Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4139-4153.doi: 10.3864/j.issn.0578-1752.2019.22.018

• CULTIVATION·PHYSIOLOGY • Previous Articles     Next Articles

Effects of Different Intercropping Patterns on Photosynthesis Production Characteristics and Water Use Efficiency of Proso Millet

GONG XiangWei1,DANG Ke1,LI Jing1,LUO Yan1,ZHAO Guan1,YANG Pu1,2,GAO XiaoLi1,2,GAO JinFeng1,2,WANG PengKe1,2,FENG BaiLi1,2()   

  1. 1 College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi;
    2 Shaanxi Research Station of Crop Gene Resources & Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, Shaanxi;
  • Received:2019-05-13 Accepted:2019-07-11 Online:2019-11-16 Published:2019-11-16
  • Contact: BaiLi FENG E-mail:fengbaili@nwsuaf.edu.cn

Abstract:

【Objective】The propose of this study was to select the suitable proso millet-mung bean intercropping patterns in semi-arid region of northwest through studying the effects of different intercropping systems on the photosynthetic production and water use efficiency of proso millet, which can provide the basis for high yield, high efficiency production and ecological environmental protection.【Method】Field experiments were conducted in 2017 and 2018 in Yulin Modern Agriculture Demonstration Garden, Shaanxi. Four intercropping patterns were designed, 2 rows proso millet and 2 rows mung bean (2P2M), 4 rows proso millet and 2 rows mung bean (4P2M), 4 rows proso millet and 4 rows mung bean (4P4M), 2 rows proso millet and 4 rows mung bean (2P4M). The treatments containing proso millet (SP) and mung bean (SM) served as the controls. Photosynthetic characteristics and chlorophyll fluorescence parameters of leaves of proso millet as well as soil water distribution and utilization efficiency were conducted and the yield benefit was analyzed.【Result】The chlorophyll content, net photosynthesis rate, stomatal conductance, and transpiration rate of the flag leaf at anthesis stage was increased by 2.9%-13.5%, 5.0%-32.3%, 1.3%-6.3%, and 2.1%-8.7% than the single-plant systems, and thus the production capacity in the leaves of proso millet was improved. Meanwhile, proso millet//mung bean intercropping significantly increased the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), the photochemical quenching coefficient (qL), the actual PSII efficiency (ΦPSII) and decreased non-photochemical quenching coefficient (NPQ). This led to enhance the ability to capture and transform light energy, reducing ineffective light leakage loss and heat loss, and improving the utilization ability of high intensity light for intercropping systems. The soil water content was significantly reduced and the reduction in the middle layer (60-140 cm) was significantly higher than that in the upper layer (0-40 cm) and the lower layer (160-200 cm). The changes in soil deep structure were related to the root depth collocation. Intercropping could improve the water use efficiency, and 2P2M, 4P2M, 4P4M and 2P4M increased by 11.5%, 2.3%, 20.8% and 30.1% compared with monoculture, respectively. Further, the biomass and yield of proso millet under intercropping were also significantly increased. The yield under 4P2M and 2P4M intercropping was 6.7% and 36.8% higher than the monoculture.【Conclusion】Photosynthetic production capacity of proso millet could be promoted by proso millet//mung bean intercropping, and land use efficiency in the semi-arid region of northwest could be improved. Under this experimental condition, 2P4M intercropping system was the suitable combination for the northwest dry farming areas to promote the application.

Key words: proso millet, intercropping, photosynthesis characteristics, chlorophyll fluorescence, water use efficiency

Fig. 1

Daily rainfall and mean temperature in growth period of the experiment station"

Fig. 2

Layouts in proso millet-mung bean intercropping systems"

Table 1

Effects of different intercropping patterns on yield and components of proso millet"

