Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3344-3355.doi: 10.3864/j.issn.0578-1752.2020.16.012

• HORTICULTURE • Previous Articles     Next Articles

Optimization of Embryo Rescue Technique and Production of Potential Seedless Grape Germplasm with Rosy Aroma

JIA ShanShan1(),LUO QiangWei2,LI ShaSha1,WANG YueJin1()   

  1. 1College of Horticulture, Northwest Agriculture and Forestry University/State Key Laboratory of Crop Stress Biology in Arid Areas/Ministry of Agriculture Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest, Yangling 712100, Shaanxi
    2Institute of Grapes and Melons on the Research in Xinjiang, Shanshan 838200, Xinjiang
  • Received:2020-01-09 Accepted:2020-06-05 Online:2020-08-16 Published:2020-08-27
  • Contact: YueJin WANG E-mail:jiashans@nwafu.edu.cn;wangyj@nwsuaf.edu.cn

Abstract:

【Objective】The aim of this study was to investigate the grape scent traits to provide important material basis for seedless aroma grape breeding. By exploring the parental genotype, embryo development morphology and growth regulator on embryo rescue efficiency, further optimizing the seedless × muscat scent combined embryo rescue system, and molecular marker technology was used to initially identify seedless traits of hybrid offspring.【Method】Headspace solid phase micro-extraction (HS-SPME) combined with gas chromatography-mass spectrometry technique was used to determine the content of aromatic substances in the grapes of 10 different muscat-scented and non-muscat scented varieties. Excellent aroma varieties were selected as parents, then combined with the previous research results of the group, 13 cross-combinations, including 6 female parents and 5 male parents, were used to obtain new grapevines with seedlessness and aroma. Under aseptic conditions, the ovules were cultured from young fruits in the dark for 8 weeks. The developed hybrid embryos were inoculated in a variety of embryo germination media, with different concentrations and different proportions of hormones to assess and improve the germination rate and germination seedling rate. After the embryo developed into plants, they were placed in the greenhouse for hardening, the survived F1 generation was transplanted to the field. The molecular marker technology was used to select the seedless characters of F1 hybrid lines in the early stage. 【Result】Among 10 table grapes, it was the terpenes that determined the aroma of muscat, which could be detected in 8 muscat scent varieties, and the content of which ranged from 0.0246 to 1.3824. Based on the above evaluation, ‘Muscat of Alexandria’, ‘Shine-Muscat’ and ‘Muscat Hamburg’ were selected to create new seedless aroma germplasm because their high levels of terpenoids. The study showed 1 284 progeny were obtained by embryo rescue technique, and 697 of them survived after transplanting into field. Ruby Seedless and Flame Seedless with a higher seedling rate were suitable as female parent in embryo rescue. Muscat Hamburg and Shine-Muscat proved as the better male parents. Among them, the embryo development rate and seedling formation rate of Ruby seedless × Aishenmeigui were the highest, at 48.59% and 51.71%, respectively. The germination rate was the highest when embryos were inoculated into WPM as based medium, and the growth regulator (1.0 mg?L-1 KT + 0.5 mg?L-1 NAA + 1.0 mg?L-1 ZT) was added, which was 11.33%, higher than the control which was 7.41%. Three molecular markers GLSP1-569, SCF27-2000 and SCC8-1018 were selected for detecting the cross parents and hybrid progenies. The results showed that 27 out of 101 hybrid strains had seedless genes. 【Conclusion】 Muscat of Alexandria and Sunshine-Muscat had a high scent content, and the embryo rescue efficiency was high after crossing with European grapes, which was a suitable scented parent material. Ruby Seedless and Flame Seedless was suitable as female parent. During embryo germination and culture, using WPM medium as the basic medium, adding appropriate concentrations of KT and ZT had a better effect of promoting root growth. The seedless traits of hybrid F1 generation were detected by molecular markers, and the seedless rate was 26.73%. At present, few aroma markers have been developed, so the hybrid offspring obtained in this study could provide an important material basis for the further study of aroma gene markers.

Key words: grapevine, aromatic characteristic, embryo rescue, marker-assisted selection, seedlessness

Table 1

Cross combination configuration"

