Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3559-3572.doi: 10.3864/j.issn.0578-1752.2019.20.007

• SPECIAL FOCUS: HIGH-YIELDING AND HIGH NUTRIENT EFFICIENT SPRING MAIZE IN NORTHEAST CHINA • Previous Articles     Next Articles

The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China

YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU(),YuShan GAO(),YongJun WANG,LiChun WANG   

  1. Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Agro-Environment in Northeast China, Ministry of Agriculture, Changchun 130033
  • Received:2019-01-31 Accepted:2019-07-03 Online:2019-10-16 Published:2019-10-28
  • Contact: HuiTao LIU,YuShan GAO E-mail:liuhuitao558@sohu.com;gys1999@163.com

Abstract:

【Objective】 Aiming at the accumulation dynamics and translocation and distribution characteristics of dry matter and nutrient of maize population among different cultivation modes under drip irrigation and fertilization conditions in semi-arid region of Northeastern China, this research provided the theoretical basis on high-yielding cultivation technique of spring maize under drip irrigation and fertilization conditions in the area.【Method】 The location experiment was conducted in Qian'an county in the western semi-arid region of Jilin province from 2014 to 2016 with three cultivation modes, including farmers' practice cultivation (FP), high-yielding cultivation (HY) and super high-yielding cultivation (SHY) under drip irrigation and fertilization conditions. Nonghua101 was chosen as experimental material. The characteristics of accumulation, translocation and distribution of dry matter and nutrient of maize population and the yield construction were studied among different cultivation modes under drip irrigation and fertilization conditions. 【Result】 The maize yield under HY and SHY modes were significantly higher than that under FP mode, with the average increment by 16.0% and 37.4%, respectively. The spike kernels and 100-kernels weight of HY and SHY modes were decreased than that of FP mode, but the spike numbers per unit area were significantly increased. Compared with FP mode, dry matter and N, P and K accumulations of maize population were significantly increased under HY and SHY modes from flowering stage to maturing stage, and the accumulation proportion of dry matter and N, P and K accumulations were increased in total growth period after flowering stage (the accumulation proportion of dry matter and N, P and K accumulations in total growth period after flowering stage were increased by 8.0%, 23.3%, 10.0%, 33.9% and 13.8%, 42.6%, 21.6%, 44.6%, respectively). Logistic equation analysis showed that the maximum and average increase rates of HY and SHY modes were 6.9%, 4.2% and 23.8%, 10.9% higher than that under FP mode, respectively, and the occurrence time of maximum rate was later. Compare with FP mode, HY and SHY modes reduced significantly nutrient translocation rate and contribution rate of translocation nutrients to kernels before flowering stage, and improved significantly contribution rate of accumulation nutrients to kernels after flowering stage of spring maize. Correlation analysis showed that the grain yield was significant or extremely significant correlated positively (r=0.7513-0.9840) with the dry matter and N, P and K accumulations around flowering stage of maize population, and the correlation coefficients after flowering stage were higher than them before flowering stage. 【Conclusion】 Compared with FP mode, HY and SHY modes improved the maximum and average increase rates of the dry matter in maize population, and postponed the occurrence time of the maximum increase rate of the dry matter. HY and SHY modes increased the dry matter and nutrient accumulations from flowering stage to maturing stage of maize, and enhanced significantly the contribution rate of accumulation nutrients to kernels after flowering stage. Therefore, the managing measures of increasing the planting density, controlling the total amount of N, P and K fertilizers and regulating fertilizer application during different stages could ensure the demand of N, P and K in the whole growth period of maize. This article provided an advantageous way for further promoting maize yield under drip irrigation and fertilization conditions in the semi-arid region of Northeastern China.

