Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (5): 952-963.doi: 10.3864/j.issn.0578-1752.2018.05.013

• HORTICULTURE • Previous Articles     Next Articles

Effect of Root-Applied Melatonin on Endogenous Melatonin and Chlorophyll Fluorescence Characteristics in Grapevine Under NaCl Stress

BIAN FengE, XIAO QiuHong, HAO GuiMei, SUN YongJiang, LU WenLi, DU YuanPeng, ZHAI Heng   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2017-07-20 Online:2018-03-01 Published:2018-03-01

Abstract: 【Objective】 The content of the endogenous MT, the key metabolites, and the effect of photoinhibition on the leaf were studied in grapevine under NaCl stress, and the results will provide a reference for the application of MT in the future.【Method】One-year old potted ‘Vidal Blanc’ grapevines (Vitis vinifera cv. Vidal Blanc) were used as materials. The grapevines were irrigated with NaCl (100 nmol·L-1 ) and NaCl+MT (100 nmol·L-1), and then the content and distribution of the endogenous MT, MT precursors serotonin (5-hydroxytryptamine, 5-HT), and then the main metabolites of melatonin 2-hydroxymelatonin (2-OHMel) in different organs of different treatment plants, and the chlorophyll fluorescence characteristics in leaves and the metabolism of endogenous MT were measured and analyzed.【Result】The results showed that there were obvious temporal and spatial changes in the content of endogenous MT, 5-HT and 2-OHMel in different organs of plants under NaCl stress, and the MT content of roots reached the peak value after 7 days treatment, followed by the shoots, and the content of leaves were the lowest. With the prolongation of the stress time, the MT content in the roots decreased significantly, while the 5-HT content in the shoots increased. Compared with the only NaCl stress, the 5-HT content in the leaves, the MT content in the roots and the contents of 2-OHMel in the shoots and leaves increased significantly after root-applied MT. The shape of OJIP curve was significantly changed, Fm and leaf maximum photochemical efficiency (Fv/Fm) significantly decreased by 31.6% and 11.6%, the non-photochemical quenching (NPQ) was significantly increased, and the linear electron transport rate of PSI (ETR(I)) and PSII (ETR(II)) were significantly decreased under NaCl stress. While the Fm and Fv/Fm in leaves were reduced by 12.9% and 7.3%, the increase of K and J points in the OJIP curve was significantly reduced by 23.6% and 11.3%, and the utilization efficiency of the light linear and electron transfer rate is significantly improved under NaCl stress and MT treatment.【Conclusion】NaCl stress induced the inhibition of photosystem activity in grapevine leaves, but promoted the synthesis of MT in the plant. Photoinhibition was alleviated under MT treatment, root-applied MT promoted the metabolism and distribution of MT in various organs of plants, alleviated the damaged degree of photosynthesis of grapevine leaves by NaCl stress.

Key words: NaCl stress, grapevine, chlorophyll fluorescence, melatonin, 5-hydroxytryptamine, 2-hydroxymelatonin

