Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3553-3566.doi: 10.3864/j.issn.0578-1752.2020.17.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Status of Soil Fertility in Main Grape Producing Areas of China

LI BaoXin1(),YANG LiPing2(),LU YanLi2,SHI XiaoXin1,DU GuoQiang1()   

  1. 1College of Horticulture, Hebei Agricultural University, Baoding 071000, Hebei
    2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Nutrition and Fertilization, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2019-10-30 Accepted:2020-01-02 Online:2020-09-01 Published:2020-09-11
  • Contact: LiPing YANG,GuoQiang DU E-mail:libaoxin94@qq.com;yangliping@caas.cn;gdu@hebau.edu.cn

Abstract:

【Objective】The lagged soil fertility research and lacked scientific fertilization instruction in vineyards have gradually become the focus of restricting the sustainable development of the grape industry in China. Soil fertility status was investigated to formulate a suitable fertilization strategy so as to promote the healthy and sustainable development of grape industry in China. 【Method】1 100 soil samples were collected from the vineyards located in the five main grape producing areas in China (Northeast cold climate producing areas, North China and Bohai Bay producing areas, Qinling-Huaihe River subtropical producing areas, Northwest and Loess Plateau producing areas, Yunnan-Guizhou Plateau and Western Sichuan high altitude producing areas) respectively in 2018, and measured soil pH, organic matter, and available macro, medium and microelements content respectively. The status of soil fertility and its spatial distribution characteristics in the main grape producing areas of China were maped out by ArcGIS. 【Result】It showed that pH value range of soil in the main grape producing areas was 2.9-9.6, neutral soil was only 11.7% in selected soil samples in main grape producing areas of China; The average content of soil organic matter were 11.42 g·kg-1 (deficient), and the proportion of soil with organic matter deficiency was 78.8%; The average contents of the nutrients were available N 77.8 mg·kg-1 (medium), available P 97.2 mg·kg-1 (rich), available K 214.7 mg·kg-1 (medium), available Ca 1 670.8 mg·kg-1 (rich), available Mg 299.0 mg·kg-1 (rich), available S 72.5 mg·kg-1 (extremely rich), available Fe 83.9 mg·kg-1 (rich), available Cu 5.8 mg·kg-1 (extremely rich), available Mn 16.1 mg·kg-1 (rich), available Zn 6.5 mg·kg-1 (rich), available B 2.86 mg·kg-1 (rich). 【Conclusion】There was small proportion of soil with neutral pH value, which was suitable for grape growth in the main grape producing areas of China, and the area ratio is only 11.7%. Organic matter content is 11.42 g·kg-1, and 78.8% of soil area with organic matter was at a deficient level. The content of available N (77.8 mg·kg-1) and available K (214.7 mg·kg-1) was insufficient, but the content of available P (97.2 mg·kg-1) was at a very rich level. The content of available Ca, available Mg and available S was at a rich level, however, the content of available Ca and available Mg varies greatly between different regions. The micro element of available Cu (5.8 mg·kg-1) was at a extremely rich level, the content of available Fe, Mn, Zn, and B was at rich level, but nutrient deficiencies still exist in some areas. Regional formula fertilization can be carried out according to the status of soil nutrients, so as to make reasonable supplement of macro, medium and micro elements.

Key words: China, main grape producing area, soil available nutrients, status of soil fertility, fertilization recommendation, ArcGIS

Fig. 1

Distribution of soil sampling sites"

Table 1

Soil test rating in vineyard"

