±3.6a 8.5±3.6c 9.4±4.4 c
P130 130 88.7±1.5ab 41.3±1.5b 46.7±2.5 b
P160 160 86.3±2.3bc 73.7±2.3a 85.4±5.0 a
2016 P0 0 72.0±3.1d -72.0±3.1f -100.0±0.0 f
P40 40 84.9±3.3c -44.9±3.3e -52.9±1.9 e
P70 70 95.4±1.7b -25.4±1.7d -26.6±1.3 d
P100 100 102.1±2.4a -2.1±2.4c -2.0±2.3 c
P130 130 101.7±2.4a 28.3±2.4b 27.9±3.1 b
P160 160 99.8±2.0ab 60.2±2.0a 60.4±3.2 a
2017 P0 0 67.2±1.0e -67.2±1.0f -100.0±0.0 f
P40 40 80.8±2.8d -40.8±2.8e -50.5±1.7 e
P70 70 87.6±3.2c -17.6±3.2d -20.0±3.0 d
P100 100 97.7±2.8a 2.3±2.8c 2.4±3.0 c
P130 130 94.5±2.1ab 35.5±2.1b 37.7±3.0 b
P160 160 91.7±2.2bc 68.3±2.2a 74.5±4.2 a
均值 Mean P0 0 69.2±1.6d -69.2±1.6f -100.0±0.0f
P40 40 81.8±1.1c -41.8±1.1e -51.1±0.7e
P70 70 89.3±1.3b -19.3±1.3d -21.6±1.2d
P100 100 97.1±2.0a 2.9±2.0c 3.0±2.1c
P130 130 94.9±0.5ab 35.1±0.5b 36.9±0.8b
P160 160 92.6±0.9b 67.4±0.9a 72.8±1.6a
方差分析 ANOVA
年份 Year (Y) ** ** **
施磷处理 Fertilization (P) ** ** **
年份×施磷处理 Y×P * * **

Fig. 4

The correlation of surplus rate with phosphorus application rate, yield, soil available phosphorus content and phosphorus utilization efficiency"

[1] 张凡凡, 于磊, 鲁为华, 张前兵, 马春晖 . 绿洲区滴灌施磷对苜蓿地肥力和磷素利用率的影响. 草地学报, 2016,24(6):1363-1368.
ZHANG F F, YU L, LU W H, ZHANG Q B, MA C H . Effect of drop irrigation and fertilization on soil fertility and phosphorus utilization efficiency of alfalfa field in oasis region. Acta Agrestia Sinica, 2016,24(6):1363-1368. (in Chinese)
[2] 马政华, 寇长林, 康利允 . 分层供水施磷对冬小麦光合性能及产量的影响. 土壤通报, 2015,46(6):1399-1406
MA Z H, KOU C L, KANG L Y . Influence of water supply and phosphorus application in different depth on photosynthetic characteristics and grain yield of winter wheat. Chinese Journal of Soil Science, 2015,46(6):1399-1406. (in Chinese)
[3] 林诚, 李清华, 王飞, 何春梅, 钟少杰, 李昱, 林新坚 . 不同施磷水平对冷浸田水稻磷含量、光合特性及产量的影响. 热带亚热带植物学报, 2016,24(5):553-558.
LIN C, LI Q H, WANG F, HE C M, ZHONG S J, LI Y, LIN X J . Effects of phosphorus fertilizer on phosphorus content, photosynthesis characters and yield of rice in cold waterlogged paddy field. Journal of Tropical and Subtropical Botany, 2016,24(5):553-558. (in Chinese)
[4] 王平, 尹燕枰, 付国占, 郭营, 蔡瑞国, 梁太波, 耿庆辉, 邬云海, 王振林 . 施磷对小麦旗叶氮代谢关键酶活性和子粒蛋白质含量的影响. 植物营养与肥料学报, 2009,15(1):24-31.
doi: 10.11674/zwyf.2009.0104
WANG P, YIN Y P, FU G Z, GUO Y, CAI R G, LIANG T B, GENG Q H, WU Y H, WANG Z L . Effect of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein content of wheat grains. Plant Nutrition and Fertilizer Science, 2009,15(1):24-31. (in Chinese)
doi: 10.11674/zwyf.2009.0104
[5] 侯云鹏, 杨建, 孔丽丽, 秦裕波, 王立春, 谢佳贵 . 施磷对苏打盐碱土区水稻养分吸收、转运及分配的影响. 吉林农业大学学报, 2017,39(1):60-66.
