Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (12): 2410-2422.doi: 10.3864/j.issn.0578-1752.2020.12.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China

LI DongChu1,2,HUANG Jing2,MA ChangBao3,XUE YanDong3,GAO JuSheng2,WANG BoRen2,ZHANG YangZhu1(),LIU KaiLou2,4,HAN TianFu2,ZHANG HuiMin2()   

  1. 1 College of Resources and Environment, Hunan Agricultural University, Changsha 410128;
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081;
    3 Center of Arable Land Quality Monitoring and Protection, Ministry of Agriculture and Rural Affairs, Beijing 100125;
    4 Jiangxi Institute of Red Soil/National Engineering and Technology Research Center for Red Soil Improvement, Jinxian 331717, Jiangxi
  • Received:2019-08-26 Online:2020-06-16 Published:2020-06-25
  • Contact: YangZhu ZHANG,HuiMin ZHANG E-mail:zhangyangzhu2006@163.com;zhanghuiming@caas.cn

Abstract:

【Objective】 Spatio-temporal variation characteristics of soil organic matter (SOM) in paddy fields were evaluated in China, which would provide support for the improving the quality of cultivated land, adjustment of planting structure and climate change. 【Method】 The characteristics of SOM change and its driving factors were analyzed based on 338 national long-term monitoring sites, which were carried out in different rice planting regions from 1988 to 2017. The effects of SOM on soil bulk density were also studied. 【Result】 The SOM content of the paddy field in China increased by 3.49 g·kg-1 in averaged in the past 30 years, which was increased at the rate of 0.09-0.12 g·kg-1 annually. The average increased rate of SOM content ranked from high to low were Middle of Yangtze River region (MYR), South of China (SC), Northeast of China (NE), Southwest of China (SW) and Lower of Yangtze River (LYR). The average SOM content of the paddy field was 32.4 g·kg-1 in China at present, which was highest in MYR, followed by SC, NE, SW and LYR. The SOM content were responded by climate, soil types, nitrogen (N) fertilizer input, and cropping system. There was a significantly negative correlation relationship between SOM content and annual mean temperature in SW region and high latitude regions (P<0.05), and it was a positive correlation relationship in East region and low latitudes region (P<0.05). The average SOM content in gleyic paddy soil was significantly higher than that in other types of paddy soil. N fertilizer input at 200-300 kg N·hm-2·a-1 was conducive to SOM accumulation. There was strong response between soil bulk density and SOM, plough layer depth and SOM significantly (P<0.01). 【Conclusion】 The SOM content of the paddy field in China showed an upward trend in the past 30 years. The average increased rate of SOM content annually showed an increasing trend from South to North of China. The average annual temperature, annual precipitation, paddy soil types and nitrogen fertilizer application were the main driving factors to the SOM content of paddy field in China.

Key words: paddy soil, SOM, national cultivated land monitoring sites, driving factor, nitrogen fertilizer applied rate, China

Table 1

The mean SOM content of paddy soil in plough layer in different regions"

