Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (1): 166-180.doi: 10.3864/j.issn.0578-1752.2019.01.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Differentially Expressed MicroRNAs and Their Regulation Networks in Apis mellifera ligustica Larval Gut During the Early Stage of Ascosphaera apis Infection

GUO Rui(),DU Yu(),TONG XinYu,XIONG CuiLing,ZHENG YanZhen,XU GuoJun,WANG HaiPeng,GENG SiHai,ZHOU DingDing,GUO YiLong,WU SuZhen,CHEN DaFu()   

  1. College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2018-08-02 Accepted:2018-10-01 Online:2019-01-01 Published:2019-01-12
  • Contact: DaFu CHEN E-mail:ruiguo@fafu.edu.cn;m18505700830@163.com;dfchen826@fafu.edu.cn

Abstract:

【Objective】MicroRNA (miRNA) is a kind of key gene expression regulator, which can affect the interactions between host and pathogen. Ascosphaera apis is a lethal fungal pathogen that specifically infects honeybee larvae. The objective of this study is to analyze the differentially expressed miRNAs (DEmiRNAs) and their target genes in the Apis mellifera ligustica larval gut during the early infection stage of A. apis, reveal DEmiRNA’ roles in the stress responses of host at the miRNA omics level, and to screen the key miRNAs related to host response by constructing regulation networks of significant DEmiRNAs. 【Method】Normal and A. apis-infected 4-day-old larval gut of A. m. ligustica (AmCK and AmT) were deep-sequenced using small RNA-seq (sRNA-seq) technology, followed by quality-control of raw data and then mapping of the filtered data with the reference genome of Apis mellifera. The mapped tags were compared to the miRBase database to identify the expression of known miRNAs. The expression of miRNAs in each sample was normalized by TPM (tags per million) algorithm and significant DEmiRNAs were gained according to the standard |log2 fold change|≥1 and P≤0.05. Target genes of significant DEmiRNAs were predicted utilizing TargetFinder, and then annotated to the GO and KEGG databases. Cytoscape was used to visualize the regulation networks between significant DEmiRNAs and target mRNAs. Finally, Stem-loop RT-PCR and qPCR were conducted to verify the reliability of the sequencing data.【Result】sRNA-seq of AmCK and AmT produced 13 553 302 and 10 777 534 raw reads, and after strict filtration, 13 186 921 and 10 480 913 clean reads were obtained, respectively. The Pearson correlation coefficients among different biological replicates in each sample were above 0.9822 and 0.9508. There were 10 significant DEmiRNAs including 4 up-regulated miRNAs and 6 down-regulated miRNAs, and the overall expression level of DEmiRNAs in AmT was lower than that in AmCK. In total, 10 significant DEmiRNAs could link 3 788 target genes. The 1 240 target genes of up-regulated miRNAs could be annotated to 39 GO terms, and the mostly enriched terms were binding, cellular processes, metabolic processes, and response to stimulus. The 749 target genes of down-regulated miRNAs could be annotated to 34 GO terms, and the mostly enriched terms were cellular processes, binding, metabolic processes, and response to stimulus. The result of KEGG database annotation suggested that the target genes of up- and down-regulated miRNAs were respectively annotated in 95 and 66 pathways, the most abundant pathways were Wnt signaling pathway, Hippo signaling pathway, phototransduction and endocytosis, phosphatidylinositol signaling system, as well as purine metabolism. For up- and down-regulated miRNAs, there were 31 and 52 target genes could be annotated to endocytosis, 15 and 7 target genes could be annotated to ubiquitin-mediated proteolysis, 11 and 5 target genes could be annotated to Jak-STAT signaling pathway, 1 and 3 target genes could be annotated to the MAPK signaling pathway, respectively. Complex regulation networks existed between significant DEmiRNAs and their target mRNAs, among them 7 significant DEmiRNAs targeted 96 mRNAs associated with Wnt signaling pathway, and 8 significant DEmiRNAs targeted 55 mRNAs involved in endocytosis. Finally, the results of Stem-loop RT-PCR and qPCR verified the reliability of the sequencing data.【Conclusion】A. m. ligustica larval gut’s DEmiRNAs and their target genes during the early infection stage of A. apis were predicted and analyzed. DEmiRNA-mRNA regulation networks in the host were constructed and investigated. The results provide the expression profile and differential expression information of host miRNAs, and reveal that these DEmiRNAs likely participate in the stress responses of host via regulating biological processes such as cellular activity, metabolism, and immune defense. miR-4331-y, miR-4968-y, miR-8440-y, novel-m0023-5p and novel-m0025-3p jointly regulate Wnt signaling pathway and endocytosis of host and can be used as potential molecular targets for chalkbrood control.