Key words: semi-arid region, maize yield, drip irrigation and fertilization, cultivation modes, dry matter, nutrient accumulation and translocation

Table 1

The planting density, fertilizer rates, application stages and proportions under different cultivation modes of maize"

处理
Treatment
种植密度
Planting density
(plant/hm2)
施肥量
Fertilizer rate (kg·hm-2)
N-P2O5-K2O施用比例
The application proportions of N, P and K fertilizers (%)
N P2O5 K2O 基肥
Basal Fertilizer
拔节期
V6
大喇叭口期
V12
开花期
VT
灌浆期
R3
乳熟期
R4
FP 60000 240 126 83 70-100-100 30-0-0
HY 75000 200 80 100 20-40-30 30-20-30 20-20-20 20-10-20 10-10-0
SHY 90000 300 120 150 10-50-30 20-10-20 20-10-25 20-10-25 20-15-10 10-5-5

Table 2

Maize yield and its components under different cultivation modes"

年份
Year
处理
Treatment
产量
Yield (kg·hm-2)
收获指数
HI
穗数
Ear (No. hm-2)
穗粒数
Kernel
百粒重
100-Kernel weight (g)
2014 FP 10910c 0.49a 58350c 548.4a 34.6a
HY 12994b 0.51a 74000b 536.3a 33.9a
SHY 15231a 0.51a 86650a 532.7a 33.6a
2015 FP 11773c 0.49a 58150c 562.6a 36.1a
HY 13656b 0.52a 72500b 549.8a 35.7a
SHY 16132a 0.51a 87000a 548.9a 35.0a
2016 FP 11681c 0.48a 57850c 553.4a 36.0a
HY 13210b 0.50a 73150b 539.6a 34.4a
SHY 15854a 0.50a 87150a 536.0a 34.1a
方差分析 ANOVA
处理 Treatment (T) ** NS * ** **
年份 Year (Y) * NS NS * *
处理×年份 (T×Y) * NS NS * NS

Fig. 1

The dynamic change of accumulation amount of aboveground dry matter at different growth stages of maize under different cultivation modes V3: Seedling stage; V6: Jointing stage; V12: Trumpeting stage; VT: Flowering stage; R3: Filling stage; PM: Physiological maturity. The same as below"

Table 3

Logistic equation analysis for dry matter accumulation rate of maize under different cultivation modes"

年份
Year
处理
Treatment
回归方程
Regression equation
R2 最大增长速率出现天数
The days of maximum increase rate (d)
最大增长速率
Maximum increase rate
(kg·d·hm-2)
平均增长速率
Average increase rate
(kg·d·hm-2)
2014 FP Y=18709.931/(1+e312.666-0.075t 0.998 76.2b 352.5b 131.1c
HY Y=21439.737/(1+e209.682-0.068t 0.997 79.0a 362.5b 149.9b
SHY Y=25540.395/(1+e179.095-0.063t 0.998 81.9a 404.5a 177.6a
2015 FP Y=20159.167/(1+e161.633-0.063t 0.997 81.0a 316.6b 135.8c
HY Y=23581.404/(1+e130.382.-0.058t 0.999 83.4a 344.2ab 157.7b
SHY Y=27816.458/(1+e154.644-0.059t 0.997 84.9a 412.9a 185.6a
2016 FP Y=19759.418/(1+e273.277-0.071t 0.998 79.1a 350.2b 136.9c
HY Y=22904.026/(1+e228.540-0.067t 0.995 81.2a 382.9ab 157.7b
SHY Y=26974.290/(1+e240.389-0.066t 0.994 83.2a 444.4a 184.3a
方差分析 ANOVA
处理 Treatment (T) ** ** **
年份 Year (Y) NS NS NS
处理×年份 (T×Y) NS NS NS

Fig. 2

The proportions of above-ground dry matter in the whole dry matter around flowering stage of maize under different cultivation modes Different letters indicate significant differences at 0.05 level. The same as below"

Fig. 3

The absorption of above-ground N, P and K at different growth stages of maize under different cultivation modes"

Fig. 4

The proportions of above-ground N, P and K accumulation in the whole N, P and K accumulation around flowering stage of maize under different cultivation modes"

Table 4

N, P and K translocations of plants under different cultivation modes"