稻作区域
Rice cultivation region
省份
Province
水稻种植面积
Rice cultivation area
(×104 hm2)
有机质含量 SOM content (g·kg-1) 样本数
No. of samples
平均含量
SOM
最低含量
Min.
最高含量
Max
中位数
Median
东北NE 黑龙江Heilongjiang 394.9 34.4 30.0 39.5 34.1 4
吉林Jilin 82.1 34.1 26.7 51.6 33.1 6
辽宁Liaoning 49.3 26.3 11.9 30.2 26.4 8
平均 Mean 526.2 33.6 11.9 51.6 30.1 18
长江中游MYR 湖北Hubei 236.8 29.1 17.7 41.1 27.9 19
湖南Hunan 423.9 38.7 16.9 65.0 36.7 41
江西Jiangxi 350.5 34.7 16.5 50.9 34.7 51
平均 Mean 1011.2 35.1 16.5 65.0 33.7 111
长江下游LYR 安徽Anhui 260.5 24.5 13.1 38.1 26.3 29
江苏Jiangsu 223.8 26.0 16.6 39.7 25.0 37
上海Shanghai 10.4 22.9 20.0 25.8 22.9 2
浙江Zhejiang 78.4 33.4 13.7 63.8 37.3 14
平均Mean 573.1 26.3 13.1 63.8 26.3 82
西南SW 贵州Guizhou 67.8 37.3 35.4 40.8 37.0 3
四川Sichuan 187.5 26.1 17.3 44.2 25.1 29
云南Yunnan 87.1 38.0 26.2 50.2 33.0 7
重庆Chongqing 65.9 29.0 23.8 36.0 29.8 8
平均Mean 408.2 31.0 17.3 50.2 29.5 47
华南SC 福建Fujian 76.9 30.1 20.9 40.0 29.3 14
广东Guangdong 180.5 35.3 15.2 51.3 32.3 35
广西Guangxi 152.7 36.4 13.4 56.3 33.9 13
海南Hainan 18.0 22.9 11.3 33.4 23.5 18
平均Mean 428.2 34.2 11.3 56.3 29.0 80
全国National 2946.9 32.4 11.3 65.0 29.4 338

Fig. 1

The SOM content of paddy soil in different rice cultivation regions and different regions with longitude and latitude Solid line and dotted line, lower edge and upper edge, bars represent median and mean values, 25th and 75th, 5th and 95th percentiles of all data, respectively. Capital letter indicates the difference significance among different regions at the 0.05 level. The same as below"

Fig. 2

Change of SOM content in paddy soil under conventional fertilization within period of 1988 to 2017(a, data comes from long term monitoring points; b, data comes from all monitoring points in 1988, 1998, 2008, and 2017)"

Fig. 3

Change of SOM content in paddy soil in different region within period of 1988 to 2017 The dotted lines at fitted curve up and down is the 95% confidence interval curve fitting"

Table 2

Variation of SOM in monitoring points in different region"

区域
Region
长期监测点
No. of long-term monitoring points (No.)
上升点
No. of points for SOM increasing
(No.)
下降点
No. of points for SOM decline
(No.)
无变化
No. of points for SOM no change
(No.)
长江中游MYR 52 25 22 5
长江下游LYR 29 12 7 10
华南SC 31 10 8 13
西南SW 22 8 5 9
东北NE 6 3 2 1
全国National 140 58 44 38

Fig. 4

The relationships between the SOM content and annual average air temperature, precipitation following change with longitude and latitude"

Fig. 5

The change of SOM content with different paddy soil types (a), different cropping systems (b) and N fertilizer applications (c)"

Fig. 6

Correlations between bulk density and SOM content (a), SOM and plough depth (b) content for the plough layers of the paddy soil"