Key words: Apis mellifera ligustica, larval gut, development, differentially expressed microRNA, regulation network

Table 1

Primers used in this study"

引物名称 Primer name 引物序列 Primer sequence
LOOP-miR-3793-x CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTGGCCAGG
LOOP-ame-miR-6000a-5p CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATAGAGAC
LOOP-novel-m0031-3p CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCCTGCTT
LOOP-novel-m0034-5p CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATATCACA
F-miR-3793-x ACACTCCAGCTGGGAGCGTGTTTTC
F-ame-miR-6000a-5p ACACTCCAGCTGGGCAGCAGCAGCAG
F-novel-m0031-3p GCATCCTCTTGAAT
F-novel-m0034-5p CAGGTAACTACTGC
R CTCAACTGGTGTCGTGGA
U6-F GTTAGGCTTTGACGATTTCG
U6-R GGCATTTCTCCACCAGGTA

Table 2

Overview of sRNA-seq data"

样品Sample 原始读段Raw reads 有效读段Clean reads
AmCK-1 15146178 14736731 (97.30%)
AmCK-2 13310167 12954535 (97.33%)
AmCK-3 12203560 11869496 (97.26%)
AmT-1 10741447 10453795 (97.32%)
AmT-2 12035887 11694678 (97.17%)
AmT-3 9555268 9294267 (97.27%)

Table 3

Summary of DEmiRNAs information in AmCK vs AmT comparison group"

差异表达miRNA ID
DEmiRNA ID
AmCK中的表达量
Expression in AmCK
AmT中的表达量
Expression in AmT
以2为底miRNA的相对变化倍数的对数值
log2 fold change
靶基因数
Number of target genes
miR-7085-x 0.01 8.40 9.71 129
miR-8440-y 0.01 5.29 9.05 2265
novel-m0023-5p 0.01 1.79 7.48 334
miR-3793-x 33.72 89.76 1.41 398
novel-m0034-3p 4.06 1.95 -1.05 768
miR-4331-y 74.07 27.70 -1.42 77
ame-miR-6000a-5p 19.06 4.14 -2.20 77
miR-971-y 3.25 0.31 -3.37 100
novel-m0025-3p 0.88 0.01 -6.46 294
miR-4968-y 11.61 0.01 -10.18 279

Fig. 1

Expression profile of DEmiRNAs in AmCK vs AmT comparison group"

Fig. 2

GO database annotation of significant DEmiRNA’ target genes in AmCK vs AmT comparison group"

Fig. 3

KEGG database annotation of significant DEmiRNA’ target genes in AmCK vs AmT comparison group"

Fig. 4

Regulation networks of DEmiRNAs in A. m. ligustica larval gut"

Fig. 5

Regulation networks of significant DEmiRNAs associated with Wnt signaling pathway and endocytosis in A. m. ligustica larval gut"

Fig. 6

Stem-loop RT-PCR (A) and qPCR confirmation (B-E) of DEmiRNAs"