养分
Nutrient
极缺
Serious deficient
缺乏
Deficient
中等
Medium
丰富
Rich
很丰富
Very rich
极丰富
Extremely rich
有机质Organic matter (g·kg-1) 0-10.00 10.00-15.00 15.00-20.00 20.00-25.00 25.00-30.00 >30.00
速效氮Available N (mg·kg-1) 0-20.0 20.0-50.0 50.0-100.0 100.0-150.0 150.0-200.0 >200.0
有效磷Available P (mg·kg-1) 0-15.0 15.0-25.0 25.0-45.0 45.0-70.0 70.0-150.0 >150.0
有效钾Available K (mg·kg-1) 0-60.0 60.0-120.0 120.0-240.0 240.0-400.0 400.0-600.0 >600.0
有效钙Available Ca (mg·kg-1) 0-200.0 200.0-400.0 400.0-1200.0 1200.0-3600.0 3600.0-4800.0 >4800.0
有效镁Available Mg (mg·kg-1) 0-60.0 60.0-120.0 120.0-250.0 250.0-750.0 750.0-1460.0 >1460.0
有效硫Available S (mg·kg-1) 0-7.0 7.0-13.0 13.0-25.0 25.0-40.0 40.0-60.0 >60.0
有效铁Available Fe (mg·kg-1) 0-5.0 5.0-10.0 10.0-30.0 30.0-150.0 150.0-300.0 >300.0
有效铜Available Cu (mg·kg-1) 0-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0 >5.0
有效锰Available Mn (mg·kg-1) 0-2.5 2.5-5.0 5.0-15.0 15.0-30.0 30.0-150.0 >150.0
有效锌Available Zn (mg·kg-1) 0-1.0 1.0-2.0 2.0-3.0 3.0-6.0 6.0-10.0 >10.0
有效硼Available B (mg·kg-1) 0-0.10 0.10-0.20 0.20-0.60 0.60-3.00 3.00-6.00 >6.00

Table 2

Soil nutrient content in main grape producing areas of China"

产区
The production areas
pH 有机质
OM (g·kg-1)
速效氮
Available N (mg·kg-1)
有效磷
Available P (mg·kg-1)
有效钾
Available K (mg·kg-1)
有效钙
Available Ca (mg·kg-1)
有效镁
Available Mg (mg·kg-1)
东北冷凉气候产区
Northeast cold climate producing areas
平均值 Mean 6.6±0.16 20.18±1.61 83.6±20.41 49.1±20.41 171.5±32.20 2019.3±104.49 282.3±28.22
最大值 Max 9.2 71.13 914.5 210.9 1659.1 4399.9 1440.7
最小值 Min 4.0 3.12 1.4 3.0 40.2 89.2 2.1
标准差 SD 1.42 15.04 185.91 48.91 293.35 951.95 257.13
华北及环渤海湾产区
North China and Bohai Bay
producing areas
平均值 Mean 6.9±0.10 9.09±0.32 70.5±4.93 151.5±4.93 244.4±13.74 1671.3±54.70 310.8±15.76
最大值 Max 9.2 28.29 625.9 730.7 1665.2 7663.5 1188.4
最小值 Min 3.5 2.04 1.2 6.7 30.6 159.2 3.6
标准差 SD 1.59 4.36 75.56 135.29 210.61 838.59 241.59
秦岭-淮河以南亚热带产区
Qinling-Huaihe subtropical producing areas
平均值 Mean 6.9±0.01 9.71±0.19 109.1±7.20 107.5±7.20 213.1±10.03 1963.7±45.60 271.7±8.89
最大值 Max 9.2 37.22 997.0 1962.8 1692.7 6747.3 1261.2
最小值 Min 2.9 1.63 5.1 2.3 24.4 194.4 8.2
标准差 SD 1.46 4.07 139.55 206.60 194.48 884.27 172.31
西北及黄土高原产区