HOU Y P, YANG J, KONG L L, QIN Y B, WANG L C, XIE J G . Effects of phosphorus fertilizer application on nutrient absorption, translocation and distribution of rice in saline-sodic soil region. Journal of Jilin Agricultural University, 2017,39(1):60-66. (in Chinese)
[6] RASHID M, IQBAL M . Effect of phosphorus fertilizer on the yield and quality of maize (Zea mays L.) fodder on clay loam soil. The Journal of Animal & Plant Sciences, 2012,22(1):199-203.
[7] KHAN M A, ABID M . Effect of phosphorous levels on growth and yield of maize (Zea mays L.) cultivars under saline conditions. International Journal of Biological Sciences, 2005(3):511-514.
[8] 赵炳南, 朱风文, 杨威, 刘莹 . 吉林省西部半干旱区玉米灌溉现状分析及对策. 吉林农业科学, 2010,35(6):8-10, 15.
ZHAO B N, ZHU F W, YANG W, LIU Y . Current status and strategies of maize irrigation in semi-arid area of western Jilin province. Journal of Jilin Agricultural Sciences, 2010,35(6):8-10, 15. (in Chinese)
[9] 周晓芬, 罗亦云, 刘宗衡 . 石灰性土壤中磷肥后效及磷素转化规律的研究. 华北农学报, 1991,6(S1):147-152.
doi: 10.3321/j.issn:1000-7091.1991.z1.026
ZHOU X F, LUO Y Y, LIU Z H . A study on phosphorus transformation and residual effect of phosphate fertilizer in calcarious soil. Acta Agriculturae Boreali-Sinica, 1991,6(S1):147-152. (in Chinese)
doi: 10.3321/j.issn:1000-7091.1991.z1.026
[10] 程明芳, 何萍, 金继运 . 我国主要作物磷肥利用率的研究进展. 作物杂志, 2010(1):12-14.
CHENG M F, HE P, JIN J Y . Advance of phosphate recovery rate in Chinese main crops. Crops, 2010(1):12-14. (in Chinese)
[11] 林国林, 云鹏, 陈磊, 高翔, 张金涛, 卢昌艾, 刘荣乐, 汪洪 . 小麦季磷肥施用对后作玉米的效果及土壤中无机磷形态转化的影响. 土壤通报, 2011,42(3):676-680.
LIN G L, YUN P, CHEN L, GAO X, ZHANG J T, LU C A, LIU R L, WANG H . Residual effects of phosphate fertilizer applied to winter wheat on following maize and transformation of phosphate fractions in soil. Chinese Journal of Soil Science, 2011,42(3):676-680. (in Chinese)
[12] 谢佳贵, 王立春, 尹彩侠, 侯云鹏, 张国辉, 于雷 . 吉林省不同类型土壤玉米施肥效应研究. 玉米科学, 2008,16(4):167-171.
XIE J G, WANG L C, YIN C X, HOU Y P, ZHANG G H, YU L . Response to fertilization of maize on the different types of soil in Jilin province. Journal of Maize Sciences, 2008,16(4):167-171. (in Chinese)
[13] 耿玉辉, 曹国军, 叶青, 其其格, 武鹏, 张鹰 . 磷肥不同施用方式对土壤速效磷及春玉米磷素吸收和产量的影响. 华南农业大学学报, 2013,34(4):470-474.
GENG Y H, CAO G J, YE Q, QI Q G, WU P, ZHANG Y . Effects of different phosphorus applications on soil available phosphorus, phosphorus absorption and yield of spring maize. Journal of South China Agricultural University, 2013,34(4):470-474. (in Chinese)
[14] 唐文雪, 马忠明, 王景才, 卢颖 . 施磷量对旱地全膜双垄沟播玉米产量土壤速效磷和磷肥利用率影响. 干旱地区农业研究, 2016,34(5):69-73.
TANG W X, MA Z M, WANG J C, LU Y . Effects of phosphorus rate on maize yield,soil available phosphorus and phosphorus use efficiency by double-bed and furrow-sowing with full plastic film mulching in semi-arid field. Agricultural Research in the Arid Areas, 2016,34(5):69-73. (in Chinese)
[15] DANA C, JANOLOF D, STUART W . The story of phosphorus: Global food security and food for thought. Contents lists Available at Science Direct, 2009,19:292-305.
