Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3120-3133.doi: 10.3864/j.issn.0578-1752.2020.15.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China

ZHAO QingYue1(),XU ShiJie1,ZHANG WuShuai2,ZHANG Zhe1,YAO Zhi2,CHEN XinPing2,ZOU ChunQin1()   

  1. 1College of Resources and Environmental Sciences, China Agricultural University/National Academy of Agriculture Green Development/Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193
    2College of Resources and Environment, Southwest University, Chongqing 400715
  • Received:2019-09-18 Accepted:2020-02-13 Online:2020-08-01 Published:2020-08-06
  • Contact: ChunQin ZOU E-mail:946910453@qq.com;zcq0206@cau.edu.cn

Abstract:

【Objective】 The objective of this study was to analyze the current status, regional spatial variation and its influencing factors of soil fertility in the major regions of maize production in China, so as to provide the guidance for soil nutrient management and fertilization strategy. 【Method】 Large-scale soil sample collection and farmer surveys were carried out throughout the major regions of maize production during the harvest season of maize in 2017. By using geostatistics and geographical information systems (GIS) methods, the regional variability and distribution patterns of soil fertilities were determined and mapped. According to relevant grading standards, the current status of soil fertilities in major regions of maize production was evaluated. Correlation analysis and variance analysis were used to assess the effects of major factors (soil texture, climate and fertilization) on soil fertility status.【Result】 The median values of soil pH, organic matter, total nitrogen (N), Olsen phosphorus (Olsen-P), and NH4OAc extractable potassium (available K) in the major regions of maize production were 6.9, 21.0 g·kg-1, 1.5 g·kg-1, 22.4 mg·kg-1, and 164.5 mg·kg-1, respectively, and their coefficient of variation were 12.7%, 48.5%, 50.0%, 83.6% and 52.0%, respectively, which all belonged to moderate variation. The concentrations of soil organic matter, total N, Olsen-P, and available K were mainly varied at middle to extremely high level, which occupied 93.5% area of the whole production regions. Significant regional variation was observed for soil fertilities. The concentrations of soil organic matter, total N and Olsen-P were the highest in the Northeast region (with median of 32.0 g·kg-1, 2.2 g·kg-1, 32.3 mg·kg-1, respectively) and the lowest in the Northwest region (with median of 17.2 g·kg-1, 1.2 g·kg-1, 16.2 mg·kg-1, respectively). The concentration of soil available K was the lowest in the Southwest region but showed no significant difference in the other regions. On the national scale, soil pH had strong spatial dependence (nugget to sill ratio <25%) and its spatial variation was likely caused by natural factors (soil texture and precipitation). Soil Olsen-P had weak spatial dependence (nugget to sill ratio >75%) and its spatial variation was probably affected by anthropic activities (fertilization). Soil organic matter, total N and available K had moderate spatial dependence (nugget to sill ratio 25%-75%), which likely was due to the combined effect of natural factors and anthropic activities. 【Conclusion】 Due to high soil fertility, the fertilization rate should be reduced to save fertilizer cost in the maize production of Northeast region. For North China Plain with moderate soil fertility, the amount of nitrogen and phosphorus fertilizer should be strictly controlled to improve fertilizer use efficiency and to reduce environmental pollution. For Northwest region with inadequate soil fertility, the fertilizer input should be appropriately increased to further improve maize yield. The soil fertility in the Southwest region varies greatly. Appropriate fertilization management should be adopted in each subregion to improve soil nutrient preserving capability and maize yield.

Key words: major regions of maize production, soil fertilities, spatial variability, influencing factors, GIS, China

Fig. 1

The distribution of sampling sites based on the regionalization of maize production in China"

Table 1

Overall statistical characteristic of measured soil fertilities in the major regions of maize production in China"

土壤养分
Soil fertility
样品数
Sample size
分布类型
Distribution
types
中值
Median
5%—95%置信区间
5%-95% confidence interval
均值
Mean
标准差
Standard derivation
变异系数
Variance coefficient (%)
偏度
Skewness
峰度
Kurtosis
pH 980 对数正态 Lognormal 6.9 5.1—7.9 6.8 0.9 12.7 -0.70 -0.11
有机质
Organic matter (g·kg-1)
980 对数正态 Lognormal 21.0 10.7—48.6 23.9 11.6 48.5 1.62 3.26
全氮
Total N (g·kg-1)
980 对数正态 Lognormal 1.5 0.7—3.5 1.7 0.9 50.0 1.48 2.70
有效磷
Olsen-P (mg·kg-1)
980 偏态 Skewed 22.4 4.6—84.2 30.5 25.5 83.6 1.66 2.90
速效钾
Available K (mg·kg-1)
980 偏态 Skewed 164.5 66.0—358.9 183.8 95.5 52.0 1.55 5.59