[1] LARSON W E, PIERCE F J. The dynamics of soil quality as a measure of sustainable management// DORAN J W, COLEMAN D C, BEZEDICK D F, STEWART D A. Defining Soil Qualit for a Sustainable Environment. Madison, Wisconsin: SSSA Special Publication, 1994: 37-51.
[2] 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展. 地球科学进展, 2005,20(1):99-105.
ZHOU L, LI B G, ZHOU G S. Advances in controling factors of soil organic carbon. Advances in Earth Science, 2005,20(1):99-105. (in Chinese)
[3] 黄耀, 孙文娟. 近20 年来中国大陆农田表土有机碳含量的变化趋势. 科学通报, 2006,51(7):750-763.
HUANG Y, SUN W J. The change trend of organic carbon content in farmland topsoil in mainland China in recent 20 years. Chinese Science Bulletin, 2006,51(7):750-763.
[4] 杨帆, 徐洋, 崔勇, 孟远夺, 董燕, 李荣, 马义兵. 近30 年中国农田耕层土壤有机质含量变化. 土壤学报, 2017,54(5):1047-1056.
YANG F, XU Y, CUI Y, MENG Y D, DONG Y, LI R, MA Y B. Variation of soil organic matter content in croplands of China over the last three decades. Acta Pedologica Sinica, 2017,54(5):1047-1056. (in Chinese)
[5] 龚子同. 中国土壤分类. 北京: 科学出版社, 2003.
GONG Z T. Chinese Soil Classification. Beijing: Science Press, 2003. (in Chinese)
[6] 武红亮, 王士超, 闫志浩, 槐圣昌, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018,24(6):1416-1424.
WU H L, WANG S C, YAN Z H, HUAI S C, MA C B, XUE Y D, XU M G, LU C A. Evolution characteristics of fertility of typical paddy soil in China in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1416-1424. (in Chinese)
[7] TANG X L, ZHAO X, BAI Y F, TANG Z Y, WANG W T, ZHAO Y C, WAN H W, XIE Z Q, SHI X Z, WU B F, WANG G X, YAN J H, MA K P, DU S, LI S G, HAN S J, MA Y X, HU H F, HE N P, YANG Y H, HAN W X, HE H L, YU G R, FANG J Y, ZHOU G Y. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 2018,115:4021-4026.
doi: 10.1073/pnas.1700291115
[8] PAN G X, LI L Q, WU L S, ZHANG X H. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology, 2004,10(1):79-92.
doi: 10.1111/gcb.2004.10.issue-1
[9] 顾成军, 史学正, 于东升, 徐胜祥, 孙维侠, 赵永存. 省域土壤有机碳空间分布的主控因子——土壤类型与土地利用比较. 土壤学报, 2013,50(3):425-432.
GU C J, SHI X Z, YU D S, XU S X, SUN W X, ZHAO Y C. Main factor controlling SOC spatial distribution at the province scale as affected by soil type and land use. Acta Pedologica Sinica, 2013,50(3):425-432. (in Chinese)
[10] 赵明松, 张甘霖, 吴运金, 李德成, 赵玉国. 江苏省土壤有机质含量时空变异特征及驱动力研究. 土壤学报, 2014,51(3):448-458.
ZHAO M S, ZHANG G L, WU Y J, LI D C, ZHAO Y G. Temporal and spatial variability of soil organic matter and its driving force in Jiangsu Province, China. Acta Pedologica Sinica, 2014,51(3):448-458. (in Chinese)
[11] 姜赛平, 张怀志, 张认连, 李兆君, 谢良商, 徐爱国. 基于三种空间预测模型的海南岛土壤有机质空间分布研究. 土壤学报, 2018,55(4):1007-1017.
JIANG S P, ZHANG H Z, ZHANG R L, LI Z J, XIE L S, XU A G. Research on spatial distribution of soil organic matter in Hainan island based on three spatial prediction models. Acta Pedologica Sinica, 2018,55(4):1007-1017. (in Chinese)
[12] 姜赛平, 张认连, 张维理, 徐爱国, 张怀志, 谢良商, 冀宏杰. 近30年海南岛土壤有机质时空变异特征及成因分析. 中国农业科学, 2019,52(6):1032-1044.
doi: 10.3864/j.issn.0578-1752.2019.06.007
JIANG S P, ZHANG R L, ZHANG W L, XU A G, ZHANG H Z, XIE L S, JI H J. Spatial and temporal variation of soil organic matter and cause analysis in Hainan Island in resent 30 years. Scientia Acricultura Sinica, 2019,52(6):1032-1044. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.06.007