[16] 周宝库, 张喜林 . 长期施肥对黑土磷素积累、形态转化及其有效性影响的研究. 植物营养与肥料学报, 2005,11(2):143-147.
doi: 10.11674/zwyf.2005.0201
ZHOU B K, ZHANG X L . Effect of long-term phosphorus fertilization on the phosphorus accumulation and distribution in black soil and its availability. Plant Nutrition and Fertilizer Science, 2005,11(2):143-147. (in Chinese)
doi: 10.11674/zwyf.2005.0201
[17] 彭正萍, 张家铜, 袁硕, 王艳群, 刘会玲, 薛世川 . 不同供磷水平对玉米干物质和磷动态积累及分配的影响. 植物营养与肥料学报, 2009,15(4):793-798.
doi: 10.11674/zwyf.2009.0409
PENG Z P, ZHANG J T, YUAN S, WANG Y Q, LIU H L, XUE S C . Effects of different phosphorus application rates on the dynamic accumulation and distribution of dry matter and phosphorus in maize. Plant Nutrition and Fertilizer Science, 2009,15(4):793-798. (in Chinese)
doi: 10.11674/zwyf.2009.0409
[18] 赵靓, 侯振安, 李水仙, 刘立鹏, 黄婷, 张扬 . 磷肥用量对土壤速效磷及玉米产量和养分吸收的影响. 玉米科学, 2014,22(2):123-128.
ZHAO J, HOU Z A, LI S X, LIU L P, HUANG T, ZHANG Y . Effects of P rate on soil available P, yield and nutrient uptake of maize. Journal of Maize Sciences, 2014,22(2):123-128. (in Chinese)
[19] 邢月华, 汪仁, 包红静, 宫亮, 王聪翔, 李振玉 . 不同磷肥用量对玉米产量·效益及养分吸收的影响. 安徽农业科学, 2011,39(32):19834-19835, 19923.
XING Y H, WANG R, BAO H J, GONG L, WANG C X, LI Z Y . Effects of different phosphorus application amounts on yield,profit and nutrient uptake of maize. Journal of Anhui Agricultural Sciences, 2011,39(32):19834-19835, 19923. (in Chinese)
[20] 侯云鹏, 杨建, 孔丽丽, 尹彩侠, 李前, 秦裕波, 王立春, 谢佳贵 . 不同施磷水平对春玉米产量、养分吸收及转运的影响. 玉米科学, 2017,25(3):123-130.
HOU Y P, YANG J, KONG L L, YIN C X, LI Q, QIN Y B, WANG L C, XIE J G . Effect of different phosphorus levels on yield, nitrogen, phosphorus and potassium absorption and translocation of spring maize. Journal of Maize Sciences, 2017,25(3):123-130. (in Chinese)
[21] 潘瑞炽 . 植物生理学(第5版). 北京: 高等教育出版社, 2004.
PAN R C . Plant Physiology (Version 5). Beijing: Higher Education Press, 2004. ( in Chinese)
[22] 吴克宁, 赵彦锋, 吕巧灵, 李玲 . 潮土区灌浆水和施磷对冬小麦光合作用和产量的影响. 植物营养与肥料学报, 2002,8(4):428-434.
doi: 10.11674/zwyf.2002.0410
WU K N, ZHAO Y F, LÜ Q L, LI L . Effect of irrigation during grain filling stage and applying phosphate on the photosynthetic efficiency and yield of winter wheat in the fluvo-aquic soil area. Plant Nutrition and Fertilizer Science, 2002,8(4):428-434. (in Chinese)
doi: 10.11674/zwyf.2002.0410
[23] 陈书强, 许海涛, 段翠平 . 施磷量对玉米生长发育、产量构成因子及品质的影响. 河北农业科学, 2011,15(2):62-64, 95.
CHEN S Q, XU H T, DUAN C P . Effects of phosphorus application amount on growth and development, yield components and quality of maize. Journal of Hebei Agricultural Sciences, 2011,15(2):62-64, 95. (in Chinese)
[24] 杨劲峰, 马迪, 王帅, 鲁豫, 李娜, 王月, 韩晓日 . 磷肥对玉米灌浆期光合系统性能的影响. 玉米科学, 2016,24(5):136-141, 146.
YANG J F, MA D, WANG S, LU Y, LI N, WANG Y, HAN X R . Effect of phosphate fertilizer photosynthetic function in maize leaf at grain filling stage. Journal of Maize Sciences, 2016,24(5):136-141, 146. (in Chinese)
[25] WAHOCHO N A, BALOCH M A, BALOCH A F, JOGI Q D, KUBAR M I . Effects of varying nitrogen, phosphorous and potassium doses on the growth, development and yield of radish (Raphanus sativus L.). Pakistan Journal of Agriculture: Agricultural Engineering Veterinary Sciences, 2010,25(1):22-24.