Table 2

Soil fertilities in the major regions of maize production in China"

区域
Region
样本量
Sample size
pH 有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
有效磷
Olsen-P (mg·kg-1)
速效钾
Available K (mg·kg-1)
中值
Median
5%—95%置信区间
5%-95% confidence interval
中值
Median
5%—95%
置信区间
5%-95% confidence interval
中值
Median
5%—95%
置信区间
5%-95% confidence interval
中值
Median
5%—95%
置信区间
5%-95% confidence interval
中值
Median
5%—95%
置信区间
5%-95% confidence interval
I-1 82 6.5 5.4—7.4 44.6 22.0—71.2 3.1 1.2—5.1 28.2 8.2—80.2 208.7 87.7—357.9
I-2 90 6.0 4.6—7.0 32.2 16.6—43.3 2.3 1.0—3.5 42.5 8.4—93.2 195.1 80.5—436.0
I-3 25 6.8 5.8—7.3 25.6 13.7—42.8 1.5 1.0—2.9 26.4 3.8—62.0 154.2 95.0—329.6
I-4 59 6.5 4.8—7.5 17.0 11.5—33.6 1.3 0.8—2.6 25.4 5.6—134.9 119.3 60.4—414.4
东北区 I
The region of the Northeast China I
256 6.4 5.0—7.3 32.0 13.0—58.0 2.2 0.9—4.5 32.3 7.2—95.8 175.6 74.2—377.7
II-1 265 7.3 5.5—8.0 20.4 12.8—28.4 1.5 0.8—2.2 24.4 5.5—92.7 183.1 80.6—346.6
II-2 55 6.8 5.1—7.3 20.3 11.2—27.4 1.4 0.7—2.1 20.7 5.2—70.7 154.0 52.2—324.7
华北区II
The region of the North China Plain II
320 7.2 5.4—7.9 20.3 12.7—28.3 1.4 0.8—2.2 23.6 5.3—86.8 176.2 72.6—345.4
III-1 92 7.6 6.6—8.0 17.4 10.7—32.0 1.3 0.7—2.3 15.2 4.0—46.5 171.6 103.3—316.3
III-2 110 7.5 6.9—8.1 17.0 6.6—34.6 1.2 0.5—2.6 18.1 4.2—64.6 138.2 44.8—323.2
III-3 20 7.2 6.6—7.5 17.4 10.2—40.4 1.2 0.6—3.0 8.6 1.9—55.2 385.6 201.8—832.5
西北区III
The region of the Northwest China III
222 7.5 6.8—8.0 17.2 8.1—33.2 1.2 0.6—2.4 16.2 4.2—61.0 162.5 63.0—398.1
IV-1 33 6.6 5.1—7.0 13.6 7.5—27.4 1.1 0.5—2.0 9.3 0.5—54.5 132.9 54.2—313.9
IV-2 92 6.4 4.5—7.4 21.8 11.8—42.7 1.6 0.8—3.4 18.2 1.7—93.6 138.8 46.8—334.0
IV-3 57 6.4 4.6—7.7 31.6 13.4—72.7 2.3 0.9—4.6 28.5 3.3—96.8 162.0 63.2—377.0
西南区IV
The region of the Southwest China IV
182 6.4 4.6—7.4 22.4 10.5—53.6 1.6 0.7—3.8 18.3 1.9—94.5 141.8 49.2—340.4

Table 3

Correlations among soil fertilities in the major regions of maize production in China"

pH 有机质 Organic matter 全氮 Total N 有效磷 Olsen-P 速效钾 Available K
pH 1
有机质 Organic matter -0.284** 1
全氮 Total N -0.256** 0.927** 1
有效磷 Olsen-P -0.287** 0.220** 0.200** 1
速效钾Available K 0.122** 0.237** 0.234** 0.228** 1

Table 4

Geospatial feature values of soil fertilities in the major regions of maize production in China"