[1]    周和平, 张立新, 禹锋, 李平. 我国盐碱地改良技术综述及展望. 现代农业科技, 2007, 2007(11): 159-161.
ZHOU H P, ZHANG L X, YU F, LI P. Review and prospect of saline-alkali Improvement technology in China. Modern Agricultural Sciences and Technology, 2007, 2007(11): 159-161. (in Chinese)
[2]    王遵亲. 中国盐渍土. 北京: 科学出版社, 1993: 325-344.
WANG Z Q. Chinese Saline Soil. Beijing: Science Press, 1993: 325-344. (in Chinese)
[3]    刘三军, 蒯传化, 于巧丽, 陈勇朋. 浅析我国干旱半干旱地区葡萄产业的气候因素、生产问题及发展//首届干旱半干旱区葡萄产业可持续发展国际学术研讨会, 2009.
LIU S J, KUAI C H, YU Q L, CHEN Y P. Analysis to the grapevine industry in drought and semi-drought zone in weather factor, the cultivated problem and the develop trend in the future//The First International Symposium on Sustainable Development of Grape Industry in Arid and Semi Arid Areas, 2009. (in Chinese)
[4]    SZAFRANSKA Z K, GLI?SKA ? S, JANAS K M. Ameliorative effect of melatonin on meristematic cells of chilled and re-warmed Vigna radiata roots. Biologia Plantarum, 2013, 57(1): 91-96.
[5]    卞凤娥, 孙永江, 牛彦杰, 杜远鹏, 翟衡. 高温胁迫下根施褪黑素对葡萄叶片叶绿素荧光特性的影响. 植物生理学报, 2017, 53(2): 257-263.
BIAN F E, SUN Y J, NIU Y J, DU Y P, ZHAI H. Effect of root-applied melatonin on photosystem II in grape leaves under heat stress. Plant Physiology Journal, 2017, 53(2): 257-263. (in Chinese)
[6]    耿庆伟, 邢浩, 郝桂梅, 孙永江, 翟衡, 杜远鹏. 外源褪黑素对臭氧胁迫下‘赤霞珠’葡萄叶片光合作用的影响. 园艺学报, 2016, 43(8): 1463-1472.
GENG Q W, XING H, HAO G M, SUN Y J, ZHAI H, DU Y P. Effect of exogenous melatonin on photosynthesis of ‘Cabernet Sauvigon’ grape leaves under ozone stress. Acta Horticulturae Sinica, 2016, 43(8): 1463-1472. (in Chinese)
[7]    POSMYK M M, KURAN H, MARCINIAK K, JANAS K M. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. Journal of Pineal Research, 2008, 45(1): 24-31.
[8]    王英利, 王英娟, 郝建国, 李倩, 贾敬芬. 褪黑素对绿豆在增强UV-B辐射下的防护作用. 光子学报, 2009, 38(10): 2629-2633.
WANG Y L, WANG Y J, HAO J G, LI Q, JIA J F. Defend effects of melatonion on mung bean under UV-B irradiation. Acta Photonica Sinica, 2009, 38(10): 2629-2633. (in Chinese)
[9]    MUKHERJEE S, DAVID A, YADAV S, BALUŠKA Š F, BHATLA S C. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiologia Plantarum, 2014, 152(4): 714-728.
[10]   ARNAO M B, HERNÁNDEZ-RUIZ Á J. Melatonin in plants: more studies are necessary. Plant Signaling & Behavior, 2007, 2(5): 381-382.
[11]   王丽英. 褪黑素预处理对黄瓜幼苗耐盐性的影响[D]. 陕西杨凌: 西北农林科技大学, 2014.
WANG L Y. Effects of melatonin pretreatment on salt tolerances of cucumber seedlings [D]. Yangling, Shaanxi: Northwest Agriculture and Forestry University, 2014. (in Chinese)
[12]   高青海, 王亚坤, 陆晓民, 苗永美. 低温弱光下外源褪黑素对黄瓜幼苗生长及抗氧化系统的影响. 西北植物学报, 2014, 34(8): 1608-1613.
Gao Q H, Wang Y K, Lu X M, Miao Y M. Effects of exogenous melatonin on growth and antioxidant system of leaves in cucumber seedlings under low temperature and weak light stress. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1608-1613. (in Chinese)
[13]   ZHANG L J, JIA J F, XU Y, WANG Y L, Hao J G, LI T K. Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B induced DNA damage. In Vitro Cellular & Developmental Biology, 2012, 48: 275-282.
[14]   ARNAO M B, HERNANDEZ-RUIZ A J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research, 2009, 46(1): 58-63.
[15]   徐向东, 孙艳, 郭晓芹, 孙波, 张坚. 褪黑素对高温胁迫下黄瓜幼苗抗坏血酸代谢系统的影响. 应用生态学报, 2010, 21(10): 2580-2586.
XU X D, SUN Y, GUO X Q, SUN B, ZHANG J. Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress. Chinese Journal of Applied Ecology, 2010, 21(10): 2580-2586. (in Chinese)
[16]   赵娜, 孙艳, 王德玉, 郑俊鶱. 外源褪黑素对高温胁迫条件下黄瓜幼苗氮代谢的影响. 植物生理学报, 2012, 48(6): 557-564.
ZHAO N, SUN Y, WANG D Y, ZHENG J Q. Effects of exogenous melatonin on nitrogen metabolism in cucumber seedlings under high temperature stress. Plant Physiology Communications, 2012, 48(6): 557-564. (in Chinese)
[17]   尹丽媛. 桑葚果实及桑葚酒中褪黑素检测方法的建立与应用研究[D]. 北京: 中国农业大学, 2014.
YIN L Y. The establishment and application of the method for detection of melatonin in mulberry and mulberry wine [D]. Beijing: China Agricultural University, 2014. (in Chinese)