年份
Year
处理
Treatment
转运量
Translocation amount
(kg·hm-2)
转运率
Translocation rate
(%)
转运养分对籽粒贡献率
Contribution rate of translocation nutrients to kernels (%)
积累养分对籽粒贡献率
Contribution rate of accumulation nutrients to kernels (%)
N P K N P K N P K N P K
2014 FP 74.8a 13.1a 21.6a 55.1a 72.4a 14.1a 59.2a 64.6a 52.3a 40.8c 35.4c 47.7b
HY 72.3a 13.0a 19.4a 49.7b 63.5b 11.7b 50.0b 59.3b 40.8b 50.0b 40.7b 59.2a
SHY 76.4a 14.6a 21.7a 45.5c 66.3b 12.0b 40.7c 57.1c 37.8b 59.3a 42.9a 62.2a
2015 FP 81.7a 16.6a 28.5a 59.2a 76.8a 17.7a 61.9a 65.3a 58.2a 38.1c 34.7c 41.8c
HY 79.1a 17.4a 26.5a 52.4b 72.5b 14.9b 51.9b 60.0b 45.2b 48.1b 40.0b 54.8b
SHY 78.9a 17.8a 27.8a 44.4c 69.7b 13.8b 40.4a 54.7c 39.7c 59.6a 45.3a 60.3a
2016 FP 81.8a 18.1a 27.0a 57.7a 81.4a 17.0a 67.5a 67.0a 59.3a 32.5c 33.0c 40.7c
HY 79.0a 17.4a 26.6a 51.6b 71.8b 15.0b 57.4b 60.8b 48.3b 42.6b 39.2b 51.7b
SHY 83.6a 18.8a 28.3a 48.1b 70.5b 14.4b 43.2c 57.0c 45.1c 56.8a 43.0a 54.9a
方差分析 ANOVA
处理 Treatment (T) ** ** ** ** ** ** ** ** ** ** ** **
年份 Year (Y) * * * * * * NS NS NS NS NS NS
处理×年份 (T×Y) * * * * * * NS NS NS NS NS NS

Fig. 5

The correlations between yield, dry matter and N, P and K accumulation around flowering stage of maize"