年份
Year
处理
Treatment
单株穗数
Panicles number (No./plant)
穗长
Panicle length (cm)
单株粒重
Grain weight (g/plant)
千粒重
1000-grain weight(g)
产量
Grain yield (kg·hm-2)
2017 SP 4.0±0.7d 39.2±1.3cd 24.0±1.9e 8.61±0.0d 4448.6±135.5d
2P2M 4.8±0.8bc 41.2±2.1c 35.3±1.1c 8.89±0.1bc 4968.9±87.2bc
4P2M 4.3±0.4c 40.1±1.0c 32.5±1.6d 8.81±0.0c 4696.2±76.8c
4P4M 4.9±0.2b 42.2±0.8b 40.9±0.4b 8.92±0.1b 5131.6±73.5b
2P4M 5.8±0.4a 44.0±1.8a 46.6±2.5a 9.02±0.0a 5367.8±56.8a
2018 SP 3.4±0.9b 46.4±2.2a 29.0±1.3d 8.66±0.1c 4205.7±257.7d
2P2M 4.6±2.0ab 47.0±2.5a 41.8±0.8b 9.00±0.0b 5153.8±150.7b
4P2M 4.4±1.1ab 46.6±2.6a 36.7±0.7c 9.03±0.1ab 4539.8±144.6c
4P4M 5.2±1.5ab 47.2±1.9a 43.2±0.7b 9.10±0.1ab 5249.6±147.3b
2P4M 6.2±1.1a 47.2±1.6a 50.4±1.2a 9.18±0.0a 6471.2±236.6a
变异来源Variation source
年份Year NS ** ** ** *
处理Treatment ** * ** ** *
年份×处理Year × Treatment NS NS NS NS NS

Table 2

Effects of different intercropping patterns on yield and components of mung bean"

年份
Year
处理
Treatment
分枝数
Branch number (No./plant)
荚数
Pods number (No./plant)
单株粒重
Grain weight (g/plant)
百粒重
100-grain weight (g)
产量
Grain yield (kg·hm-2)
2017 SM 14.3±2.2a 32.4±1.8a 11.6±0.7a 6.39±0.7a 1297.3±140.3a
2P2M 8.6±1.8cd 22.1±1.7c 4.9±0.3d 6.01±1.3a 607.2±38.8d
4P2M 7.6±1.2d 19.8±1.5d 4.2±0.3e 5.95±0.6a 573.1±79.6e
4P4M 10.6±0.7bc 23.7±1.1c 6.0±0.2c 6.11±0.6a 722.3±67.5c
2P4M 11.9±0.4b 27.8±1.3b 7.3±0.2b 6.23±0.4a 845.5±43.7b
2018 SM 15.3±2.4a 52.3±9.6a 16.3±1.8a 7.13±0.2a 1483.7±36.5a
2P2M 11.8±1.7b 35.3±8.8b 10.0±1.0bc 6.99±0.3ab 920.5±56.3b
4P2M 10.8±1.5b 31.5±11.7b 8.6±1.2c 6.30±0.2b 908.3±64.0b
4P4M 12.5±1.7ab 37.8±4.1b 10.3±1.5bc 6.41±0.6ab 957.6±59.5b
2P4M 12.0±2.8ab 42.8±5.9ab 11.2±2.2b 6.65±0.8ab 973.5±57.6b
变异来源Variation source
年份Year NS ** ** NS **
处理Treatment ** ** ** NS **
年份×处理Year × Treatment NS NS NS NS *

Table 3

Effects of different intercropping patterns on crop economic benefits and LER"