[26] 马光恕, 刘明鑫, 王萌, 宿晓琳, 高铃铃, 马彦良, 廉华 . 磷对薄皮甜瓜生理代谢和产量形成影响的研究. 核农学报, 2017,31(5):1014-1021.
MA G S, LIU M X, WANG M, SU X L, GAO L L, MA Y L, LIAN H . The research of phosphorus on the physiological metabolism and yield formation in muskmelon. Journal of Nuclear Agricultural Sciences, 2017,31(5):1014-1021. (in Chinese)
[27] MASOOD T, GUL R, MUNSIF F, JALAL F, HUSSAIN Z, NOREEN N, KHAN H, NASIRUDDI, KHAN H . Effect of different phosphorus levels on the yield and yield components of maize. Sarhad Journal of Agriculture, 2011,27(2):167-170.
[28] 何萍, 金继运, 林葆 . 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998,31(3):66-71.
HE P, JIN J Y, LIN B . Effect of N application rates on leaf senescence and its mechanism in spring maize. Scientia Agricultura Sinica, 1998,31(3):66-71. (in Chinese)
[29] DOBERMANN A, WITT C, DAWE D, ABDULRACHMAN S, GINES H C, NAGRARJAN R, SATAWATHANANONT S, SON T T, TAN P S, WANG G H, CHIEN N V, THOA V T K, PHUNG C V, STALIN P, MUTHUKRISHNAN P, RAVI V, BABU M, CHATUPORN S, SOOKTHONGSA J, SUN Q, FU R, SIMBAHAN G C, ADVIENTO M A A . Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 2002,74:37-66.
[30] 赵靓, 侯振安, 柴颖, 张扬, 黄婷, 毛家双 . 长期施磷对灰漠土无机磷形态的影响. 水土保持学报, 2014,28(3):236-242.
ZHAO J, HOU Z A, CHAI Y, ZHANG Y, HUANG T, MAO J S . Effects of P rate on soil inorganic phosphorous forms in grey desert soil. Journal of Soil and Water Conservation, 2014,28(3):236-242. (in Chinese)
[31] 杨军, 高伟, 任顺荣 . 长期施肥条件下潮土土壤磷素对磷盈亏的响应. 中国农业科学, 2015,48(23):4738-4747.
doi: 10.3864/j.issn.0578-1752.2015.23.015
YANG J, GAO W, REN S R . Response of soil phosphorus to P balance under long-term fertilization in fluvo-aquic soil. Scientia Agricultura Sinica, 2015,48(23):4738-4747. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.23.015
[32] 吴启华, 刘晓斌, 张淑香, 尹彩侠, 李桂花, 谢佳贵 . 施用常规磷水平的80%可实现玉米高产、磷素高效利用和土壤磷平衡. 植物营养与肥料学报, 2016,22(6):1468-1476.
WU Q H, LIU X B, ZHANG S X, YIN C X, LI G H, XIE J G . Application of 80% of routine phosphorus rate to keep high yield and P efficiency of maize and P balance in soil. Journal of Plant Nutrition and Fertilizers, 2016,22(6):1468-1476. (in Chinese)
[33] 鲁如坤, 时正元, 施建平 . 我国南方6 省农田养分平衡现状评价和动态变化研究. 中国农业科学, 2000,33(2):63-67.
LU R K, SHI Z Y, SHI J P . Nutrient balance of agroecosystem in six provinces in southern China. Scientia Agricultura Sinica, 2000,33(2):63-67. (in Chinese)
[34] 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强 . 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018,51(11):2136-2142.
doi: 10.3864/j.issn.0578-1752.2018.11.011
WEN Y C, ZHANG Y D, YUAN L, LI W, LI Y Q, LIN Z A, ZHAO B Q . Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Scientia Agricultura Sinica, 2018,51(11):2136-2142.(in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.11.011
[35] 贾良良, 陈新平, 张福锁, 刘宏斌, 吴健繁 . 北京市冬小麦氮肥适宜用量评价方法的研究. 中国农业大学学报, 2001,6(3):67-73.
JIA L L, CHEN X P, ZHANG F S, LIU H B, WU J F . Study of optimum N supplying rate in winter wheat in Beijing area. Journal of China Agricultural University, 2001,6(3):67-73. (in Chinese)
[36] 向万胜, 黄敏, 李学垣 . 土壤磷素的化学组分及其植物有效性. 植物营养与肥料学报, 2004,10(6):663-670.