Northwest and Loess Plateau producing areas
平均值 Mean 8.4±0.09 7.39±0.32 44.1±4.16 71.6±4.16 218.4±8.98 1512.5±69.13 266.1±8.72
最大值 Max 9.6 23.84 561.3 526.0 1944.4 15818.3 904.1
最小值 Min 4.9 1.03 0.0 0.7 48.7 264.4 57.6
标准差 SD 0.78 5.01 69.04 57.29 148.98 1146.38 144.55
云贵高原及川西高海拔产区
Yunnan-Guizhou Plateau and Western Sichuan high altitude producing areas
平均值 Mean 5.9±0.04 21.81±0.64 103.4±11.04 70.3±11.04 181.4±9.89 1537.8±76.87 221.0±13.08
最大值 Max 8.3 44.86 799.5 533.9 752.3 6102.8 713.0
最小值 Min 3.7 6.88 6.4 2.0 32.3 213.6 26.3
标准差 SD 1.1 6.32 126.32 72.89 113.17 879.86 149.73
总计
Total
平均值 Mean 7.2±0.04 11.42±0.26 77.8±3.59 97.2±3.59 214.7±5.80 1670.8±29.34 299.0±5.87
最大值 Max 9.6 71.13 997.0 1962.8 1944.4 15818.3 1440.7
最小值 Min 2.9 1.03 0.0 0.7 24.4 89.2 2.1
标准差 SD 1.50 7.61 119.0 147.14 192.31 973.0 194.66
东北冷凉气候产区
Northeast cold climate producing areas
平均值 Mean 38.1±9.78 64.2±5.71 8.7±0.74 22.2±2.40 5.9±1.94 2.17±0.51
最大值 Max 598.6 276.8 36.2 162.1 152.8 25.55
最小值 Min 0.0 1.9 0.1 1.7 1.1 0.09
标准差 SD 89.13 52.01 6.75 21.88 17.65 4.66
华北及环渤海湾产区
North China and Bohai Bay
producing areas
平均值 Mean 46.3±2.66 77.7±5.02 11.2±0.58 19.0±1.15 9.9±1.15 2.25±0.12
最大值 Max 210.6 374.1 48.5 134.2 191.9 14.17
最小值 Min 1.2 1.6 0.3 1.9 0.4 0.18
标准差 SD 40.74 76.90 8.85 17.65 17.58 1.82
秦岭-淮河以南亚热带产区
Qinling-Huaihe subtropical
producing areas
平均值 Mean 67.2±3.22 103.6±5.33 6.3±0.27 19.8±0.96 8.8±0.54 3.70±0.25
最大值 Max 501.5 633.6 48.7 185.7 77.6 49.10
最小值 Min 0.0 4.3 0.2 0.8 0.0 0.00
标准差 SD 62.44 103.42 5.28 18.63 10.38 4.89
西北及黄土高原产区
Northwest and Loess Plateau
producing areas
平均值 Mean 87.9±6.10 21.1±1.59 1.7±0.11 10.9±0.42 1.9±0.12 2.62±0.23
最大值 Max 918.9 185.3 12.7 82.9 15.3 36.65
最小值 Min 0.0 2.2 0.1 0.1 0.2 0.00
标准差 SD 101.12 26.38 1.81 7.00 2.03 3.77
云贵高原及川西高海拔产区
Yunnan-Guizhou Plateau and Western Sichuan high altitude production areas
平均值 Mean 87.4±11.59 173.3±9.58 5.2±0.27 16.2±1.43 7.4±1.43 3.04±1.43
最大值 Max 1334.0 460.6 19.1 95.6 95.6 95.56
最小值 Min 9.8 24.4 0.3 2.6 2.6 1.76
标准差 SD 132.62 109.65 3.14 16.31 16.34 16.36
总计
Total
平均值 Mean 72.5±2.53 83.9±2.82 5.8±0.20 16.1±0.51 6.5±0.40 2.86±0.25
最大值 Max 1334.0 633.6 48.7 185.7 191.9 95.56
最小值 Min 0.0 1.6 0.1 0.1 0.0 0.00
标准差 SD 83.78 93.46 6.50 16.75 13.35 8.23