[13] 胡克林, 余艳, 张凤荣, 王茹. 北京郊区土壤有机质含量的时空变异及其影响因素. 中国农业科学, 2006,39(4):764-771.
HU K L, YU Y, ZHANG F R, WANG R. The spatial-temporal variability of soil organic matter and its influencing factors in suburban area of Beijing. Scientia Agricultura Sinica, 2006,39(4):764-771. (in Chinese)
[14] 史利江, 郑丽波, 梅雪英, 俞立中, 贾正长. 上海市不同土地利用方式下的土壤碳氮特征. 应用生态学报, 2010,21(9):2279-2287.
SHI L J, ZHENG L B, MEI X Y, YU L Z, JIA Z C. Characteristics of soil organic carbon and total nitrogen under different land use types in Shanghai. Chinese Journal of Applied Ecology, 2010,21(9):2279-2287. (in Chinese)
[15] 曾招兵, 汤建东, 刘一峰, 张满红, 林碧姗. 广东耕地土壤有机质的变化趋势及其驱动力分析. 土壤, 2013,45(1):84-90.
ZENG Z B, TANG J D, LIU Y F, ZHANG M H, LIN B S. Changes and driving forces of farmland organic matter in Guangdong Province, China. Soils, 2013,45(1):84-90. (in Chinese)
[16] 周睿, 潘贤章, 王昌坤, 刘娅, 李燕丽, 石荣杰, 解宪丽. 上海市城郊土壤有机质的时空变异特征及其影响因素. 土壤, 2014,46(3):433-438.
ZHOU R, PAN X Z, WANG C K, LIU Y, LI Y L, SHI R J, XIE X L. Spatial-temporal variation characteristics of soil organic matter and its impact factors in suburban Shanghai. Soils, 2014,46(3):433-438. (in Chinese)
[17] 杨玉盛, 谢锦升, 盛浩, 陈光水, 李旭. 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响. 地理学报, 2007,62(11):1123-1131.
doi: 10.11821/xb200711001
YANG Y S, XIE J S, SHENG H, CHEN G S, LI X. The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of southern China. Acta Geographica Sinica, 2007,62(11):1123-1131. (in Chinese)
doi: 10.11821/xb200711001
[18] 连纲, 郭旭东, 傅伯杰, 虎陈霞. 黄土丘陵沟壑区县域土壤有机质空间分布特征及预测. 地理科学进展, 2006,25(2):112-122.
doi: 10.11820/dlkxjz.2006.02.013
LIAN G, GUO X D, FU B J, HU C X. Spatial variability and prediction of soil organic matter at county scale on the Loess Plateau. Progress in Geography, 2006,25(2):112-122. (in Chinese)
doi: 10.11820/dlkxjz.2006.02.013
[19] YANG O, ALAIN N R, WANG L X, YAN B X. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors-A case study of the Black Soil Region of Northeastern China. Agriculture, Ecosystems and Environment, 2017,245:22-31.
doi: 10.1016/j.agee.2017.05.003
[20] 任丽, 杨联安, 王辉, 杨粉莉, 陈卫军, 张林森, 徐瑾昊. 基于随机森林的苹果区土壤有机质空间预测. 干旱区资源与环境, 2018,32(8):141-146.
REN L, YANG L A, WANG H, YANG F L, CHEN W J, ZHANG L S, XU J H. Spatial prediction of soil organic matter in apple region based on random forest. Journal of Arid Land Resources and Environment, 2018,32(8):141-146. (in Chinese)
[21] 段丽君, 张海涛, 郭龙, 杜佩颖, 陈可, 琚清兰. 典型柑橘种植区土壤有机质空间分布与含量预测. 华中农业大学学报, 2019,38(1):73-81.
DUAN L J, ZHANG H T, GUO L, DU P Y, CHEN K, JU Q L. Spatial distribution and content prediction of soil organic matter in typical citrus growing area. Journal of Huazhong Agricultural University, 2019,38(1):73-81.(in Chinese)
[22] 徐明岗, 张文菊, 黄绍敏. 中国土壤肥力演变. 北京: 中国农业科学技术出版社, 2015.
XU M G, ZHANG W J, HUANG S M. Soil Fertility Evolution in China. Beijing: China Agricultural Science and Technology Press, 2015. (in Chinese)
[23] 张淑香, 张文菊, 沈仁芳, 徐明岗. 我国典型农田长期施肥土壤肥力变化与研究展望. 植物营养与肥料学报, 2015,21(6):1389-1393.
doi: 10.11674/zwyf.2015.0602
ZHANG S X, ZHANG W J, SHEN R F, XU M G. Variation of soil quality in typical farmlands in China under long-term fertilization and research expedition. Journal of Plant Nutrition and Fertilizer, 2015,21(6):1389-1393. (in Chinese)