[1] 李文, 王鑫, 刘迎春, 温暖 . 东北西部半干旱区甜菜高产高效栽培数学模型. 中国糖料, 2010(4):9-13, 18.
LI W, WANG X, LIU Y C, WEN N . Mathematical model of high yield and high efficiency cultivation of sugarbeet in Northeast semi-arid area. Sugar Crops of China, 2010(4):9-13, 18. (in Chinese)
[2] 高强, 蔡红光, 黄立华, 汪涓涓 . 吉林省半干旱地区春玉米连作体系氮素平衡研究. 西北农林科技大学学报(自然科学版), 2009,37(8):127-132.
GAO Q, CAI H G, HUANG L H, WANG J J . Study on soil nitrogen balance of spring maize continuous cropping in semi-arid area of Jilin province. Journal of Northwest A & F University (Natural Science Edition), 2009,37(8):127-132. (in Chinese)
[3] 侯云鹏, 孔丽丽, 李前, 尹彩侠, 秦裕波, 于雷, 王立春, 谢佳贵 . 滴灌施氮对春玉米氮素吸收、土壤无机氮含量及氮素平衡的影响. 水土保持学报, 2018,32(1):238-245.
HOU Y P, KONG L L, LI Q, YIN C X, QIN Y B, YU L, WANG L C, XIE J G . Effects of drip irrigation with nitrogen on nitrogen uptake, soil inorganic nitrogen content and nitrogen balance of spring maize. Journal of Soil and Water Conservation, 2018,32(1):238-245. (in Chinese)
[4] 李楠楠 . 黑龙江半干旱区玉米膜下滴灌水肥耦合模式试验研究[D]. 哈尔滨: 东北农业大学, 2010.
LI N N . Coupling effects of between water and nitrogen of corn on drip irrigation under plastic film in semiarid region of Heilongjiang province[D]. Haerbin: Northeast Agricultural University, 2010. ( in Chinese)
[5] 张忠学, 曾赛星 . 东北半干旱抗旱灌溉区节水农业理论与实践. 北京: 中国农业出版社, 2005.
ZHANG Z X, ZENG S X. The Theory and the Practice of Water-Saving Agriculture in Semi-Arid and Anti-Drought Irrigating Region of Northeast China. Beijing: China Agricultural Press, 2005. ( in Chinese)
[6] 赵炳南, 朱风文, 杨威, 刘莹 . 吉林省西部半干旱区玉米灌溉现状分析及对策. 吉林农业科学, 2010,35(6):8-10, 15.
ZHAO B N, ZHU F W, YANG W, LIU Y . Current status and strategies of maize irrigation in semi-arid area of western Jilin province. Journal of Jilin Agricultural Sciences, 2010,35(6):8-10, 15. (in Chinese)
[7] 高玉山, 窦金刚, 刘慧涛, 孙毅, 任军, 闫孝贡 . 吉林省半干旱区玉米超高产品种、密度与产量关系研究. 玉米科学, 2007,15(1):120-122.
GAO Y S, DOU J G, LIU H T, SUN Y, REN J, YAN X G . Research on relationship of varieties, densities and yield constitute factor for super high-yielding maize in semi-arid region of Jilin province. Journal of Maize Sciences, 2007,15(1):120-122. (in Chinese)
[8] 侯云鹏, 孔丽丽, 李前, 尹彩侠, 秦裕波, 于雷, 王立春, 王蒙 . 覆膜滴灌条件下氮肥运筹对玉米氮素吸收利用和土壤无机氮含量的影响. 中国生态农业学报, 2018,26(9):1378-1387.
HOU Y P, KONG L L, LI Q, YIN C X, QIN Y B, YU L, WANG L C, WANG M . Effects of nitrogen fertilizer management on nitrogen absorption, utilization and soil inorganic nitrogen content under film mulch drip irrigation of maize. Chinese Journal of Eco-Agriculture, 2018,26(9):1378-1387. (in Chinese)
[9] 张磊, 王立春, 孔丽丽, 杨建, 谢佳贵, 侯云鹏 . 不同施肥模式下春玉米养分吸收利用和土壤养分平衡研究. 土壤通报, 2017,48(5):1169-1176.
ZHANG L, WANG L C, KONG L L, YANG J, XIE J G, HOU Y P . Nutrient utilization and soil nutrient balance of spring maize under different fertilizer application modes. Chinese Journal of Soil Science, 2017,48(5):1169-1176. (in Chinese)
[10] 齐文增, 陈晓璐, 刘鹏, 刘惠惠, 李耕, 邵立杰, 王飞飞, 董树亭, 张吉旺, 赵斌 . 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点. 植物营养与肥料学报, 2013,19(1):26-36.
doi: 10.11674/zwyf.2013.0103
QI W Z, CHEN X L, LIU P, LIU H H, LI G, SHAO L J, WANG F F, DONG S T, ZHANG J W, ZHAO B . Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2013,19(1):26-36. (in Chinese)
doi: 10.11674/zwyf.2013.0103
[11] NING P, LI S, YU P, ZHANG Y, LI C . Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties in leaf longevity. Field Crops Research, 2013,144:19-27.
[12] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36(7):1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W, WANG J F . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agronomica Sinica, 2010,36(7):1226-1233. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01226