[18]   HALDIMANN P, STRASSER R J. Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynthesis Research, 1999, 62(1): 67-83.
[19]   STRASSER B J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 1997, 52(2): 147-155.
[20]   STRASSER R J, TSIMILLI-MICHAEL M, QIANG S, GOLTSEV V. Simultaneous in vivo recording of prompt and delayed ?uorescence and 820-nm re?ection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. BBA-Bioenergetics, 2010, 1797: 1313-1326.
[21]   SUN Y J, GENG Q W, DU Y P, ZHAI H. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Science, 2017, 256: 65-71.
[22]   BAKER N R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59: 89-113.
[23]   MEHTA P, JAJOO A, MATHUR S, BHARTI S. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiology and Biochemistry, 2010, 48(1): 16-20.
[24]   STRASSER R J, SRIVASTAVA A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and and Photobiology, 1995, 61(1): 32-42.
[25]   LU C, ZHANG J. Effects of water stress on photosystem II photochemistry and its thermo stability in wheat plants. Journal of Experimental Botany, 1999, 50(336): 1199-1206.
[26]   李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6): 559-566.
LI P M, GAO H Y, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology Molecular Biology, 2005, 31(6): 559-566. (in Chinese)
[27]   ZHAO Y, TAN D X, LEI Q, CHEN H, WANG L, LI Q T, KONG J. Melatonin and its potential biological functions in the fruits of sweet cherry. Journal of Pineal Research, 2013, 55(1): 79-88.
[28]   AFREEN F, ZOBAYED S, KOZAI T. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. Journal of Pineal Research, 2006, 41(2): 108-115.
[29]   WANG L, FENG C, ZHENG X D, GUO Y, ZHOU F F, SHAN D Q, LIU X, KONG J. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. Journal of Pineal Research, 2017, 63(3): e12429.
[30]   刘爱荣, 赵可夫. 盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用. 植物生理与分子生物学学报, 2005, 31(4): 389-395.
LIU A R, ZHAO K F. Osmotica accumulation and its role in osmotic adjustment in the llungiella halophila under salt stress. Journal of Plant Physiology and Molecular Biology, 2005, 31(4): 389-395. (in Chinese)
[31]   柳冬香. 盐胁迫对美蕊花幼苗叶片活性氧代谢及清除系统的影响. 福建林学院学报, 2014, 34(2): 171-175.
LIU D X. Effect of salt stress on reactive oxygen and its scavenging system in leaves of Calliandra haematocephala seedlings. Journal of Fujian College of Forestry, 2014, 34(2): 171-175. (in Chinese)
[32]   杨晓英, 刘友良, 罗庆云, 刘兆普. 盐胁迫下野生大豆叶片中 Na+、Cl-积累导致活性氧伤害. 大豆科学, 2003, 22(2): 83-87.
YANG X Y, LIU Y L, LUO Q Y, LIU Z P. Na+, Cl- accumulation in wild soybean leaves under salt stress leads to reactive oxygen species injury. Soybean Science, 2003, 22(2): 83-87. (in Chinese)
[33]   李学孚, 倪智敏, 吴月燕, 李美芹, 刘蓉, 饶慧云. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响. 生态学报, 2015, 35(13): 4436-4444.
LI X F, NI Z M, WU Y Y, LI M Q, LIU R, RAO H Y. Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yin hong’ grape seedlings. Acta Ecologica Sinica, 2015, 35(13): 4436-4444. (in Chinese)
[34]   KALAJI H M, JAJOO A, OUKARROUM A, BRESTIC M, ZIYCAK M, SAMBORSKA I A, LADLE R J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 2016, 38(4): 1-11.
[35]   KRAUSE G H, WETS E. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42(1): 313-349.
[36]   GUISSÉ É B, SRIVASTAVA A, STRASSER R J. The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat stressed leaves. Archs Science Genève, 1995, 48: 147-160.
[37]   KUDOH H, SONOIKE K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002, 215(4): 541-548.
[38]   HUANG W, YANG Y J, HU H, CAO K F, ZHANG S B. Moderate photoinhibition of photosystem II protects photosystem I from photo damage at chilling stress in tobacco leaves. Frontiers in Plant Science, 2016, 7: 182.
[39]   杜天浩, 周小婷, 朱兰英, 张静, 邹志荣. 褪黑素处理对盐胁迫下番茄果实品质及挥发性物质的影响. 食品科学, 2016, 37(15): 69-76.