doi: 10.11674/zwyf.2015.0602
[24] ZHANG W J, XU M G, WANG X J, HUANG Q H, NIE J, LI Z Z, LI S L., HWANG S W, LEE K B. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments, 2012,12:457-470.
doi: 10.1007/s11368-011-0467-8
[25] CHEN D, CHANG N J, XIAO J F, ZHOU Q B, WU W B. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Science of the Total Environment, 2019,669:844-855.
doi: 10.1016/j.scitotenv.2019.03.151 pmid: 30897441
[26] BEGUM K, KUHNERT M, YELURIPATI J, OGLE S, PARTON W, KADER M A, SMITH P. Soil organic carbon sequestration and mitigation potential in a rice cropland in Bangladesh - a modelling approach. Field Crops Research, 2018,226:16-27.
doi: 10.1016/j.fcr.2018.07.001
[27] 段丽君, 郭龙, 张海涛, 琚清兰. 基于改进OK模型的土壤有机质空间分布预测——以宜都市红花套镇为例. 中国生态农业学报, 2019,27(1):131-141.
DUAN L J, GUO L, ZHANG H T, JU Q L. Prediction of spatial distribution of soil organic matter based on improved OKmodels: A case study of Honghuatao Town in Yidu City. Chinese Journal of Eco-Agriculture, 2019,27(1):131-141. (in Chinese)
[28] PAN G X, SMITH P, PAN W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems and Environment, 2009,129:344-348.
doi: 10.1016/j.agee.2008.10.008
[29] LI M F, WANG J, GUO D, YANG R R, FU H. Effect of land management practices on the concentration of dissolved organic matter in soil: A meta-analysis. Geoderma, 2019,344:74-81.
doi: 10.1016/j.geoderma.2019.03.004
[30] NATH A J, BRAHMA B, SILESHI G W, DAS A K. Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Science of The Total Environment, 2018,624:908-917.
doi: 10.1016/j.scitotenv.2017.12.199 pmid: 29275253
[31] WIESMEIER M, URBANSKI L, HOBLEY E, LANG B, VON LÜTZOW M, MARIN-SPIOTTA E, VAN WESEMAEL B, RABOT E, GARCIA-FRANCO N, WOLLSCHLÄGER U, VOGEL H J, KÖGEL-KNABNER I, LANG B. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 2019,333:149-162.
doi: 10.1016/j.geoderma.2018.07.026
[32] 赵秉强, 张夫道. 我国的长期肥料定位试验研究. 植物营养与肥料学报, 2002,8(增刊):3-8.
ZHAO B Q, ZHANG F D. Long-term fertilizer experiments in China. Plant Nutrition and Fertilizer Science, 2002,8(Suppl.):3-8. (in Chinese)
[33] 李建军, 徐明岗, 辛景树, 段建军, 任意, 李冬初, 黄晶, 申华平, 张会民. 中国稻田土壤基础地力的时空演变特征. 中国农业科学, 2016,49(8):1510-1519.
doi: 10.3864/j.issn.0578-1752.2016.08.008
LI J J, XU M G, XIN J S, DUAN J J, REN Y, LI D C, HUANG J, SHEN H P, ZHANG H M. Spatial and Temporal Characteristics of Basic Soil Productivity in China. Scientia Agricultura Sinica, 2016,49(8):1510-1519. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.08.008
[34] 李建军, 辛景树, 张会民, 段建军, 任意, 孙楠, 徐明岗. 长江中下游粮食主产区25年来稻田土壤养分演变特征. 植物营养与肥料学报, 2015,21(1):92-103.
doi: 10.11674/zwyf.2015.0110
LI J J, XIN J S, ZHANG H M, DUAN J J, REN Y, SUN N, XU M G. Evolution characteristics of soil nutrients in the main rice production regions,the middle-lower reach of Yangtze River of China. Journal of Plant Nutrition and Fertilizer, 2015,21(1):92-103. (in Chinese)
doi: 10.11674/zwyf.2015.0110
[35] 韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019,52(11):1918-1929.
doi: 10.3864/j.issn.0578-1752.2019.11.007