土壤养分
Soil fertility
理论模型
Theory model
块金值
Nugget
基台值
Sill
块基比
Nugget/Sill (%)
变程
Range (km)
决定系数
R2
残差
RSS
pH 指数 Exponential 0.00101 0.00426 23.7 2319 0.593 5.708E-06
有机质 Organic matter 高斯 Gaussian 0.0204 0.0626 32.6 4108 0.904 3.253E-04
全氮 Total N 高斯 Gaussian 0.026 0.0657 39.6 4117 0.909 2.708E-04
有效磷 Olsen-P 线性 Linear 0.0814 0.108 75.4 4252 0.778 7.680E-04
速效钾 Available K 线性 Linear 0.0687 0.0944 72.8 4252 0.449 1.072E-03

Fig. 2

The spatial distribution maps of soil fertilities in the major regions of maize production in China"

Table 5

The classification of soil fertilities in the major regions of maize production in China"

土壤养分 Soil fertility 项目 Item 极高 Extremely high 高 High 中 Middle 低 Low
有机质 Organic matter 分级标准 Grading standard (g·kg-1) ≥40 20—40 10—20 <10
百分比 Area percentage (%) 2.84 40.90 56.26 0.00
全氮Total N 分级标准 Grading standard (g·kg-1) ≥2 1—2 0.75—1 <0.75
百分比 Area percentage (%) 13.83 81.96 4.21 0.00
有效磷Olsen-P 分级标准 Grading standard (mg·kg-1) ≥40 25—40 10—25 <10
百分比 Area percentage (%) 7.21 19.30 67.02 6.47
速效钾Available K 分级标准 Grading standard (mg·kg-1) ≥150 120—150 90—120 <90
百分比 Area percentage (%) 67.90 19.32 11.49 1.29

Table 6

The correlation of soil fertilities with meteorological factors in different regions"

区域
Region
影响因素
Factor
pH 有机质
Organic matter
全氮
Total N
有效磷
Olsen-P
速效钾
Available K
东北区I The region of the Northeast China I 平均气温 Average temperature -0.006 -0.775** -0.742** 0.098 -0.291
年降水量 Total precipitation -0.439** -0.123 -0.112 0.437** -0.170
年蒸发量 Total evaporation -0.017 -0.754** -0.721** 0.098 -0.309*
华北区II The region of the North China Plain II 平均气温 Average temperature 0.043 0.071 -0.061 -0.172 -0.043
年降水量 Total precipitation -0.397** -0.145 -0.179 0.069 -0.181
年蒸发量 Total evaporation -0.177 -0.318* -0.256* 0.116 0.157
西北区III The region of the Northwest China III 平均气温 Average temperature 0.103 0.298 0.276 0.000 -0.176
年降水量 Total precipitation -0.107 -0.245 -0.250 -0.009 -0.171
年蒸发量 Total evaporation 0.171 0.004 -0.028 0.148 -0.107
西南区IV The region of the Southwest China IV 平均气温 Average temperature -0.223 -0.241 -0.197 0.225 -0.322
年降水量 Total precipitation -0.350* 0.015 0.008 0.164 -0.596**
年蒸发量 Total evaporation -0.219 0.341* 0.348* 0.550** 0.014

Table 7

N, P and K application rates in major maize production areas of China"

区域
Region
养分投入量 Fertilizer rate (kg·hm-2)
氮 N 磷 P2O5 钾 K2O
东北区I The region of the Northeast China I 239.0±90.0 106.1±57.8 95.2±54.9
I-1 227.8±94.6 88.5±50.9 72.6±49.9
I-2 247.8±66.6 117.8±44.5 109±38.0
I-3 212.9±71.8 88.9±52.4 85.8±60.7
I-4 248.3±120.4 113.5±78.6 100.3±71.8
华北区II The region of the North China Plain II 224.7±89.9 71.6±45.6 66.7±39.8
II-1 216.4±87.3 70.6±45.3 64.9±39.0
II-2 294.4±81.4 79.9±47.5 81.7±44.1
西北区III The region of the Northwest China III 330.1±132.9 158.4±90.9 79.3±69.5
III-1 306.0±108.8 132.1±88.1 77.6±59.2
III-2 335.7±132.7 166.5±90.7 69.0±66.0
III-3 384.7±178.1 210.0±71.5 122.7±92.6
西南区IV The region of the Southwest China IV 308.6±133.9 97.4±59.8 94.4±60.0
IV-1 327.7±155.3 91.8±71.3 82.1±63.9
IV-2 276.5±126.8 100.8±55.9 106.9±53.5
IV-3 341.5±111.4 97.3±54.2 86.2±62.7
全国 China 270.9±120.0 106.8±72.4 82.7±57.3