Fig. 2

Spatial distribution of pH"

Fig. 3

Spatial distribution of soil organic matter"

Fig. 4

Spatial distribution of soil macro elements"

Fig. 5

Spatial distribution of soil medium elements"

Fig. 6

Spatial distribution of soil micro elements"

[14] WANG Y Q, ZHANG W E, PAN X J. Soil and tree nutrient status and evaluation of vineyards in Guizhou mountainous region. Journal of Northwest Forestry University, 2019,34(1):144-149. (in Chinese)
[15] 段永华, 张军云, 李娟, 王文智, 郭春平, 李晓亮, 张翠萍, 张钟. 玉溪市葡萄栽培气候条件分析及栽培要点. 云南农业科技, 2018(4):41-44.
DUAN Y H, ZHANG J Y, LI J, WANG W Z, GUO C P, LI X L, ZHANG C P, ZHANG Z. Analysis of climatic conditions and cultivation points of grape cultivation in Yuxi City. Yunnan Agricultural Science and Technology, 2018(4):41-44. (in Chinese)
[16] 张小卓, 史静, 张乃明, 李丽萍. 云南主要葡萄种植区土壤肥力特征与评价. 土壤, 2014,46(1):184-187.
ZHANG X Z, SHI J, ZHANG N M, LI L P. Fertility characteristics and evaluation of the wine-growing region of Yunnan. Soils, 2014,46(1):184-187. (in Chinese)
[17] 段长青. 中国现代农业产业可持续发展战略研究葡萄分册. 北京: 中国农业出版社, 2017, 5-8.
DUAN C Q. Research on Sustainable Development Strategy of Grapes in Modern Agricultural Industry in China. Beijing: China Agricultural Press, 2017, 5-8. (in Chinese)
[18] 金继运, 白由路, 杨俐苹. 高效土壤养分测试技术与设备. 北京: 中国农业出版社, 2006.
JIN J Y, BAI Y L, YANG L P. Efficient Soil Nutrient Testing Technology and Equipment. Beijing: China Agricultural Press, 2006. (in Chinese)
[19] 白由路, 杨俐苹, 金继运. 测土配方施肥原理与实践. 北京: 中国农业出版社, 2007.
BAI Y L, YANG L P, JIN J Y. Principle and Practice of Soil Testing and Formula Fertilization Beijing: China Agricultural Press, 2007. (in Chinese)
[20] 杨俐苹, 何萍. 评价与改善土壤肥力的系统研究法. 北京: 中国农业出版社, 2005.
[1] 田野, 陈冠铭, 李家芬, 向雄鹰, 刘扬, 李宏杨. 世界葡萄产业发展现状. 热带农业科学, 2018,38(6):96-101, 105.
TIAN Y, CHEN G M, LI J F, XIANG X Y, LIU Y, LI H Y. The status quo of the world grape industry development. Tropical Agricultural Science, 2018,38(6):96-101, 105. (in Chinese)
[20] YANG L P, HE P. Systematic Research Method for Evaluating and Improving Soil Fertility. Beijing: China Agricultural Press, 2005. (in Chinese)
[21] Department for Environment Food and Rural Affairs. Fertiliser Manual(RB209) . U.K. the United Kingdom for The Stationery Office. 2010.
[22] 李华. 葡萄栽培学. 北京: 中国农业出版社, 2008.
LI H. Grape Cultivation Beijing: China Agricultural Press, 2008. (in Chinese)
[23] 国家统计局. 中国统计年鉴—2016. 北京: 中国统计出版社, 2016.
National Bureau of Statistics. China Statistical Yearbook—2016 Beijing: China Statistics Press, 2016. (in Chinese)
[24] 杨治元. 葡萄营养与科学施肥. 北京: 中国农业出版社, 2009: 34-44.
YANG Z Y. Grape Nutrition and Scientific Fertilization Beijing: China Agricultural Press, 2009: 34-44. (in Chinese)
[25] 王忠跃. 葡萄健康栽培与病虫害防控. 北京: 中国农业科学技术出版社, 2017: 82-89.
WANG Z Y. Healthy Cultivation of Grapes and Prevention and Control of Pests and Diseases. Beijing: China Agricultural Science and Technology Press, 2017: 82-89. (in Chinese)
[26] 盛明, 韩晓增, 龙静泓, 李娜. 中国不同地区土壤有机质特征比较研究. 土壤与作物, 2019,8(3):320-330.
SHENG M, HAN X Z, LONG J H, LI N. Characterization of soil organic matter in different regions of China. Soils and Crops, 2019,8(3):320-330. (in Chinese)
[27] 贾立辉, 朱平, 彭畅, 张秀芝, 李强, 高洪军. 长期施肥下黑土碳氮和土壤pH的空间变化. 吉林农业大学学报, 2017,39(1):67-73.