HAN T F, MA C B, HUANG J, LIU K L, XUE Y D, LI D C, LIU L S, ZHANG L, LIU S J, ZHANG H M. Variation in rice yield response to fertilization in China: Meta-analysis. Scientia Agricultura Sinica, 2019,52(11):1918-1929. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.11.007
[36] 全国农业技术推广服务中心. 土壤分析技术规范. 北京: 中国农业科学技术出版社, 2006.
The Center of Extending and Service of Agricultural Technique in China. Soil Analysis Technical Specifications. Beijing: China Agricultural Science and Technology Press, 2006. (in Chinese)
[37] 沈善敏. 中国土壤肥力. 北京: 中国农业出版社, 1998.
SHEN S M. Soil Fertility in China. Beijing: China Agriculture Press, 1998. (in Chinese)
[38] 中华人民共和国国家统计局. 2018年中国统计年鉴. 北京: 中国统计出版社, 2019.
China National Bureau of Statistics. China Statistical Yearbook, 2018. Beijing: China Statistics Press, 2019. (in Chinese)
[39] 李建军. 我国粮食主产区稻田土壤肥力及基础地力的时空演变特征[D]. 贵阳: 贵州大学, 2015.
LI J J. Temporal and spatial evolution characteristics of paddy soil fertility and basic soil fertility in main grain producing areas of China[D]. Guiyang: Guizhou University, 2015. (in Chinese)
[40] GAO S J, GAO J S, CAO W D, ZOU C Q, HUANG J, BAI J S, DOU F G. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil. Journal of Integrative Agriculture, 2018,17(5):60345-60347.
[41] LI Z Q, ZHAO B Z, ZHANG J B. Effects of maize residue quality and soil water content on soil labile organic carbon fractions and microbial properties. Pedosphere, 2016,26(6):829-838.
[42] GUO Z C, ZHANG J B, FAN J, YANG X Y, YI Y L, HAN X R, WANG D Z, ZHU P, PENG X H. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Science of the Total Environment, 2019,660:1029-1037.
doi: 10.1016/j.scitotenv.2019.01.051 pmid: 30743900
[43] 黄杰. 水旱轮作体系下水—旱转换过程中土壤养分变化规律研究[D]. 成都: 四川农业大学, 2015.
HUANG J. Study on the Change of Soil Nutrients in the Process of Water and Dry Rotation System[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese)
[44] 曾希柏, 孙楠, 高菊生, 王伯仁, 李莲芳. 双季稻田改制对作物生长及土壤养分的影响. 中国农业科学, 2007,40(6):1198-1205.
ZENG X B, SUN N, GAO J S, WANG B R, LI L F. Effects of cropping system change for paddy field with double harvest rice on the crops growth and soil nutrient. Scientia Agricultura Sinica, 2007,40(6):1198-1205. (in Chinese)
[45] 李小涵, 郝明德, 王朝辉, 李利利. 农田土壤有机碳的影响因素及其研究. 干旱地区农业研究, 2008(3):176-181.
LI X H, HAO M D, WANG Z H, LI L L. Factors affecting soil organic carbon in cropland and their regulation. Agricultural Research in the Arid Areas, 2008(3):176-181. (in Chinese)
[46] 周萍. 南方典型稻田土壤有机碳固定机制研究[D]. 南京: 南京农业大学, 2009.
ZHOU P. A study on soil carbon sequestration fate in typical paddy soils from south China[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[47] XU S X, SHI X Z, ZHAO Y C, YU D S, LI , C S, WANG S H, TAN M Z, SUN W X. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980-2050. Geoderma, 2011,166:206-213.
doi: 10.1016/j.geoderma.2011.08.002
[48] 周晓宇, 张称意, 郭广芬. 气候变化对森林土壤有机碳贮藏影响的研究进展. 应用生态学报, 2010(7):1867-1874.
ZHOU X Y, ZHANG C Y, GUO G F. Effects of climate change on forest soil organic carbon storage: A review. Chinese Journal of Applied Ecology, 2010(7):1867-1874. (in Chinese)
[49] 郭广芬, 张称意, 徐影. 气候变化对陆地生态系统土壤有机碳储量变化的影响. 生态学杂志, 2006(4):435-442.
GUO G F, ZHANG C Y, XU Y. Effects of climate change on soil organic carbon storage in terrestrial ecosystem. Chinese Journal of Ecology, 2006(4):435-442. (in Chinese)