年份Year 处理
Treatment
经济效益Economic benefits 土地当量比
Land equivalent ratio
农资总投入
Total material input (Yuan/hm2)
总产值
Output value
(Yuan/hm2)
经济效益
Economic benefit (Yuan/hm2)
产投比
Input-output ratio
2017 SP 900 10676.4±325.3a 9776.4±325.3a 11.9±0.4a
SM 1500 10378.8±83.0b 8878.8±83.0c 6.9±0.1f
2P2M 1200 9385.3±122.6d 8185.3±122.6d 7.8±0.1d 1.59±0.03c
4P2M 1100 10294.5±167.2bc 9194.5±167.2b 9.4±0.2b 1.50±0.02d
4P4M 1200 10037.7±93.6c 8873.7±93.6c 8.4±0.1c 1.71±0.04b
2P4M 1300 9519.0±68.1d 8219.0±68.1d 7.3±0.1e 1.86±0.02a
2018 SP 850 10934.8±670.0bc 10084.8±670.0a 12.9±0.8a
SM 1700 11869.7±292.1a 10169.7±292.1a 7.0±0.2d
2P2M 1275 10842.0±346.7bc 9567.0±346.7a 8.5±0.3c 1.86±0.18b
4P2M 1133 10593.9±415.3c 9460.9±415.3a 9.4±0.4b 1.71±0.20b
4P4M 1275 11133.62±365.7bc 9858.6±365.7a 8.7±0.3bc 1.91±0.18ab
2P4M 1558 11449.3±522.5ab 9891.3±522.5a 7.3±0.3d 2.22±0.29a

Fig. 3

Effects of different intercropping patterns on the shoot biomass of proso millet Small letters among different treatments within each column are significantly different at 0.05 level. The same as below"

Fig. 4

Effects of different intercropping patterns on the chlorophyll content (SPAD) of proso millet"

Fig. 5

Effects of different intercropping patterns on the gas exchanges of proso millet A: Net photosynthesis rate (Pn); B: Stomatal conductance (Gs); C: Intercellular CO2 concentration (Ci); D: Transpiration rate (Tr)"

Fig. 6

Effects of different intercropping patterns on the chlorophyll fluorescence parameters of proso millet A: The maximal photochemical efficiency of photosystem Ⅱ (Fv/Fm); B: The photochemical quenching coefficient (qL); C: The actual PSⅡ efficiency (ΦPSⅡ); D: Non-photochemical quenching coefficient (NPQ)"

Fig. 7

Effects of different intercropping patterns on the soil water content of proso millet"

Fig. 8

Effects of different intercropping patterns on the WUE of proso millet"

Table 4

Correlation coefficients between photosynthetic production, water use efficiency and grain yield of proso millet"