杂交组合(母本×父本)
Cross combination (♀×♂)
母本Female parent 父本Male parent
种或杂种
Species or hybrid
性状
Characteristic
种或杂种
Species or hybrid
性状
Characteristic
爱神玫瑰×玫瑰香
Aishenmeigui × Muscat Hamburg
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
爱神玫瑰×阳光玫瑰
Aishenmeigui × Shine-Muscat
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented
欧美杂种
V. labruscana ×V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
爱神玫瑰×昆香无核
Aishenmeigui × Kunxiang Seedless
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented
火焰无核×红亚历山大
Flame Seedless × Red Alexander
欧亚种
V. vinifera
无核
Stenospermic
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
火焰无核×阳光玫瑰
Flame Seedless × Shine-Muscat
欧亚种
V. vinifera
无核
Stenospermic
欧美杂种
V. labruscana ×V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
火焰无核×新郁
Flame Seedless × Xinyu
欧亚种
V. vinifera
无核
Stenospermic
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
昆香无核×爱神玫瑰
Kunxiang Seedless × Aishenmeigui
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented
昆香无核×玫瑰香
Kunxiang Seedless × Muscat Hamburg
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
克瑞森无核×玫瑰香
Crimson Seedless × Muscat Hamburg
欧亚种
V. vinifera
无核
Stenospermic
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
克瑞森无核×新郁
Crimson Seedless × Xinyu
欧亚种
V. vinifera
无核
Stenospermic
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
红宝石无核×玫瑰香
Ruby Seedless × Muscat Hamburg
欧亚种
V. vinifera
无核
Stenospermic
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
红宝石无核×红亚历山大
Ruby Seedless × Red Alexander
欧亚种
V. vinifera
无核
Stenospermic
欧亚种
V. vinifera
有核、玫瑰香味
Seeded, Muscat-scented
红宝石无核×爱神玫瑰
Ruby Seedless × Aishenmeigui
欧亚种
V. vinifera
无核
Stenospermic
欧亚种
V. vinifera
无核、玫瑰香味
Stenospermic, Muscat-scented

Table 2

Concentrations of volatile compounds determined in the aroma grapes (μg?g-1)"

化合物
Compound
沙巴珍珠
Pearl of Csaba
早玫瑰
Zao Meiguixiang
玫瑰香
Muscat Hamburg
亚历山大
Muscat of Alexandria
巨玫瑰
Jumeigui
金星无核
Venus Seedless
意大利
Italia
粉红玫瑰
Muscat Rose
阳光玫瑰
Shine-
Muscat
无核白
Thompson Seedless
醛类Aldehydes 总醛 Total aldehydes 8.9300 4.4924 9.2314 4.9050 15.8080 15.7184 8.0026 10.1754 2.1530 15.5756
醇类 Alcohols 总醇 Total alcohols 2.0900 0.0842 0.2296 1.4376 1.4816 0.3200 0.1754 0.5486 0.5210 0.1138
烯类 Olefins 总烯 Total olefins 0.3522 0.0504 0.0612 0.2074 0.1184 0.1266 0 0.0872 0.0816 0
烷类 Alkenes 总烷 Total alkenes 0.0362 0.0328 0.0098 0.0112 1.8162 0.2784 0.0154 0.0314 0.0588 0.3464
酮类 Ketones 总酮 Total ketones 0 0 0.0848 0.0076 0 0.0234 0.0382 0.0122 0 0
酯类 Esters 总酯 Total esters 0 0 0 0.1202 0.6918 0.0084 0 0.0122 0.0094 0
酸类 Acids 总酸 Total acids 0 0 0 0.0328 0 0.0116 0.0272 0 0 0
萜烯类
Terpenes
香茅醇 Citronellol 0.2912 0.0062 0 0 0.3490 0 0 0 0 0
香叶醇 Geraniol 0.4432 0.0152 0.0088 0.1524 0.6448 0 0.0246 0.0446 0 0
香叶醛 Citral 0.0608 0.0024 0.0286 0.0244 0 0 0 0 0
里那醇 Linalool 0.5532 0.0396 0.1656 1.0790 0.0980 0 0 0.1184 0.4812
松油醇 Terpineol 0.0340 0 0 0 0 0 0 0 0 0
à-松油醇 à-Terpineolα- 0 0 0 0.0102 0 0 0.0156 0 0
脱氢芳樟醇 1,5,7-Octatrien-3-ol, 3,7- dimethyl 0 0 0 0.0035 0 0 0 0 0 0
总萜烯Total terpenes 1.3824 0.0634 0.1744 1.2636 1.1264 0 0.0246 0.1788 0.4812 0
其他 Others 0.0234 0.0274 0.0374 0.0454 0.2674 0.0516 0.0554 0.1038 0.0076 0.0194
总挥发性物质含量
Total volatile matter content
12.8142 4.7506 9.8286 8.0308 21.3098 16.5384 8.3388 11.1496 3.3126 16.0552

Table 3

The result of embryo rescue for breeding seedlessness with aroma grapevine"