[1] 罗术东, 王彪, 褚忠桥, 柳萌, 吴杰 . 不同蜂为设施辣椒授粉的授粉效果比较. 环境昆虫学报, 2015,37(2):381-386.
doi: 10.3969/j.issn.1674-0858.2015.02.23
LUO S D, WANG B, CHU Z Q, LIU M, WU J . Comparison of the pollination effects for pepper between different bees in greenhouse. Journal of Environmental Entomology, 2015,37(2):381-386. (in Chinese)
doi: 10.3969/j.issn.1674-0858.2015.02.23
[2] 李江红, 郑志阳, 陈大福, 梁勤 . 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察. 昆虫学报, 2012,55(7):790-797.
LI J H, ZHENG Z Y, CHEN D F, LIANG Q . Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process. Acta Entomologica Sinica, 2012,55(7):790-797. (in Chinese)
[3] ASGARI S . MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 2013,43(4):388-397.
doi: 10.1016/j.ibmb.2012.10.005 pmid: 23103375
[4] CHEN J F, MANDEL E M, THOMSON J M, WU Q, CALLIS T E, HAMMOND S M, CONLON F L, WANG D Z . The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006,38(2):228-233.
doi: 10.1038/ng1725 pmid: 2538576
[5] ALVAREZ-GARCIA I, MISKA E A . MicroRNA functions in animal development and human disease. Development, 2005,132(21):4653-4662.
doi: 10.1242/dev.02073 pmid: 16224045
[6] GUO C J, PAN Q, LI D G, SUN H, LIU B W . MiR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. Journal of Hepatology, 2009,50(4):766-778.
doi: 10.1016/j.jhep.2008.11.025 pmid: 19232449
[7] SCARIA V, HARIHARAN M, MAITI S, PILLAI B, BRAHMACHARI S K . Host-virus interaction: A new role for microRNAs. Retrovirology, 2006,3:68.
doi: 10.1186/1742-4690-3-68 pmid: 17032463
[8] LI S, SHEN L, SUN L, XU J, JIN P, CHEN L, MA F . Small RNA-Seq analysis reveals microRNA-regulation of the Imd pathway during Escherichia coli infection in Drosophila. Developmental and Comparative Immunology, 2017,70:80-87.
[9] QIAN P, JIANG T, WANG X, SONG F, CHEN C, SHEN X . Bmo-miR-275 down-regulates expression of Bombyx mori sericin gene 2 in vitro. PLoS ONE, 2018,13(1):e0190464.
[10] ZHANG G, HUSSAIN M , O’NEILL S L, ASGARI S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(25):10276-10281.
doi: 10.1073/pnas.1303603110 pmid: 23733960
[11] 李盛杰 . microRNA在果蝇Toll信号免疫响应中的调控作用研究[D]. 南京: 南京师范大学, 2017.
LI S J . Regulation of microRNA on Toll signal immune response in Drosophila melanogaster[D]. Nanjing: Nanjing Normal University, 2017. ( in Chinese)
[12] LOURENÇO A P, GUIDUGLILAZZARINI K R, FREITAS F C, BITONDI M M, SIMÕES Z L . Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. Insect Biochemistry and Molecular Biology, 2013,43(5):474-482.
doi: 10.1016/j.ibmb.2013.03.001
[13] HUANG Q, CHEN Y P, RUI W W, SCHWARZ R S , EVANS J D. Honeybee microRNAs respond to infection by the microsporidian parasite Nosema ceranae. Scientific Reports, 2015, 5: Article number 17494.
doi: 10.1038/srep17494 pmid: 26620304
[14] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 张曌楠, 黄枳腱, 张璐, 王鸿权, 解彦玲, 童新宇 . 中华蜜蜂幼虫肠道响应球囊菌早期胁迫的转录组学. 中国农业科学, 2017,50(13):2614-2623.
doi: 10.3864/j.issn.0578-1752.2017.13.019
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, ZHANG Z N, HUANG Z J, ZHANG L, WANG H Q, XIE Y L, TONG X Y . Transcriptome of Apis cerana cerana larval gut under the stress of Ascosphaera apis. Scientia Agricultura Sinica, 2017,50(13):2614-2623. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.13.019
[15] 郭睿, 熊翠玲, 郑燕珍, 张璐, 童新宇, 梁勤, 陈大福 . 意大利蜜蜂幼虫肠道响应球囊菌早期胁迫的转录组学分析. 应用昆虫学报, 2017,54(4):553-560.
doi: 10.7679/j.issn.2095-1353.2017.067
GUO R, XIONG C L, ZHENG Y Z, ZHANG L, TONG X Y, LIANG Q, CHEN D F . Transcriptome analysis of Apis mellifera ligustica larval gut during the early stage of stress induced by Ascosphaera apis. Chinese Journal of Applied Entomology, 2017,54(4):553-560. (in Chinese)
doi: 10.7679/j.issn.2095-1353.2017.067
[16] HUSSAIN M, ASGARI S . MicroRNAs as mediators of insect host-pathogen interactions and immunity. Journal of Insect Physiology, 2014,70:151-158.
doi: 10.1016/j.jinsphys.2014.08.003 pmid: 25152509
[17] 郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福 . 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F . Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
[18] FRIEDLÄNDER M R, MACKOWIAK S D, LI N, CHEN W, RAJEWSKY N . MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 2012,40(1):37-52.