指标
Index
叶绿素相对含量
SPAD
净光合速率
Pn
最大光化学效率
Fv/Fm
实际光化学效率
ΦPSⅡ
生物量
Biomass
水分利用效率
WUE
单株穗数Panicles number 0.734** 0.612* 0.618* 0.723** 0.642* 0.570*
穗长Panicle length 0.573* 0.657* 0.577* 0.530* 0.614* 0.567*
单株粒重Grain weight 0.946** 0.958** 0.917** 0.956** 0.982** 0.941**
千粒重1000-grain weight 0.820** 0.822** 0.720** 0.820** 0.838** 0.716*
产量Grain yield 0.940** 0.945** 0.895** 0.908** 0.964** 0.975**
[1] 屈洋, 苏旺, 李翠, 高金锋, 高小丽, 王鹏科, 冯佰利, 柴岩 . 陕北半干旱区沟垄覆膜集水模式下糜子边际效应及生理特性. 应用生态学报, 2014,25(3):776-782.
QU Y, SU W, LI C, GAO J F, GAO X L, WANG P K, FENG B L, CHAI Y . Border effect and physiological characteristics of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in the semi-arid region of Northern Shaanxi, China. Chinese Journal of Applied Ecology, 2014,25(3):776-782. (in Chinese)
[2] 王延平, 邵明安 . 陕北黄土丘陵沟壑区人工草地的土壤水分植被承载力. 农业工程学报, 2012,28(18):134-141.
WANG Y P, SHAO M A . Vegetation soil water carrying capacity of artificial pasture in loess region in Northern Shaanxi, China. Chinese Society of Agricultural Engineering, 2012,28(18):134-141. (in Chinese)
[3] DUCHENE O, VIAN J F, CELETTE F . Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment, 2017,240:148-161.
[4] ZHANG L, VAN DER WERF W, ZHANG S, LI B, SPIERTZ J . Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research, 2007,103(3):178-188.
[5] 强小嫚, 孙景生, 刘浩, 宁慧峰, 吴晓磊 . 滴灌定额对西瓜/棉花间作产量及水分生产效率的影响. 农业工程学报, 2016,32(19):113-119.
ZHANG X M, SUN J S, LIU H, NING H F, WU X L . Effects of drip irrigation quota on yield and water productivity in watermelon-cotton intercropping system. Chinese Society of Agricultural Engineering, 2016,32(19):113-119. (in Chinese)
[6] 柴强, 杨彩红, 黄高宝 . 交替灌溉对西北绿洲区小麦间作玉米水分利用的影响. 作物学报, 2011,37(9):1623-1630.
CHAI Q, YANG C H, HUANG G B . Water use characteristics of alternately irrigated wheat/maize intercropping in oasis region of northwestern China. Acta Agronomica Sinica, 2011,37(9):1623-1630. (in Chinese)
[7] LI B, LI Y Y, WU H M, ZHANG F F, LI C J, LI X X, LAMBERS H, LI L . Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(23):6496-6501
[8] 王小林, 徐伟洲, 张雄, 张岁岐 . 黄土塬区夏玉米物质生产及水分利用对品种间作竞争的响应. 中国生态农业学报, 2018,26(3):377-387.
WANG X L, XU W Z, ZHANG X, ZHANG S Q . Responses of dry matter distribution and water use of summer maize ( Zea mays L.) to intercropped cultivars competition on the Loess Plateau of China. Chinese Journal of Eco-Agriculture, 2018,26(3):377-387. (in Chinese)
[9] REN Y Y, LIU J J, WANG Z L, ZHANG S Q . Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. European Journal of Agronomy, 2016,72:70-79.
[10] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲 . 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017,50(19):3702-3713.
GAO Y L, SUN Z X, BAI W, FENG L S, YANG N, CAI Q, FENG C, ZHANG Z . Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning Province. Scientia Agricultura Sinica, 2017,50(19):3702-3713. (in Chinese)
[11] 牛伊宁, 刘冬梅, 罗珠珠, 柴强 . 不同供水水平对玉米/豌豆间作系统作物耗水特征的影响. 干旱地区农业研究, 2018,36(1):83-88.
NIU Y N, LIU D M, LUO Z Z, CHAI Q . Characteristics of crop water consumption under maize/pea intercropping systems with different irrigation levels. Agricultural Research in the Arid Areas, 2018,36(1):83-88. (in Chinese)
[12] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁 . 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014,45(1):129-136.
LÜ Y, WU P T, CHEN X L, WANG Y B, ZHAO X N . Effect of above-and below-ground interactions on maize/soybean intercropping advantage. Chinese Society for Agricultural Machinery, 2014,45(1):129-136. (in Chinese)
[13] YANG F, LIAO D P, WU X L, GAO R C, FAN Y F, RAZA M A, WANG X C, YONG T W, LIU W G, LIU J, DU J B, SHU K, YANG W Y . Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017,203:16-23.
[14] 焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东, 李增嘉 . 玉米花生间作复合体系光合特性的研究. 作物学报, 2006,32(6):917-923.