Fig. 3

Soil fertilities as related to soil textures"

Table 8

The correlation of soil fertilities with fertilizer rates"

土壤养分
Soil fertilities
施氮量
N rate
施磷量
P2O5 rate
施钾量
K2O rate
pH 0.066 -0.013 -0.248**
有机质 Organic matter -0.129** -0.101** -0.022
全氮 Total N -0.132** -0.099** -0.032
有效磷 Olsen-P -0.011 0.078* 0.172**
速效钾 Available K -0.067 0.005 -0.002
[1] 董树亭, 张吉旺. 建立玉米产业技术体系, 加快玉米生产发展. 玉米科学, 2008,16(4):18-20, 25.
DONG S T, ZHANG J W. The establishment of maize modern industrial technology system, accelerate the development of maize production. Maize Science, 2008,16(4):18-20, 25. (in Chinese)
[2] 中国农业年鉴编委会. 中国农业年鉴. 北京: 中国农业出版社, 2018.
China Agricultural Yearbook Editorial Board. China Agriculture Yearbook. Beijing: China Agriculture Press, 2018. (in Chinese)
[3] 王激清. 我国主要粮食作物施肥增产效应和养分利用效率的分析与评价[D]. 北京: 中国农业大学, 2007.
WANG J Q. Analysis and evaluation of yield increase of fertilization and nutrient utilization efficiency for major cereal crops in China[D]. Beijing: China Agricultural University, 2007. (in Chinese)
[4] 崔贝, 王纪华, 杨武德, 陈立平, 黄文江, 郭建华, 宋晓宇, 冯美臣. 冬小麦-夏玉米轮作区土壤养分时空变化特征. 中国农业科学, 2013,46(12):2471-2482.
doi: 10.3864/j.issn.0578-1752.2013.12.008
CUI B, WANG J H, YANG W D, CHEN L P, HUANG W J, GUO J H, SONG X Y, FENG M C. Analysis of temporal and spatial variation of soil nutrients in the winter wheat-summer maize rotation field. Scientia Agricultura Sinica, 2013,46(12):2471-2482. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.12.008
[5] 张春华, 王宗明, 任春颖, 张柏, 宋开山, 刘殿伟. 松嫩平原玉米带土壤有机质和全氮的时空变异特征. 地理研究, 2011,30(2):256-268.
ZHANG C H, WANG Z M, REN C Y, ZHANG B, SONG K S, LIU D W. Temporal and spatial variations of soil organic and total nitrogen in the Songnen Plain maize belt. Geographical Research, 2011,30(2):256-268. (in Chinese)
[6] 徐新朋, 赵士诚, 张云贵, 何萍, 高强. 吉林省玉米种植区土壤养分空间变异特征研究. 植物营养与肥料学报, 2011,17(6):1342-1350.
doi: 10.11674/zwyf.2011.1044
XU X P, ZHAO S C, ZHANG Y G, HE P, GAO Q. Spatial variations of soil nutrients in maize production areas of Jilin province. Plant Nutrition and Fertilizer Science, 2011,17(6):1342-1350. (in Chinese)
doi: 10.11674/zwyf.2011.1044
[7] 王璐, 翟义欣, 王菲. 地理信息系统(GIS)的发展及在农业领域的应用现状与展望. 农业环境科学学报, 2005,24(增刊):362-366.
WANG L, ZHAI Y X, WANG F. Development of theory and application in agriculture of GIS. Journal of Agro-Environment Science, 2005,24(Suppl.):362-366. (in Chinese)
[8] ZHU H, CHEN X, ZHANG Y. Temporal and spatial variability of nitrogen in rice-wheat rotation in field scale. Environmental Earth Sciences, 2013,68(2):585-590.
doi: 10.1007/s12665-012-1762-4
[9] 张玲娥, 双文元, 云安萍, 牛灵安, 胡克林. 30年间河北省曲周县土壤速效钾的时空变异特征及其影响因素. 中国农业科学, 2014,47(5):923-933.
doi: 10.3864/j.issn.0578-1752.2014.05.009
ZHANG L E, SHUANG W Y, YUN A P, NIU L A, HU K L. Spatio-temporal variability and the influencing factors of soil available potassium in 30 years in Quzhou County, Hebei Province. Scientia Agricultura Sinica, 2014,47(5):923-933. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.05.009
[10] ROGER A, LIBOHOVA Z, ROSSIER N, JOOST S, MALTAS A, FROSSARD E, SINAJ S. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma, 2014, 217/218:26-36.
doi: 10.1016/j.geoderma.2013.11.001
[11] 陈浮, 濮励杰, 曹慧, 彭补拙, 杨桂山, 周生路. 近20年太湖流域典型区土壤养分时空变化及驱动机理. 土壤学报, 2002,39(2):236-245.