[13] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉 . 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011,44(21):4367-4376.
doi: 10.3864/j.issn.0578-1752.2011.21.005
ZHANG Y Q, YANG H S, GAO J L, ZHANG R F, WANG Z G, XU S J, FAN X Y, YANG S H . Study on canopy structure and physiological characteristics of super-high yield spring maize. Scientia Agricultura Sinica, 2011,44(21):4367-4376. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.21.005
[14] 曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜 . 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012,18(6):1343-1353.
doi: 10.11674/zwyf.2012.12135
CAO S B, ZHANG J W, DONG S T, LIU P, ZHAO B, YANG J S . Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutrition and Fertilizer Science, 2012,18(6):1343-1353. (in Chinese)
doi: 10.11674/zwyf.2012.12135
[15] 王宜伦, 李潮海, 何萍, 金继运, 韩燕来, 张许, 谭金芳 . 超高产夏玉米养分限制因子及养分吸收积累规律研究. 植物营养与肥料学报, 2010,16(3):559-566.
doi: 10.11674/zwyf.2010.0307
WANG Y L, LI C H, HE P, JIN J Y, HAN Y L, ZHANG X, TAN J F . Nutrient restrictive factors and accumulation of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2010,16(3):559-566. (in Chinese)
doi: 10.11674/zwyf.2010.0307
[16] 吕鹏, 张吉旺, 刘伟, 杨今胜, 刘鹏, 董树亭, 李登海 . 施氮时期对超高产夏玉米产量及氮素吸收利用的影响. 植物营养与肥料学报, 2011,17(5):1099-1107.
doi: 10.11674/zwyf.2011.0489
LÜ P, ZHANG J W, LIU W, YANG J S, LIU P, DONG S T, LI D H . Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions. Plant Nutrition and Fertilizer Science, 2011,17(5):1099-1107. (in Chinese)
doi: 10.11674/zwyf.2011.0489
[17] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全 . 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017,50(12):2238-2246.
doi: 10.3864/j.issn.0578-1752.2017.12.005
ZHANG R H, WANG B X, YANG Y H, YANG X J, MA X F, ZHANG X H, HAO Y C, XUE J Q . Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Scientia Agricultura Sinica, 2017,50(12):2238-2246. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.005
[18] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海 . 水稻甬优12 产量13.5 t·hm -2以上超高产群体的生育特征 . 作物学报, 2014,40(12):2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
WANG X Y, WEI H H, ZHANG H C, SUN J, ZHANG J M, LI C, LU H B, YANG J W, MA R R, XU J F, WANG J, XU Y J, SUN Y H . Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t·ha -1) . Acta Agronomica Sinica, 2014,40(12):2149-2159. (in Chinese)
doi: 10.3724/SP.J.1006.2014.02149
[19] CHEN Y L, XIAO C X, WU D L, XIA T T, CHEN Q W, CHEN F J, YUAN L X, MI G H . Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. European Journal of Agronomy, 2015,62:79-89.
[20] 魏廷邦, 胡发龙, 赵财, 冯福学, 于爱忠, 刘畅, 柴强 . 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 2017,50(15):2916-2927.
doi: 10.3864/j.issn.0578-1752.2017.15.006
WEI T B, HU F L, ZHAO C, FENG F X, YU A Z, LIU C, CHAI Q . Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation Areas. Scientia Agricultura Sinica, 2017,50(15):2916-2927. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.15.006
[21] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆 . 密度对玉米产量(>15 000 kg·hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45(16):3437-3445.
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K . Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012,45(16):3437-3445. (in Chinese)
[22] 宫香伟, 韩浩坤, 张大众, 李境, 王孟, 薛志和, 杨璞, 高小丽, 冯佰利 . 氮肥运筹对糜子生育后期干物质积累与转运及叶片氮素代谢的调控效应. 中国农业科学, 2018,51(6):1045-1056.
doi: 10.3864/j.issn.0578-1752.2018.06.004