JIAO N Y, NING T Y, ZHAO C, WANG Y, SHI Z Q, HOU L T, FU G Z, JIANG X D, LI Z J . Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica, 2006,32(6):917-923. (in Chinese)
[15] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海 . 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015,41(9):1426-1434.
FENG X M, YANG Y, REN C Z, HU Y G, ZENG Z H . Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agronomica Sinica, 2015,41(9):1426-1434. (in Chinese)
[16] 柴岩 . 中国小杂粮产业发展报告. 北京: 中国农业科学技术出版社, 2007.
CHAI Y. Report for Chinese Minor Grain Crops Industry Development. Beijing: China Agricultural Science and Technology Press, 2007. (in Chinese)
[17] 柴岩, 冯佰利, 孙世贤 . 中国小杂粮品种. 北京: 中国农业科学技术出版社, 2007.
CHAI Y, FENG B L, SUN S X. Varieties of Minor Grain Crops in China. Beijing: China Agricultural Science and Technology Press, 2007. (in Chinese)
[18] 宫香伟, 韩浩坤, 张大众, 李境, 王孟, 薛志和, 杨璞, 高小丽, 冯佰利 . 氮肥运筹对糜子生育后期干物质积累与转运及叶片氮素代谢的调控效应. 中国农业科学, 2018,51(6):1045-1056.
GONG X W, HAN H K, ZHANG D Z, LI J, WANG M, XUE Z H, YANG P, GAO X L, FENG B L . Effects of nitrogen fertilizer on dry matter accumulation, transportation and nitrogen metabolism in functional leaves of broomcorn millet at late growth stage. Scientia Agricultura Sinica, 2018,51(6):1045-1056. (in Chinese)
[19] LIU Y X, ZHANG W P, SUN J H, Li X F, CHRISTIE P, LI L . High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 2015,397(1/2):387-399.
[20] ZHANG W P, LIU G C, SUN J H, ZHANG L Z, WEINER J, LI L . Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping. Plant and Soil, 2015,397(1/2):227-238.
[21] XIA H Y, ZHAO J H, SUN J H, XUE Y F, EAGLING T, BAO X G, ZHANG F S, Li L . Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Science China-Life Sciences, 2014,56:823-834.
[22] MAXWELL K, JOHNSON G N . Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 2000,51:659-668.
[23] WANG Z K, WU P T, ZHAO X N, GAO Y, CHEN X L . Water use and crop coefficient of the wheat-maize strip intercropping system for an arid region in northwestern China. Agricultural Water Management, 2015,161:77-85.
[24] ZHANG D S, ZHANG L Z, LIU J G, Han S, WANG Q, EVERS J C, LIU J, VAN DER W, LI L . Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Research, 2014,169:132-139.
[25] 宫香伟, 刘春娟, 冯乃杰, 郑殿峰, 王畅 . S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响. 植物生理学报, 2017,53(10):1867-1876.
GONG X W, LIU C J, FENG N J, ZHENG D F, WANG C . Effects of plant growth regulators S3307 and DTA-6 on photosynthetic characteristics and yield in soybean canopy. Plant Physiology Journal, 2017,53(10):1867-1876. (in Chinese)
[26] 焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛 . 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016,27(9):2959-2967.
JIAO N Y, LI Y H, YANG X, YIN F, MA C, QI F G, LIU L, XIONG Y . Effects of maize /peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chinese Journal of Applied Ecology, 2016,27(9):2959-2967. (in Chinese)
[27] 滕菲, 李盛有, 饶德民, 姚兴东, 张惠君, 敖雪, 王海英, MARTIN S S, 谢甫绨 . 超高产大豆砧木对不同年代育成品种光合生理指标和产量性状的影响. 中国农业科学, 2016,49(23):4531-4543.
TENG F, LI S Y, RAO D M, YAO X D, ZHANG H J, AO X, WANG H Y, MARTIN S S, XIE F T . Effects of super-high-yield soybean cultivars as rootstock on some physiological and yield traits of cultivars released in different decades. Scientia Agricultura Sinica, 2016,49(23):4531-4543. (in Chinese)
[28] FARQUHAR G D, SHARKEY T D . Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982,33(1):317-345.
[29] 焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉 . 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013,33(14):4324-4330.
JIAO N Y, NING T Y, YANG M K, FU G Z, YIN F, XU G W, LI Z J . Effects of maize‖peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 2013,33(14):4324-4330. (in Chinese)
[30] CORDON G, LAGORIO M G, PARUELO J M . Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence. Journal of Plant Physiology, 2016,199:100-110.
[31] LI Y B, SONG H, ZHOU L, XU Z Z, ZHOU G S . Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. Agricultural Water Management, 2019,211:190-201.