[50] LIN Y X, YE G P, KUZYAKOV Y, LIU D Y, FAN J B, DING W X, Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 2019, doi: https://doi.org/10. 1016/j.soilbio.2019.03.030.
doi: 10.1016/j.soilbio.2016.06.032 pmid: 27698513
[51] YANG F, TIAN J, MEERSMANS J, FANG H J, YANG H, LOU Y L, LI Z F, LIU K L, ZHOU Y, BLAGODATSKAYA E, KUZYAKOV Y. Functional soil organic matter fractions in response to long-term fertilization in upland and paddy systems in South China. Catena, 2018,162:270-277.
doi: 10.1016/j.catena.2017.11.004
[52] 逯非, 王效科, 韩冰, 欧阳志云, 段晓男, 郑华. 中国农田施用化学氮肥的固碳潜力及其有效性评价. 应用生态学报, 2008,19(10):2239-2250.
LU F, WANG X K, HAN B, OUYANG Z Y, DUAN X N, ZHENG H. Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil. Chinese Journal of Applied Ecology, 2008,19(10):2239-2250. (in Chinese)
[53] 马麟英, 梁月兰, 韦国钧, 梁运. 东兰县林地土壤有机质含量与土壤容重的相关性分析. 湖北农业科学, 2014,53(1):59-63.
MA L Y, LIANG Y L, WEI G J, LIANG Y. Studies of relations between soil organic matter content and soil bulk density in different soil level in Donglan County. Hubei Agricultural Sciences, 2014,53(1):59-63. (in Chinese)
[54] 田耀武, 黄志霖, 肖文发, 王宁, 刘晶. 三峡库区兰陵溪流域森林土壤有机碳、有机质与容重间的回归模型. 华南农业大学学报, 2006,37(1):89-95.
TIAN Y W, HUANG Z L, XIAO W F, WANG N, LIU J. Organic carbon, organic matter and bulk density regression models for forest soils in Lanlingxi watershed, Three Gorges Reservoir area. Journal of South China Agricultural University, 2006,37(1):89-95. (in Chinese)
[55] CALLESEN I, LISKI J, RAULUND-RASMUSSEN K, OLSSON M T, TAU‐STRAND L, VESTERDAL L, WESTMAN C J. Soil carbon stores in Nordic well-drained forest soils - relationships with climate and texture class. Global Change Biology, 2002,9:358-370.
doi: 10.1046/j.1365-2486.2003.00587.x
[56] WU H B, GUO Z T, PENG C H. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 2003,9:305-315.
doi: 10.1046/j.1365-2486.2003.00590.x
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[4] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[5] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[6] WEI JingJie,JIANG NingBo,LIANG Yan,ZHANG Qian,SUN YingJian,HU Ge. Effect of Matrine on NLRP3 Inflammasome Signaling Pathway in H9N2 AIV Infected Mice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4315-4326.
[7] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[8] ZHU Lei,ZHANG HaiLiang,CHEN ShaoKan,AN Tao,LUO HanPeng,LIU Lin,HUANG XiXia,WANG YaChun. Impacts of Somatic Cell Count in Early Lactation on Production Performance over the Whole Lactation and Its Genetic Parameters in Holsteins Cattle [J]. Scientia Agricultura Sinica, 2022, 55(2): 403-414.
[9] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[10] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[11] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[12] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[13] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[14] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[15] ZHANG ChengQi,WANG XiaoYan,CHEN Li. The Actin Binding Protein FgAbp1 is Involved in Growth, Development and Toxisome Formation in Fusarium graminearum [J]. Scientia Agricultura Sinica, 2021, 54(13): 2759-2768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!