JIA L H, ZHU P, PENG C, ZHANG X Z, LI Q, GAO H J. Spatial variation of carbon and nitrogen and soil pH in black soil under long-term fertilization. Journal of Jilin Agricultural University, 2017,39(1):67-73. (in Chinese)
[28] 汪吉东, 戚冰洁, 张永春, 张爱君, 宁运旺, 许先菊, 张辉, 马洪波. 长期施肥对砂壤质石灰性潮土土壤酸碱缓冲体系的影响. 应用生态学报, 2012,23(4):1031-1036.
pmid: 22803470
WANG J D, QI B J, ZHANG Y C, ZHANG A J, NING Y W, XU X J, ZHANG H, MA H B. Effect of long-term fertilization on acid-base buffer system of sandy loamy calcareous soil. Journal of Applied Ecology, 2012,23(4):1031-1036. (in Chinese)
pmid: 22803470
[29] 黄敏, 段军波, 周开来, 刘茜, 梁荣祥, 黄永炳. 典型设施环境条件对土壤活性有机碳及腐殖物质碳的影响. 环境科学研究, 2017,30(11):1706-1714.
HUANG M, DUAN J B, ZHOU K L, LIU Q, LIANG R X, HUANG Y B. Effects of typical facilities and environmental conditions on soil active organic carbon and humic substances. Environmental Science Research, 2017,30(11):1706-1714. (in Chinese)
[30] 徐明岗, 卢昌艾, 张文菊, 李玲, 段英华. 我国耕地质量状况与提升对策. 中国农业资源与区划, 2016,37(7):8-14.
XU M G, LU C A, ZHANG W J, LI L, DUAN Y H. The quality status of cultivated land in China and countermeasures for improvement. Chinese Agricultural Resources and Zoning, 2016,37(7):8-14. (in Chinese)
[31] 尹兴, 吉艳芝, 倪玉雪, 王探魁, 张丽娟. 河北省葡萄主产区土壤养分丰缺状况. 中国农业科学, 2013,46(10):2067-2075.
doi: 10.3864/j.issn.0578-1752.2013.10.012
YIN X, JI Y Z, NI Y X, WANG T K, ZHANG L J. Abundance of soil nutrients in main grape producing areas of Hebei Province. Scientia Agricultura Sinica, 2013,46(10):2067-2075. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.10.012
[32] 蒋鹏, 王锐, 纪立东, 孙权, 徐晓瑞, 李磊. 中微量元素在贺兰山东麓酿酒葡萄上的应用效果. 北方园艺, 2016(5):22-27.
JIANG P, WANG R, JI L D, SUN Q, XU X R, LI L. Application effect of medium and trace elements on wine grapes in Helan Mountain. Northern Gardening, 2016(5):22-27. (in Chinese)
[33] 马文娟, 同延安, 王真臻. 陕西省葡萄施肥现状评估. 安徽农业科学, 2014,42(3):716-719.
MA W J, TONG Y A, WANG Z Z. Evaluation of current status of grape fertilization in Shaanxi Province. Anhui Agricultural Sciences, 2014,42(3):716-719. (in Chinese)
[34] 李挺, 徐智, 汤利. 云南鲜食葡萄主产区土壤养分状况与施肥现状分析. 浙江农业科学, 2017,58(8):1350-1352.
LI T, XU Z, TANG L. Analysis of soil nutrient status and fertilization status in main grape production areas of Yunnan. Zhejiang Agricultural Science, 2017,58(8):1350-1352. (in Chinese)
[35] 史祥宾, 王孝娣, 王宝亮, 王志强, 冀晓昊, 王小龙, 刘凤之, 王海波. ‘巨峰’葡萄不同生育期植株矿质元素需求规律. 中国农业科学, 2019,52(15):2686-2694.
doi: 10.3864/j.issn.0578-1752.2019.15.012
SHI X B, WANG X D, WANG B L, WANG Z Q, JI X H, WANG X L, LIU F Z, WANG H B. Requirement characteristics of mineral elements in different developmental phases of Kyoho grapevine. Scientia Agricultura Sinica, 2019,52(15):2686-2694. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.15.012
[36] 杨俐苹. 葡萄园水肥一体化养分管理技术. 中外葡萄与葡萄酒, 2015(4):36-39.
YANG L P. Integration nutrient management technology of vineyard water and fertilizer. Sino-Overseas Grapevine & Wine, 2015(4):36-39. (in Chinese)
[37] 刘凤之. 中国葡萄栽培现状与发展趋势. 落叶果树, 2017,49(1):1-4.
LIU F Z. Status and development trend of viticulture in China. Deciduous Fruits, 2017,49(1):1-4. (in Chinese)
[38] 王宝亮, 王海波, 刘凤之, 刘绍成. 北方地区葡萄建园和幼树管理技术. 辽宁农业科学, 2008(6):50-53.
WANG B L, WANG H B, LIU F Z, LIU S C. Grape plantation and young tree management technology in northern China. Liaoning Agricultural Science, 2008(6):50-53. (in Chinese)