XIANG W S, HUANG M, LI X Y . Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil. Plant Nutrition and Fertilizer Science, 2004,10(6):663-670. (in Chinese)
[37] 何萍, 金继运 , PAMPOLINO M F, JOHNSTON A M. 基于作物产量反应和农学效率的推荐施肥方法. 植物营养与肥料学报, 2012,18(2):499-505.
doi: 10.11674/zwyf.2012.11248
HE P, JIN J Y, PAMPOLINO M F, JOHNSTON A M . Approach and decision support system based on crop yield response and agronomic efficiency. Plant Nutrition and Fertilizer Science, 2012,18(2):499-505. (in Chinese)
doi: 10.11674/zwyf.2012.11248
[38] 宁运旺, 张永春 . 基于土壤氮素平衡的氮肥推荐施肥方法-以水稻为例. 土壤学报, 2015,52(2):281-292.
NING Y W, ZHANG Y C . Soll nitrogen balance based recommendation of nitrogen fertilization: A case study of rice. Acta Pedologica Sinica. 2015,52(2):281-292. (in Chinese)
[1] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[2] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[3] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,ZHU XiaoHui,ZENG Yan,PENG JiaYu,XIE RuLin,TAN HongWei,LI ZhongNing,SHEN XiaoWei,LIU XiHui. Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil [J]. Scientia Agricultura Sinica, 2021, 54(13): 2818-2829.
[4] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[5] YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572.
[6] WU Yang, JIA ZhiKuan, BIAN ShaoFeng, WANG YongJun. Regulation Effects of Different Mulching Patterns During the Whole Season on Soil Water and Temperature in the Maize Field of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(15): 2872-2885.
[7] WANG Yin, GUO Dan, GAO Qiang, LI CuiLan, YAN Li, FENG GuoZhong, LIU ZhenGang, FANG Jie. Differences in Maize Yield Responses to Phosphorous Fertilizer in Different Ecological Zones of Jilin Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1635-1645.
[8] LI RuoNan, WU XuePing, ZHANG YanCai, WANG LiYing, ZHAI FengZhi, CHEN LiLi, SHI JianShuo, XU QiangSheng, HUANG ShaoWen. Effects of Reduced Phosphorus Fertilization on Soil Phosphorus Accumulation, Leaching and Utilization in Greenhouse Vegetable Production [J]. Scientia Agricultura Sinica, 2017, 50(20): 3944-3952.
[9] LI Yu-ling, ZHANG Peng, ZHANG Yan, JIA Qian-min, LIU Dong-hua, DONG Zhao-yun, JIA Zhi-kuan, HAN Qing-fang, REN Xiao-long. Effects of Rainfall Harvesting Planting on Temporal and Spatial Changing of Soil Water and Temperature, and Yield of Spring Maize (Zea mays L.) in Semi-Arid Areas [J]. Scientia Agricultura Sinica, 2016, 49(6): 1084-1096.
[10] XIE Jun, ZHAO Ya-nan, CHEN Xuan-jing, LI Dan-ping, XU Chun-li, WANG Ke, ZHANG Yue-qiang, SHI Xiao-jun. Nitrogen of Organic Manure Replacing Chemical Nitrogenous Fertilizer Improve Maize Yield and Nitrogen Uptake and Utilization Efficiency [J]. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943.
[11] ZHANG Xue-lin, XU Jun, AN Ting-ting, HOU Xiao-pan, LI Chao-hai. Relationship Between Rhizosphere Soil Properties and Yield of Maize at Different Nitrogen Levels [J]. Scientia Agricultura Sinica, 2016, 49(14): 2687-2699.
[12] XIE Jun-hong, CHAI Qiang, LI Ling-ling, ZHANG Ren-zhi, NIU Yi-ning, LUO Zhu-zhu, CAI Li-qun. The Time Loading Limitation of Continuous Cropping Maize Yield Under Different Plastic Film Mulching Modes in Semi-Arid Region of Loess Plateau of China [J]. Scientia Agricultura Sinica, 2015, 48(8): 1558-1568.
[13] . Effect of long-term application of K fertilizer on spring maize yield and soil K in northeast China [J]. Scientia Agricultura Sinica, 2007, 40(10): 2234-2240 .
[14] ,,. Modelling the relationship between summer maize NPK uptake and yield on the basis of the soil fertility indices [J]. Scientia Agricultura Sinica, 2005, 38(09): 1834-1840 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!