doi: 10.1093/nar/gkr688 pmid: 21911355
[19] ALLEN E, XIE Z, GUSTAFSON A M, CARRINGTON J C . MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121(2):207-221.
doi: 10.1016/j.cell.2005.04.004 pmid: 15851028
[20] CHEN C, RIDZON D A, BROOMER A J, LEE D H, NGUYEN J T, BARBISIN M, XU N L, MAHUVAKAR V R, ANDERSEN M R, LAO K Q, LIVAK K J, GUEGLER K J . Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005,33(20):e179.
doi: 10.1093/nar/gni178
[21] 赵红霞, 梁勤, 罗岳雄, 李江红, 张学锋, 曾鑫年 . 蜜蜂白垩病的研究进展. 环境昆虫学报, 2014,36(2):233-239.
doi: 10.3969/j.issn.1674-0858.2014.02.18
ZHAO H X, LIANG Q, LUO Y X, LI J H, ZHANG X F, ZENG X N . Chalkbrood disease in honeybee. Journal of Environmental Entomology, 2014,36(2):233-239. (in Chinese)
doi: 10.3969/j.issn.1674-0858.2014.02.18
[22] ZHAO L, ZHU J, ZHOU H, ZHAO Z, ZOU Z, LIU X, LIN X, ZHANG X, DENG X, WANG R, CHEN H , JIN M. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells. Scientific Reports, 2015, 5: Article number 14991.
doi: 10.1038/srep14991 pmid: 4598873
[23] HU Y, JIANG L, LAI W, QIN Y, ZHANG T, WANG S, YE X . MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral ribonucleoprotein activity. The Journal of General Virology, 2016,97(1):27-38.
doi: 10.1099/jgv.0.000311 pmid: 26498766
[24] CHEN D, GUO R, XU X, XIONG C, LIANG Q, ZHENG Y, LUO Q, ZHANG Z, HUANG Z, KUMAR D, XI W, ZOU X, LIU M . Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017,621:40-50.
[25] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军 . 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
doi: 10.16380/j.kcxb.2017.04.005
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J . Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica( Hyemenoptera: Apidae) . Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
doi: 10.16380/j.kcxb.2017.04.005
[26] 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 候志贤, 江亮亮, 刀晨 . 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878.
doi: 10.13343/j.cnki.wsxb.20160551
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C . Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20160551
[27] AYYAZ A, LI H, JASPER H . Hemocytes control stem cell activity in the Drosophila intestine. Nature Cell Biology, 2015,17(6):736-748.
[28] BARRY E R, CAMARGO F D . The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Current Opinion in Cell Biology, 2013,25(2):247-253.
doi: 10.1016/j.ceb.2012.12.006 pmid: 23312716
[29] 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福 . 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018,51(18):3600-3613.
GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F . Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(18):3600-3613. (in Chinese)
[30] 郭睿, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 陈大福 . 意大利蜜蜂工蜂中肠发育过程中的差异表达环状RNA及其调控网络分析. 中国农业科学, 2018,51(23):4575-4590.
GUO R, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, XU G J, DU Y, WANG H P, GENG S H, ZHOU D D, LIU S Y, CHEN D F . Analysis of differentially expressed circular RNAs and their regulation networks during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(23):4575-4590. (in Chinese)
[31] ASHBY R, FORÊT S, SEARLE I , MALESZKA R. MicroRNAs in honeybee caste determination. Scientific Reports, 2016, 6: Article number 18794.
doi: 10.1038/srep18794 pmid: 4704047
[32] 郝向伟 . 家蚕Hedgehog信号通路相关基因的克隆、鉴定及其功能分析[D]. 重庆: 西南大学, 2013.
HAO X W . Cloning, characterization and functional analysis of genes in the hedgehog signaling pathway in the intestine of silkworm, Bombyx mori[D]. Chongqing: Southwest University, 2013. ( in Chinese)
[33] CHA Y H, KIM N H, PARK C, LEE I, KIM H S, YOOK J I . MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle, 2012,11(7):1273-1281.
doi: 10.4161/cc.19618 pmid: 22421157
[34] KIM N H, KIM H S, KIM N G, LEE I, CHOI H S, LI X Y, KANG S E, CHA S Y, RYU J K, NA J M, PARK C, KIM K, LEE S, GUMBINER B M, YOOK J I , WEISS S J. P53 and microRNA-34 are suppressors of canonical Wnt signaling. Science Signaling, 2011, 4(197): ra71.
doi: 10.1126/scisignal.2001744 pmid: 3447368
[35] 陈晓 . 蜜蜂卵巢激活和产卵过程差异表达的编码RNA与非编码RNA的筛选和鉴定[D]. 北京: 中国农业科学院, 2017.