[32] 贾曼曼, 肖靖秀, 汤利, 郑毅 . 不同施氮量对小麦蚕豆间作作物产量及其光合特征的影响. 云南农业大学学报(自然科学), 2017,32(2):350-357.
JIA M M, XIAO J X, TANG L, ZHENG Y . Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping. Journal of Yunnan Agricultural University (Natural Science), 2017,32(2):350-357. (in Chinese)
[33] 杜成凤, 李潮海, 刘天学, 赵亚丽 . 遮荫对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011,31(21):6633-6640.
DU C F, LI C H, LIU T X, ZHAO Y L . Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecologica Sinica, 2011,31(21):6633-6640. (in Chinese)
[34] 毕焕改, 王美玲, 姜振升, 董绪兵, 艾希珍 . 亚适温弱光对黄瓜幼苗光合酶活性和基因表达的影响. 应用生态学报, 2011,22(11):2894-2900.
BI H G, WANG M L, JIANG Z S, DONG X B, AI X Z . Impacts of suboptimal temperature and low light intensity on the activities and gene expression of photosynthetic enzymes in cucumber seedling leaves. Chinese Journal of Applied Ecology, 2011,22(11):2894-2900. (in Chinese)
[35] 张凤云, 吴普特, 赵西宁, 成雪峰 . 间套作提高农田水分利用效率的节水机理. 应用生态学报, 2012,23(5):1400-1406.
ZHANG F Y, WU P T, ZHAO X N, CHENG X F . Water-saving mechanisms of intercropping system in improving cropland water use efficiency. Chinese Journal of Applied Ecology, 2012,23(5):1400-1406. (in Chinese)
[36] 赵英, 张斌, 王明珠 . 农林复合系统中物种间水肥光竞争机理分析与评价. 生态学报, 2006,26(6):1792-1801.
ZHAO Y, ZHANG B, WANG M Z . Assessment of competition for water, fertilizer and light between components in the alley cropping system. Acta Ecologica Sinica, 2006,26(6):1792-1801. (in Chinese)
[37] SHEN Y F, ZHANG Y, LI S Q . Nutrient effects on diurnal variation and magnitude of hydraulic lift in winter wheat. Agricultural Water Management, 2011,98:1589-1594.
[38] 宫香伟, 李境, 马洪驰, 陈光华, 王孟, 杨璞, 高金锋, 冯佰利 . 黄土高原旱作区糜子-绿豆带状种植农田小气候特征与产量效应. 应用生态学报, 2018,29(10):3256-3266.
GONG X W, LI J, MA H C, CHEN G H, WANG M, YANG P, GAO J F, FENG B L . Field microclimate and yield for proso millet intercropping with mung bean in the dryland of Loess Plateau, China. Chinese Journal of Applied Ecology, 2018,29(10):3256-3266. (in Chinese)
[39] WANG Q S, SUN D B, HAO H, ZHAO X J, HAO W P, LIU Q . Photosynthetically active radiation determining yields for an intercrop of maize with cabbage. European Journal of Agronomy, 2015,69:32-40.
[40] YIN W, CHEN G P, FENG F X, GUO Y, HU F L, CHEN G D, ZHAO C, YU A Z, CHAI Q . Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Research, 2017,204:42-51.
[41] WANG D Y, XU C M, CHEN S, TIAO L X, ZHANG X F . Photosynthesis and dry matter accumulation in different chlorophyll- deficient rice lines. Journal of Integrative Agriculture, 2012,11(3):397-404.
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[3] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[4] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[5] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[6] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[7] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[8] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[9] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[10] XIAO ShanShan, ZHANG YiFei, YANG KeJun, MING LiWei, DU JiaRui, XU RongQiong, SUN YiShan, LI WeiQing, LI GuiBin, LI ZeSong, LI JiaYu. Effects of Intercropping with Different Maturity Varieties on Grain Filling, Dehydration Characteristics and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310.
[11] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[12] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[13] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[14] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[15] XIONG RuoYu,XIE JiaXin,TAN XueMing,YANG TaoTao,PAN XiaoHua,ZENG YongJun,SHI QingHua,ZHANG Jun,CAI Shuo,ZENG YanHua. Effects of Irrigation Management on Grain Yield and Quality of High-Quality Eating Late-Season Indica Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1512-1524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!