杂交组合
Cross
果粒数
Number of berries
胚珠数
Number of cultured ovule
发育胚Developed embryos 成苗Plantlets formation
数量 Number 占比 Rate (%) 数量 Number 占比 Rate (%)
爱神玫瑰×玫瑰香
Aishenmeigui × Muscat Hamburg
285 508 75 15.69 14 18.67
爱神玫瑰×阳光玫瑰
Aishenmeigui × Shine-Muscat
1504 2086 335 16.06 79 23.58
爱神玫瑰×昆香无核
Aishenmeigui × Kunxiang Seedless
620 750 71 9.47 17 23.49
火焰无核×红亚历山大
Flame Seedless × Red Alexander
925 1208 133 11.01 50 37.59
火焰无核×阳光玫瑰
Flame Seedless × Shine-Muscat
638 922 98 10.80 20 20.41
火焰无核×新郁
Flame Seedless × Xinyu
665 635 34 5.48 8 23.53
昆香无核×爱神玫瑰
Kunxiang Seedless × Aishenmeigui
2050 2184 305 13.97 70 22.95
昆香无核×玫瑰香
Kunxiang Seedless × Muscat Hamburg
385 405 102 25.19 0 0
克瑞森无核×玫瑰香
Crimson Seedless × Muscat Hamburg
435 441 19 4.31 1 5.26
克瑞森无核×新郁
Crimson Seedless × Xinyu
635 540 16 5.61 1 6.25
红宝石无核×玫瑰香
Ruby Seedless × Muscat Hamburg
1160 1895 395 20.84 186 47.09
红宝石无核×红亚历山大
Ruby Seedless × Red Alexander
1308 2956 763 25.81 249 32.63
红宝石无核×爱神玫瑰
Ruby Seedless × Aishenmeigui
1243 2486 1139 48.59 589 51.71
合计 Total 11853 17016 3485 20.48 1284 36.84

Table 4

Effect of different growth regulators on plant development"

杂交组合
Cross
处理组
Treatment
生长调节剂成分
Exogenous hormone (mg·L-1)
胚珠数
Number of cultured ovules
发育胚
Developed embryos
萌发
Germination
2,4-D KT ZT NAA 数量Number 占比 Rate (%) 数量Number 占比 Rate (%)
昆香无核×爱神玫瑰
Kunxiang Seedless × Aishenmeigui
T1 0 0 0 0 135 22 16.30b 10 7.41a
T2 0 1 1 0.5 150 33 22.00a 17 11.33a
T3 0 2 2 1 150 26 17.33b 14 9.33a
T4 1 0 1 0.5 150 7 4.67bc 1 0.67b
T5 1 1 2 0 132 7 5.30b 2 1.52b
T6 1 2 0 0.5 140 1 0.72c 1 0.72b
T7 2 0 2 0.5 150 10 6.67b 2 1.33b
T8 2 1 0 1 150 4 2.67c 1 0.67b
T9 2 2 1 0 150 6 4.00bc 1 0.67b

Fig. 1

Growth and development of hybrid embryos of Kunxiang Seedless × Aishenmeigui A-C: The growth and development of hybrid embryos of Kunxiang Seedless × Aishenmeigui inoculated on control medium, D-F: The growth and development of hybrid embryos of Kunxiang Seedless × Aishenmeigui inoculated on treatment 2 medium"

Table 5

Embryo germination and plantlet development in vitro of different stages of embryogenesis"

杂交组合
Cross
胚类型
Embryo code
接种胚数Cultured embryos 发育胚Developed embryos 成苗Plantlets formation
数量 Number 占比 Rate (%) 数量 Number 占比 Rate (%) 数量Number 占比 Rate (%)
昆香无核×爱神玫瑰
Kunxiang Seedless × Aishenmeigui
G 55 47.41 23 41.82 12 21.82
H 26 22.41 22 84.62 6 23.08
F 29 25.00 26 89.66 14 48.28
C 2 1.72 2 100.00 2 100.00
A 4 3.45 4 100.00 1 25.00
红宝石无核×玫瑰香
Ruby Seedless × Muscat Hamburg
G 77 39.49 32 41.56 17 22.08
H 5 2.56 2 40.00 1 20.00
F 106 54.36 96 90.57 62 58.49
C 4 2.05 3 75.00 3 75.00
A 3 1.54 1 33.33 0 0

Fig. 2

Molecular marker-assisted selection of parents with grapevine seedlessness gene A: The detection of parents with seedlessness gene using GSLP1-569 probe; B: Schematic the detection of parents with grapevine seedlessness gene using marker SCF27-2000; C: Schematic the detection of parents with grapevine seedlessness gene using marker SCC8. M: 2K plus Marker; 1: Flame Seedless; 2: Kunxiang Seedless; 3: Crimson Seedless; 4: Ruby Seedless; 5: Aishenmeigui; 6: Muscat Hamburg; 7: Shine-Muscat. “+” means the presence of specific bands, “-” means the absence of specific bands. The same as below"

Fig. 3

Molecular marker-assisted selection of hybrid progeny of Ruby Seedless × Muscat Hamburg cross with seedlessness gene A: The probe of GSLP1-569 linked to seedlessness gene; B: The molecular marker of SCF27-2000 linked to seedlessness gene; C: The molecular marker of SCC8-1018 linked to seedlessness gene; 1-41: hybrid progeny seedlings of the cross Ruby Seedless × Muscat Hamburg"