GONG X W, HAN H K, ZHANG D Z, LI J, WANG M, XUE Z H, YANG P, GAO X L, FENG B L . Effects of nitrogen fertilizer on dry matter accumulation, transportation and nitrogen metabolism in functional leaves of broomcorn millet at late growth stage. Scientia Agricultura Sinica, 2018,51(6):1045-1056. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.06.004
[23] NAKANO H, MORITA S, KITAGAWA H, WADA H, TAKAHASHI M . Grain yield response to planting density in forage rice with a large number of spikelets. Crop Science, 2012,52(1):345-350.
[24] 李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白 . 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010,36(12):2143-2153.
doi: 10.3724/SP.J.1006.2010.02143
LI X L, ZHAO M, LI C F, GE J Z, HOU H P, LI Q, HOU L B . Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agronomica Sinica, 2010,36(12):2143-2153. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02143
[25] 侯云鹏, 杨小丹, 杨建, 孔丽丽, 尹彩侠, 秦裕波, 于雷, 谭国波, 谢佳贵 . 不同施肥模式下玉米氮、磷、钾吸收利用特性研究. 玉米科学, 2017,25(5):128-135.
HOU Y P, YANG X D, YANG J, KONG L L, YIN C X, QIN Y B, YU L, TAN G B, XIE J G . Research on absorption and utilization characteristics of N, P and K under different fertilization modes. Journal of Maize Sciences, 2017,25(5):128-135. (in Chinese)
[26] 黄智鸿, 王思远, 包岩, 梁煊赫, 孙刚, 申林, 曹洋, 吴春胜 . 超高产玉米品种干物质积累与分配特点的研究. 玉米科学, 2007,15(3):95-98.
HUANG Z H, WANG S Y, BAO Y, LIANG X H, SUN G, SHEN L, CAO Y, WU C S . Studies on dry Matter accumulation and distributive characteristic in super high-yield maize. Journal of Maize Sciences, 2007,15(3):95-98. (in Chinese)
[27] 刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉 . 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011,37(7):1301-1307.
doi: 10.3724/SP.J.1006.2011.01301
LIU W, ZHANG J W, LÜ P, YANG J S, LIU P, DONG S T, LI D H, SUN Q Q . Effect of plant density on grain yield dry matter accumulation and partitioning in summer maize cultivar Denghai 661. Acta Agronomica Sinica, 2011,37(7):1301-1307. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01301
[28] 张法全, 王小燕, 于振文, 王西芝, 白洪立 . 公顷产10000kg小麦氮素和干物质积累与分配特性. 作物学报, 2009,35(6):1086-1096.
doi: 10.3724/SP.J.1006.2009.01086
ZHANG F Q, WANG X Y, YU Z W, WANG X Z, BAI H L . Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agronomica Sinica, 2009,35(6):1086-1096. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01086
[29] 李朝苏, 汤永禄, 吴春, 吴晓丽, 黄钢, 何刚, 郭大明 . 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015,21(4):873-883.
doi: 10.11674/zwyf.2015.0406
LI C S, TANG Y L, WU C, WU X L, HUANG G, HE G, GUO D M . Effect of N rate on growth and grain filling of wheat in Sichuan basin. Journal of Plant Nutrition and Fertilizer, 2015,21(4):873-883. (in Chinese)
doi: 10.11674/zwyf.2015.0406
[30] 汤永禄, 李朝苏, 吴春, 吴晓丽, 黄钢, 何刚 . 四川盆地单产9000kg hm -2以上超高产小麦品种产量结构与干物质积累特点 . 作物学报, 2014,40(1):134-142.
doi: 10.3724/SP.J.1006.2014.00134
TANG Y L, LI C S, WU C, WU X L, HUANG G, HE G . Yield component and dry matter accumulation in wheat varieties with 9000 kg ha -1 yield potential in Sichuan basin . Acta Agronomica Sinica, 2014,40(1):134-142. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00134
[31] 王永军 . 超高产夏玉米群体质量与个体生理功能研究[D]. 泰安: 山东农业大学, 2008.
WANG Y J . Study on population quality and individual physiology function of super high-yielding maize (Zea mays L.)[D]. Taian: Shandong Agricultural University, 2008. ( in Chinese)
[32] 高炳德, 李江遐, 周燕辉, 赵利梅 . 内蒙古平原灌区公顷产量13.7t-15.9t不同品种春玉米氮、磷、钾吸收规律研究. 内蒙古农业大学学报(自然科学版), 2000(S1):62-71.