CHEN F, PU L J, CAO H, PENG B Z, YANG C S, ZHOU S L. Spatial and temporal changes of soil nutrients and their mechanism in typical area of Taihu Lake valley during the past two decades. Acta Pedologica Sinaica, 2002, 39(2):236-245. (in Chinese)
[12] 王淑英, 路苹, 王建立, 杨柳, 杨凯, 于同泉. 不同研究尺度下土壤有机质和全氮的空间变异特征. 生态学报, 2007,28(10):4957-4964.
WANG S Y, LU P, WANG J L, YANG L, YANG K, YU T Q. Spatial variability and distribution of soil organic matter and total nitrogen at different scales: A case study in Pinggu County, Beijing. Acta Ecological Sinica, 2007,28(10):4957-4964. (in Chinese)
[13] 潘瑜春, 刘巧芹, 阎波杰, 陆洲, 周艳兵. 采样尺度对土壤养分空间变异分析的影响. 土壤通报, 2010,41(2):257-262.
PAN Y C, LIU Q Q, YAN B J, LU Z, ZHOU Y B. Effects of sampling scale on soil nutrition spatial variability analysis. Chinese Journal of Soil Science, 2010, 41(2):257-262. (in Chinese)
[14] 吴良泉, 武良, 崔振岭, 陈新平, 张福锁. 中国玉米区域氮磷钾肥推荐用量及肥料配方研究. 土壤学报, 2015,52(4):802-817.
WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China. Acta Pedologica Sinaica, 2015, 52(4):802-817. (in Chinese)
[15] 何迅, 巩细民. 土壤样品的采集与制备技术. 湖北农业科学, 2003(3):47-48.
HE X, GONG X M. Techniques for the collection and preparation of soil samples. Hubei Agricultural Science, 2003(3):47-48. (in Chinese)
[16] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业科技出版社, 2007.
BAO S D. Soil and Agrochemical Analysis. 3rd ed. Beijing: China Agriculture Press, 2007. (in Chinese)
[17] 中国气象科学数据共享服务网. http://data.cma.cn.
China Meteorological Data Sharing Service System. http://data.cma.cn.
[18] 全国土壤普查办公室. 中国土壤普查技术. 北京: 农业出版社, 1992.
National General Soil Survey Office. Technology of Nationwide General Soil Survey in China. Beijing: Agriculture Press, 1992. (in Chinese)
[19] 张福锁, 陈新平, 陈清. 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009.
ZHANG F S, CHEN X P, CHEN Q. China's Main Crop Fertilization Guidelines. Beijing: China Agricultural University Press, 2009. (in Chinese)
[20] 刘璐, 曾馥平, 宋同清, 彭晚霞, 王克林, 覃文更, 谭卫宁. 喀斯特木论自然保护区旱季土壤水分的空间异质性. 应用生态学报, 2010,21(7):1667-1673.
LIU L, ZENG F P, SONG T Q, PENG W X, WANG K L, QIN W G, TAN W N. Spatial heterogeneity of soil nutrients in Karst area's Mulun National Nature Reserve. Chinese Journal of Applied Ecology, 2010,21(7):1667-1673. (in Chinese)
[21] 王绍强, 朱松丽, 周成虎. 中国土壤土层厚度的空间变异性特征. 地理研究, 2001,20(2):161-169.
WANG S Q, ZHU S L, ZHOU C H. Characteristics of spatial variability of soil thickness in China. Geographical Research, 2001,20(2):161-169. (in Chinese)
[22] 郭安廷, 崔锦霞, 许鑫, 马新明. 基于GIS与地统计的土壤养分空间变异研究. 中国农学通报, 2018,34(23):78-85.
GUO A T, CUI J X, XU X, MA X M. Spatial distribution of soil nutrients based on GIS and geostatistics. Chinese Agricultural Science Bulletin, 2018,34(23):78-85. (in Chinese)
[23] 张敏, 贺鹏飞, 陈伟强. 基于GIS和地统计学的土壤养分空间变异分析. 东北农业大学学报, 2010,41(3):53-58.
ZHANG M, HE P F, CHEN W Q. Spatio-temporal variability analysis of soil nutrients based on GIS and geostatistics. Journal of Northeast Agricultural University, 2010,41(3):53-58. (in Chinese)
[24] 杨忠华, 刘方, 赵泽英, 冯廷玺. 基于GIS和地统计学的农田土壤养分空间变异性研究. 贵州农业科学, 2009,37(9):120-124.
YANG Z H, LIU F, ZHAO Z Y, FENG T X. Spatial variability of farmland soil nutrients based on GIS and geo-statistics. Guizhou Agricultural Sciences, 2009,37(9):120-124. (in Chinese)