[39] 刘凤之. 我国东北区鲜食葡萄优质高效标准化栽培关键技术. “现代果业标准化示范区创建暨果树优质高效生产技术”交流会论文汇编. 中国园艺学会、中国园艺学会果树专业委员会: 中国园艺学会, 2014: 8-15.
LIU F Z. Key technologies for high quality and efficient standardized cultivation of fresh grapes in Northeast China//Compilation of the Papers on the Creation of a Modern Fruit Industry Standardization Demonstration Zone and Fruit Tree High-Quality and Efficient Production Technology. Chinese Horticulture Society, Chinese Horticulture Society Fruit Tree Professional Committee: Chinese Horticulture Society, 2014: 8-15. (in Chinese)
[2] 刘凤之. 中国葡萄栽培现状与发展趋势. 落叶果树, 2017,49(1):1-4.
LIU F Z. Current status and development trend of Chinese grape cultivation. Deciduous Fruits, 2017,49(1):1-4. (in Chinese)
[40] 李淑玲, 何尚仁, 杨建国, 王小芹. 葡萄营养与施肥. 北方园艺, 2000(3):19-20.
LI S L, HE S R, YANG J G, WANG X Q. Grape nutrition and fertilization. Northern Horticulture, 2000(3):19-20. (in Chinese)
[41] 周新斌, 石孝均, 孙彭寿, 李伟, 戴亨林, 彭良志, 淳长品. 三峡重庆库区柑橘园养分丰缺状况研究. 植物营养与肥料学报, 2010,16(4):817-823.
ZHOU X B, SHI X J, SUN P S, LI W, DAI H L, PENG L Z, CHUN C P. Status of soil fertility in citrus orchards of Chongqing Sanxia Reservoir Area. Plant Nutrition and Fertilizer Science, 2010,16(4):817-823. (in Chinese)
[42] 李东坡, 武志杰, 梁成华, 陈利军. 设施土壤生态环境特点与调控. 生态学杂志, 2004(5):192-197.
LI D P, WU Z J, LIANG C H, CHEN L J. Characteristics and regulation of greenhouse soil environment. Chinese Journal of Ecology, 2004(5):192-197. (in Chinese)
[43] 黄昌勇. 土壤学. 北京: 中国农业出版社, 2000.
HUANG C Y. Soil Science. Beijing: China Agricultural Press, 2000. (in Chinese)
[44] 陈云霞, 常晓冰, 赵复泉, 陈美红. 太原市葡萄园土壤养分现状与合理施肥. 山西农业科学, 2006(2):57-59.
CHEN Y X, CHANG X B, ZHAO F Q, CHEN M H. Present soil nutrition situation and rational fertilization in grape garden in Taiyuan. Journal of Shanxi Agricultural Sciences, 2006(2):57-59. (in Chinese)
[45] 刘爱华, 岳朝阳, 孔婷婷, 焦淑萍, 张静文, 张新平, 杨健. 新疆阿图什市木纳格葡萄土壤养分现状分析. 中国农学通报, 2015,31(21):199-202.
LIU A H, YUE C Y, KONG T T, JIAO S P, ZHANG J W, ZHANG X P, YANG J. Analysis of soil nutrient status of Munake vineyards in Atux city of Xingjiang. Chinese Agricultural Science Bulletin, 2015,31(21):199-202. (in Chinese)
[46] 孔婷婷, 岳朝阳, 焦淑萍, 张新平, 刘爱华, 杨健. 新疆吐鲁番地区葡萄根区土壤养分分析. 北方园艺, 2015(9):151-154.
KONG T T, YUE C Y, JIAO S P, ZHANG X P, LIU A H, YANG J. Analysis of soil nutrients in grape root zone of Turpan, Xinjiang. Northern Horticulture, 2015(9):151-154. (in Chinese)
[47] SHI W M, JING Y, FENG Y. Vegetable cultivation under greenhouse conditions leads to rapid accumulations leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutrient Cycling in Agroecosystems, 2009,83(1):73-84.
[3] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
National Soil Survey Office. Chinese Soil Beijing: China Agriculture Press, 1998. (in Chinese)
[4] YAO Z Y, WANG Z, LI J, LAURENT B, ZHANG S Q, LI Y Y, CAO W D, ZHAI B N, WANG Z H, GAO Y J. Screen for sustainable cropping systems in the rain-fed area on the Loess Plateau of China. Soil & Tillage Research, 2018,176:26-35.
[5] JIANG G Y, XU M G, HE X H, ZHANG W J, HUANG S M, YANG X Y, LIU H, PENG C, YASUHITO S, TOSHICHIKA L, WANG J Z, DANIEL V M. Soil organic carbon sequestration in upland soils of northern China under variable fertilzer management and climate change scenarios. Global Biogeochemical Cycles, 2014,28(3):319-333.