GAO B D, LI J X, ZHOU Y H, ZHAO L M . Study of the law of nitrogen-phosphate-potassium fertilizer absorption of 13.7-15.9 t/hm 2 yield with different varieties of spring maize on the irrigated plain in Inner Mongolia. Journal o f Inner Mongolia Agricultural University (Natural Science) , 2000(S1):62-71. (in Chinese)
[33] CIAMPITT I A, TONY J V . Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies. A review. Field Crops Research, 2012,133:48-67.
[34] 李文娟, 何萍, 金继运 . 钾素营养对玉米生育后期干物质和养分积累与转运的影响. 植物营养与肥料学报, 2009,15(4):799-807.
doi: 10.11674/zwyf.2009.0410
LI W J, HE P, JIN J Y . Potassium nutrition on dry matter and nutrients accumulation and translocation at reproductive stage of maize. Plant Nutrition and Fertilizer Science, 2009,15(4):799-807. (in Chinese)
doi: 10.11674/zwyf.2009.0410
[35] 葛均筑, 展茗, 赵明, 李建鸽, 李淑娅, 田少阳 . 一次性施肥对长江中游春玉米产量及养分利用效率的影响. 植物营养与肥料学报, 2013,19(5):1073-1082.
doi: 10.11674/zwyf.2013.0506
GE J Z, ZHAN M, ZHAO M, LI J G, LI S Y, TIAN S Y . Effects of single basal fertilization on yield and nutrient use efficiencies of spring maize in the middle reaches of Yangtze River. Journal of Plant Nutrition and Fertilizer, 2013,19(5):1073-1082. (in Chinese)
doi: 10.11674/zwyf.2013.0506
[36] GALLAIS A, COQUE M, QUILLERE I, PRIOUL J L, HIREL B . Modelling postsilking nitrogen fluxes in maize (Zea mays) using 15N-labelling field experiments . New Phytologist, 2006,172(4):696-707.
[37] 杨恒山, 张玉芹, 徐寿军, 李国红, 高聚林, 王志刚 . 超高产春玉米干物质及养分积累与转运特征. 植物营养与肥料学报, 2012,18(2):315-323.
doi: 10.11674/zwyf.2012.11296
YANG H S, ZHANG Y Q, XU S J, LI G H, GAO J L, WANG Z G . Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize. Plant Nutrition and Fertilizer Science, 2012,18(2):315-323. (in Chinese)
doi: 10.11674/zwyf.2012.11296
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[3] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[4] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[5] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[6] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[7] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[8] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[9] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[10] WANG XuMin,LUO WenHe,LIU PengZhao,ZHANG Qi,WANG Rui,LI Jun. Regulation Effects of Water Saving and Nitrogen Reduction on Dry Matter and Nitrogen Accumulation, Transportation and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(15): 3183-3197.
[11] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[12] TONG Jin,SUN Min,REN AiXia,LIN Wen,YU ShaoBo,WANG Qiang,FENG Yu,REN Jie,GAO ZhiQiang. Relationship Between Plant Dry Matter Accumulation, Translocation, Soil Water Consumption and Yield of High-Yielding Wheat Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(17): 3467-3478.
[13] PIAO Lin,LI Bo,CHEN XiChang,DING ZaiSong,ZHANG Yu,ZHAO Ming,LI CongFeng. Regulation Effects of Improved Cultivation Measures on Canopy Structure and Yield Formation of Dense Spring Maize Population [J]. Scientia Agricultura Sinica, 2020, 53(15): 3048-3058.
[14] ZHAO DeQiang,LI Tong,HOU YuTing,YUAN JinChuan,LIAO YunCheng. Benefits and Marginal Effect of Dry Matter Accumulation and Yield in Maize and Soybean Intercropping Patterns [J]. Scientia Agricultura Sinica, 2020, 53(10): 1971-1985.
[15] XinYuan MU,Xia ZHAO,LiMin GU,BaoYi JI,Yong DING,FengQi ZHANG,Jun ZHANG,JianShuang QI,ZhiYan MA,LaiKun XIA,BaoJun TANG. Effects of Straw Returning Amount on Grain Yield, Dry Matter Accumulation and Transfer in Summer Maize with Different Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(1): 29-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!