[25] WEINDOR D C, ZHU Y. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 2010,20(2):185-197.
doi: 10.1016/S1002-0160(10)60006-9
[26] 安永龙, 杜子图, 黄勇. 基于地统计学和GIS技术的北京市大兴区礼贤镇土壤养分空间变异性研究. 现代地质, 2018,32(6):206-216.
AN Y L, DU Z T, HUANG Y. Spatial variation analysis of soil nutrients in Lixian town of Daxing district in Beijing based on geostatistics and GIS. Geoscience, 2018,32(6):206-216. (in Chinese)
[27] 石媛媛, 邓明军, 林北森, 高华军, 刘春萍, 姚文艺. 基于GIS和地统计学的百色植烟土壤养分空间分析. 南方农业学报, 2014,45(8):1403-1409.
SHI Y Y, DENG M J, LIN B S, GAO H J, LIU C P, YAO W Y. Spatial analysis of tobacco soil nutrients in Baise based on GIS and geostatistics. Journal of Southern Agriculture, 2014, 45(8):1403-1409. (in Chinese)
[28] 吕贻忠. 土壤学. 北京: 中国农业出版社, 2006.
LÜ Y Z. Soil Science. Beijing: China Agricultural Press, 2006. (in Chinese)
[29] SUN B, ZHOU S L, ZHAO Q G. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 2003,115(1/2):85-99.
doi: 10.1016/S0016-7061(03)00078-8
[30] 杨文治, 邵明安. 黄土高原土壤水分研究. 北京: 科学出版社, 2000.
YANG W Z, SHAO M A. Research of Soil Water on Loess Plateau. Beijing: Science Press, 2000. (in Chinese)
[31] 康日峰, 任意, 吴会军, 张淑香. 26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016,49(11):2113-2125.
doi: 10.3864/j.issn.0578-1752.2016.11.008
KANG R F, REN Y, WU H J, ZHANG S X. Changes in the nutrients and fertility of black soil over 26 years in northeast China. Scientia Agricultura Sinica, 2016, 49(11):2113-2125. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.11.008
[32] 杨帆, 徐洋, 崔勇, 孟远夺, 董燕, 李荣, 马义兵. 近30年中国农田耕层土壤有机质含量变化. 土壤学报, 2017,54(5):1047-1056.
YANG F, XU Y, CUI Y, MENG Y D, DONG Y, LI R, MA Y B. Variation of soil organic matter content in croplands of China over the last three decades. Acta Pedologica Sinica, 2017,54(5):1047-1056. (in Chinese)
[33] 胡克林, 余艳, 张凤荣, 王茹. 北京郊区土壤有机质含量的时空变异及其影响因素. 中国农业科学, 2006,39(4):764-771.
HU K L, YU Y, ZHANG F R, WANG R. The spatial-temporal variability of soil organic matter and its influencing factors in suburban area of Beijing. Scientia Agricultura Sinica, 2006,39(4):764-771. (in Chinese)
[34] KARHU K, FRITZE H, TUOMI M, VANHALA P, SPETZ P, KITUNEN V, LIISKI J. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology & Biochemistry, 2010, 42(1):72-82.
[35] 邸欣月, 安显金, 董慧, 汤海明, 肖保华. 贵州喀斯特区域土壤有机质的分布与演化特征. 地球与环境, 2015,43(6):697-708.
DI X Y, AN X J, DONG H, TANG H M, XIAO B H. The distribution and evolution of soil organic matter in the Karst region, Guizhou province, southwestern China. Earth and Environment, 2015,43(6):697-708. (in Chinese)
[36] 韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta 分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019,52(11):1918-1929.
HAN T F, MA C B, HUANG J, LIU K L, XUE Y D, LI D C, LIU L S, ZHANG L, LIU S J, ZHANG H M. Variation in rice yield response to fertilization in China: Meta-analysis. Scientia Agricultura Sinica, 2019,52(11):1918-1929. (in Chinese)
[37] LIU Z P, SHAO M A, WANG Y Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma, 2013, 197/198:67-78.
[38] CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, Yue S C, ROMHELD V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the USA, 2011,108(16):6399-6404.