DU T H, ZHOU X T, ZHU L Y, ZHANG J, ZOU Z R. Effect of melatonin treatment on tomato fruit quality and volatile compounds under salt stress. Food Science, 2016, 37(15): 69-76. (in Chinese)
[40]   TAN D X, MANCHESTER L C, REITER R J, QI W B, KARBOWNIK M, CALVO J R. Significance of melatonin in antioxidative defense system: reactions and products. Biological Signals Receptors, 2000, 9: 137-159.
[41]   ZHANG N, ZHAO B, ZHANG H J, WEEDA S, YANG C, YANG Z C, GUO Y D. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 2013, 54(1): 15-23.
[42]   SHI H, CHAN Z. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANAJournal of Pineal Research, 2014, 57(2): 185-191.6-activated C-REPEAT- BINDING FACTOR pathway is essential for melatonin- mediated freezing stress resistance in Arabidopsis.
[43]   SHI H, JIANG C, YE T, TAN D X, REITER R J, ZHANG H, CHAN Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in Bermuda grass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany, 2015, 66(3): 681-694.
[44]   ZHANG H J, ZHANG N, YANG R C, WANG L, SUN Q Q, LI D B, GUO Y D. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 2014, 57(3): 269-279.
[45]   ARNAO M B, HERNÁNDEZ-RUIZ Á J. Functions of melatonin in plants: a review. Journal of Pineal Research, 2015, 59(2): 133-150.
[46]   WEI W, LI Q T, CHU Y N, REITER R J, YU X M, ZHU D H, CHEN S Y. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2015, 66(3): 695-707.
[47]   杨小龙, 须晖, 李天来, 王蕊. 外源褪黑素对干旱胁迫下番茄叶片光合作用的影响. 中国农业科学, 2017, 50(16): 3186-3195.
YANG X L, XU H, LI T L, WANG R. Effects of exogenous melatonin on photosynthesis of tomato leaves under drought stress. Scientia Agricultura Sinica, 2017, 50(16): 3186-3195. (in Chinese)
[48]   HUANG W, YANG Y J, HU H, CAO K F, ZHANG S B. Sustained diurnal stimulation of cyclic electron flow in two tropical tree species Erythrophleum guineense and Khaya ivorensis. Frontiers in Plant Science, 2016, 7: 1068.
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[4] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[5] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[6] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[7] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[8] JIA ShanShan,LUO QiangWei,LI ShaSha,WANG YueJin. Optimization of Embryo Rescue Technique and Production of Potential Seedless Grape Germplasm with Rosy Aroma [J]. Scientia Agricultura Sinica, 2020, 53(16): 3344-3355.
[9] SUN Hong,JIANG YiWen,YU Xin,XIANG GuangQing,YAO YuXin. Effects of Local Root Zone Salinity on Grapevine Injury, Na + Accumulation and Allocation of Carbon and Nitrogen [J]. Scientia Agricultura Sinica, 2019, 52(7): 1173-1182.
[10] GENG QingWei,XING Hao,ZHAI Heng,JIANG EnShun,DU YuanPeng. Effects of Different Light Intensity and Temperature on PSII Photochemical Activity in ‘Cabernet Sauvignon’ Grape Leaves Under Ozone Stress [J]. Scientia Agricultura Sinica, 2019, 52(7): 1183-1191.
[11] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[12] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[13] GONG XiangWei,DANG Ke,LI Jing,LUO Yan,ZHAO Guan,YANG Pu,GAO XiaoLi,GAO JinFeng,WANG PengKe,FENG BaiLi. Effects of Different Intercropping Patterns on Photosynthesis Production Characteristics and Water Use Efficiency of Proso Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4139-4153.
[14] SHI XiangBin,WANG XiaoDi,WANG BaoLiang,WANG ZhiQiang,JI XiaoHao,WANG XiaoLong,LIU FengZhi,WANG HaiBo. Requirement Characteristics of Mineral Elements in Different Developmental Phases of Kyoho Grapevine [J]. Scientia Agricultura Sinica, 2019, 52(15): 2686-2694.
[15] SU LanXi,BAI TingYu,YU Huan,WU Gang,TAN LeHe. Effects of Salt Stress on Seedlings Growth, Photosynthesis and Chlorophyll Fluorescence of Two Species of Artocarpus [J]. Scientia Agricultura Sinica, 2019, 52(12): 2140-2150.
Full text



No Suggested Reading articles found!