CHEN X . Identification of differentially expressed coding and noncoding RNAs during ovary activation and oviposition in honeybees[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. ( in Chinese)
[36] BARIL M, ES-SAAD S, CHATEL-CHAIX L, FINK K, PHAM T, RAYMOOD V A, AUDETTE K, GUENIER A S, DUCHAINE J, SERVANT M, BILODEAU M, COHEN E, GRANDVAUX N, LAMARRE D . Genome-wide RNAi screen reveals a new role of a Wnt/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses. PLoS Pathogens, 2013,9(6):e1003416.
doi: 10.1371/journal.ppat.1003416 pmid: 3681753
[37] HACK K, REILLY L, PROBY C, FLEMING C, LEIGH I, FOERSTER J . Wnt5a inhibits the CpG oligodeoxynucleotide- triggered activation of human plasmacytoid dendritic cells. Clinical and Experimental Dermatology, 2012,37(5):557-561.
doi: 10.1111/j.1365-2230.2012.04362.x pmid: 22607321
[38] SMITH J L, JENG S, MCWEENEY S K, HIRSCH A J . A microRNA screen identifies the Wnt signaling pathway as a regulator of the interferon response during flavivirus infection. Journal of Virology, 2017,91(8):e02388-16.
doi: 10.1128/JVI.02388-16 pmid: 28148804
[39] 乔莹 . 刺激隐核虫感染大黄鱼的miRNA和mRNA组学测序及关联分析[D]. 厦门: 厦门大学, 2016.
QIAO Y . Sequencing and correlation analysis of miRNAome and transcriptome of Larimichthys crocea infected by Cryptocaryon irritans[D]. Xiamen: Xiamen University, 2016. ( in Chinese)
[40] HE L, HANNON G J . MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 2004,5(7):522-531.
doi: 10.1038/nrg1379 pmid: 15211354
[41] 郭睿, 杜宇, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 陈华枝, 耿四海, 周丁丁, 石彩云, 赵红霞, 陈大福 . 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络. 中国农业科学, 2018,51(21):4197-4209.
GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F . Differentially expressed microRNA and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. Scientia Agricultura Sinica, 2018,51(21):4197-4209. (in Chinese)
[42] ZHAO X, BAI X, GUAN L, LI J, SONG X, MA X, GUO J, ZHANG Z, DU Q, HUANG Y, TONG D . MicroRNA-4331 promotes Transmissible Gastroenteritis Virus (TGEV)-induced mitochondrial damage via targeting RB1, upregulating interleukin-1 receptor accessory protein (IL1RAP), and activating p38 MAPK Pathway in vitro. Molecular and Cellular Proteomics, 2018,17(2):190-204.
doi: 10.1074/mcp.RA117.000432
[43] WANG Y, BRAHMAKSHATRIYA V, LUPIANI B, REDDY S M, SOIBAM B, BENHAM A L, GUNARATNE P, LIU H C, TRAKOOLJUL N, ING N, OKIMOTO R, ZHOU H . Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics, 2012,13:278.
doi: 10.1186/1471-2164-13-278 pmid: 3496578
[44] TAMBYAH P A, SEPRAMANIAM S, MOHAMED ALI J, CHAI S C, SWAINATHAN P, ARMUGAM A, JEYASEELAN K . MicroRNAs in circulation are altered in response to influenza A virus infection in humans. PLoS ONE, 2013,8(10):e76811.
doi: 10.1371/journal.pone.0076811 pmid: 24116168
[45] ZHANG S, WANG R, SU H, WANG B, SIZHU S, LEI Z, JIN M, CHEN H, CAO J, ZHOU H . Sus scrofa miR-204 and miR-4331 negatively regulate swine H1N1/2009 influenza A virus replication by targeting viral HA and NS, respectively. International Journal of Molecular Sciences, 2017,18(4):E749.
doi: 10.3390/ijms18040749 pmid: 28368362
[46] WANG P, GRANADOS R R . Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Archives of Insect Biochemistry and Physiology, 2001,47(2):110-118.
doi: 10.1002/arch.1041 pmid: 11376457
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[5] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[6] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[7] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[8] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[9] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[10] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[11] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[12] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[13] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[14] ZHANG HongCheng,HU YaJie,YANG JianChang,DAI QiGen,HUO ZhongYang,XU Ke,WEI HaiYan,GAO Hui,GUO BaoWei,XING ZhiPeng,HU Qun. Development and Prospect of Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321.
[15] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!