doi: 10.1073/pnas.1101419108 pmid: 21444818
[39] 张芳芳, 张丽萍, 王文艳, 王小云. 水蚀风蚀交错区土壤养分特征与土壤质地及水分关系. 水土保持学报, 2012,26(2):99-104.
ZHANG F F, ZHANG L P, WANG W Y, WANG X Y. Relationship between characteristic of soil nutrients and soil texture and moisture in wind-water erosion crisscross region. Journal of Soil and Water Conservation, 2012,26(2):99-104. (in Chinese)
[40] 张世熔, 黄元仿, 李保国, 张凤荣, 高峻. 黄淮海冲积平原区土壤速效磷、钾的时空变异特征. 植物营养与肥料学报, 2003,9(1):3-8.
ZHANG S R, HUANG Y F, LI B G, ZHANG F R, GAO J. Temporal-spatial variability of soil available phosphorus and potassium in the alluvial region of the Huang-Huai-Hai Plain. Plant Nutrition and Fertilizer Science, 2003,9(1):3-8. (in Chinese)
[41] 王涛, 杨元和, 马文红. 中国土壤磷库的大小、分布及其影响因素. 北京大学学报: 自然科学版, 2008 44(6):945-952.
WANG T, YANG Y H, MA H W. Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008,44(6):945-952. (in Chinese)
[42] ZHANG W, LIU D Y, LIU Y M, CUI Z L, CHEN X P, ZOU C Q. Zinc uptake and accumulation in winter wheat relative to changes in root morphology and mycorrhizal colonization following varying phosphorus application on calcareous soil. Field Crops Research, 2016, 197:74-82.
doi: 10.1016/j.fcr.2016.08.010
[43] 赵宇光, 梁成华, 杜立宇, 陈新之. 长期定位施肥设施土壤微团聚体磷素吸附解吸特征性探讨. 北方园艺, 2009(5):1-4.
ZHAO Y G, LIANG C H, DU L Y, CHEN X Z. Adsorption-desorption of phosphorus on micro-aggregates of greenhouse soil of long-term fertilization. Northern Horticulture, 2009(5):1-4. (in Chinese)
[44] LI H, HUANG G, MENG Q, MA L, YUAN L, WANG F, ZHANG W, CUI Z, SHEN J, CHEN X, JIANG R, ZHANG F. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 2011, 349(1/2):157-167.
[45] 孙维侠, 黄标, 杨荣清, 朱静, 邹忠, 丁峰, 苏建平, 金洋, 毕葵森. 长江三角洲典型地区农田土壤速效钾时空演变特征及其驱动力. 南京大学学报(自然科学版), 2005,41(6):648-657.
SUN W X, HUANG B, YANG R Q, ZHU J, ZOU Z, DING F, SU J P, JIN Y, BI K S. Spatio-temporal variability of exchangeable potassium in agricultural soils and its driving factors in a typical area of Yangtze River delta region. Journal of Nanjing University (Natural Sciences), 2005,41(6):648-657. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[4] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[5] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[6] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[7] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] CHEN Yang,WANG Lei,BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe. Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels [J]. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777.
[10] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[11] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[12] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[13] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[14] FangJie LI,JianQiang REN,ShangRong WU,ZhongXin CHEN,NingDan ZHANG. Spatio-Temporal Variations of Winter Wheat Planting Frequency and Their Analysis of Influencing Factors in Henan Province [J]. Scientia Agricultura Sinica, 2020, 53(9): 1773-1794.
[15] ZHANG WeiLi,ZHANG RenLian,JI HongJie,KOLBE H,CHEN YinJun. A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution [J]. Scientia Agricultura Sinica, 2020, 53(5): 965-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!