[6] 徐倩, 宋佳, 田汇, 张洋, 胥婷婷, 张荣, 左亚杰, 马爱生, 姚致远, 高亚军. 青海省春油菜区土壤养分状况及施肥策略. 植物营养与肥料学报, 2019,25(1):157-166.
XU Q, SONG J, TIAN H, ZHANG Y, XU T T, ZHANG R, ZUO Y J, MA A S, YAO Z Y, GAO Y J. Soil nutrient status and fertilization strategy in spring rapeseed area of Qinghai Province. Journal of Plant Nutrition and Fertilizer, 2019,25(1):157-166. (in Chinese)
[7] 贺普超. 葡萄学. 北京: 中国农业出版社, 2001.
HE P C. Grape Science. Beijing: China Agricultural Press, Beijing: China Agricultural Press, 2001. (in Chinese)
[8] 尹兴. 河北葡萄主产区土壤养分特征及有机肥量化研究[D]. 保定: 河北农业大学, 2014.
YIN X. Soil nutrient characteristics and organic fertilizer quantitative study in main grape producing areas of Hebei Province[D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)
[9] 杨珍. 陕西省葡萄主产区土壤养分状况分析[D]. 杨凌: 西北农林科技大学, 2016.
YANG Z. Analysis of soil nutrient status in main grape production areas of Shaanxi Province[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[10] 侍朋宝, 陈海菊, 张振文. 山地酿酒葡萄园土壤理化性质分析. 土壤, 2009,41(3):495-499.
SHI P B, CHEN H J, ZHANG Z W. Analysis of soil physical and chemical properties of mountain wine vineyards. Soils, 2009,41(3):495-499. (in Chinese)
[11] 于费. 山西省曲沃县里村镇葡萄园土壤养分状况分析. 园艺与种苗, 2015(5):39-40, 60.
YU F. Analysis on soil nutrients of vineyard in Quwo of Shanxi Province. Horticulture & Seed, 2015(5):39-40, 60. (in Chinese)
[12] 王则玉, 马雪琴, 蒲胜海, 张继峰, 李俊玲, 朱聚新. 吐鲁番市葡萄果园土壤养分分析分布特征. 新疆农业科学, 2014,51(3):492-496.
WANG Z Y, MA X Q, PU S H, ZHANG J F, LI J L, ZHU J X. Soil nutrient distribution characteristics in Turpan Area, Xinjiang. Xinjiang Agricultural Sciences, 2014,51(3):492-496. (in Chinese)
[13] 刘春燕, 周龙, 罗洁, 吴晨光, 刘永强, 方海龙. 吐鲁番葡萄黄化园土壤养分与地上部的相关性. 新疆农业科学, 2017,54(10):1920-1929.
LIU C Y, ZHOU L, LUO J, WU C G, LIU Y Q, FANG H L. Study on the correlation between soil nutrients and above-ground parts in grape yellow orchard of Turpan. Xinjiang Agricultural Sciences, 2017,54(10):1920-1929. (in Chinese)
[14] 王玉倩, 张文娥, 潘学军. 贵州山地葡萄园土壤和树体养分状况及其评价. 西北林学院学报, 2019,34(1):144-149.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[5] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[6] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[7] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[8] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[9] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[10] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[11] ZHANG WeiLi,ZHANG RenLian,JI HongJie,KOLBE H,CHEN YinJun. A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution [J]. Scientia Agricultura Sinica, 2020, 53(5): 965-976.
[12] YANG JunHao,LUO YongLi,CHEN Jin,JIN Min,WANG ZhenLin,LI Yong. Effects of Main Food Yield Under Straw Return in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4415-4429.
[13] ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
[14] XIN XiaoPing,DING Lei,CHENG Wei,ZHU XiaoYu,CHEN BaoRui,LIU ZhongLing,HE GuangLi,QING GeLe,YANG GuiXia,TANG HuaJun. Biomass Carbon Storage and Its Effect Factors in Steppe and Agro-Pastoral Ecotones in Northern China [J]. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768.
[15] LI DongChu,HUANG Jing,MA ChangBao,XUE YanDong,GAO JuSheng,WANG BoRen,ZHANG YangZhu,LIU KaiLou,HAN TianFu,ZHANG HuiMin. Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!