Fig. 4

Molecular marker-assisted selection of hybrid progeny seedlings of the cross Aishenmeigui × Muscat Hamburg with grapevine seedlessness gene A: The molecular marker of SCF27-2000 linked to seedlessness gene; B: The molecular marker of SCC8-1018 linked to seedlessness gene; 1-14: Hybrid progeny seedlings of the cross Aishenmeigui × Muscat Hamburg"

Fig. 5

Molecular marker-assisted selection of hybrid progeny seedlings of the cross ‘Kunxiang Seedless’× ‘Aishenmeigui’ with grapevine seedlessness gene A: The molecular marker of SCF27-2000 linked to seedlessness gene; B: The molecular marker of SCC8-1018 linked to seedlessness gene; 1: Kunxiang Seedless; 2: Aishenmeigui; 3-48: Hybrid progeny seedlings of the cross Kunxiang Seedless × Aishenmeigui"

[1] LI S S, LI Z Y, ZHAO Y N, ZHAO J, LUO Q W, WANG Y J. New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers. 3 Biotech, 2019,10(1):4.
pmid: 31824815
[2] LI T M, LI Z Q, YIN X, GUO Y R, WANG Y J, XU Y. Improved in vitro Vitis vinifera L. embryo development of F1 progeny of 'Delight'×'Ruby seedless’ using putrescine and marker-assisted selection. In Vitro Cellular & Developmental Biology-Plant, 2018,54(3):291-301.
[3] LI J, WANG X H, WANG X P, WANG Y J. Embryo rescue technique and its applications for seedless breeding in grape. Plant Cell Tissue and Organ Culture, 2015,120(3):861-880.
doi: 10.1007/s11240-014-0656-4
[4] 王爱玲, 王跃进, 唐冬梅, 张剑侠, 张朝红. 提高无核葡萄胚挽救中幼胚成苗率的研究. 中国农业科学, 2010,43(20):4238-4245.
WANG A L, WANG Y J, TANG D M, ZHANG J X, ZHANG C H. Research on improvement of seedling rate in embryo rescue of seedless grapes. Scientia Agricultura Sinica, 2010,43(20):4238-4245. (in Chinese)
[5] 唐冬梅, 王跃进, 赵荣华, 潘学军, 蔡军社, 张剑侠, 张朝红, 骆强伟. 无核葡萄胚挽救中影响胚发育的因子. 中国农业科学, 2009,42(7):2449-2457.
TANG D M, WANG Y J, ZHAO R H, PAN X J, CAI J S, ZHANG J X, ZHANG C H, LUO Q W. Factors influencing embryo development in embryo rescue of seedless grapes. Scientia Agricultura Sinica, 2009,42(7):2449-2457. (in Chinese)
[6] 李莎莎, 王跃进. 葡萄无核基因及无核育种研究进展. 园艺学报, 2019,46(9):1711-1726.
LI S S, WANG Y J. Advances in seedless gene researches and seedless breeding in grapevine. Acta Horticulturae Sinica, 2019,46(9):1711-1726. (in Chinese)
[7] 唐冬梅. 无核葡萄杂交胚挽救新种质创建与技术完善[D]. 杨凌: 西北农林科技大学, 2010.
TANG D M. Novel germplasm innovation of seedless grapes by embryo rescue and technique improvement[D]. Yangling: Northwest A & F University, 2010. (in Chinese)
[8] TIAN L L, WANG Y J, NIU L, TANG D M. Breeding of disease-resistant seedless grapes using Chinese wild Vitis spp.: I. In vitro embryo rescue and plant development. Scientia Horticulturae, 2008,117(2):136-141.
[9] 史文静, 骆强伟, 王跃进. 无核香味葡萄胚挽救育种研究. 西北植物学报, 2018,38(6):983-993.
SHI W J, LUO Q W, WANG Y J. Breeding grapevine varieties for seedlessness with flavour using embryo rescue. Acta Botanica Boreali-Occidentalia Sinica, 2018,38(6):983-993. (in Chinese)
[10] PAWLISZYN J, PAWLISZYN B, PAWLISZYN M. Solid phase microextraction (SPME). The Chemical Educator, 1997,2(4):1-7.
[11] PERESTRELO R, BARROS A S, ROCHA S M, CÂMARA J S. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta, 2011,85(3):1483-1493.
pmid: 21807213
[12] STEPHAN A, BUCKING M, STEINHART H. Novel analytical tools for food flavours. Food Research International, 2000,33(3/4):199-209.
[13] 魏玲玲, 王武, 陶建敏. 葡萄香气物质研究进展. 中国南方果树. 2018,47(3):159-165.
WEI L L, WANG W, TAO J M. Research progress of aroma substances in grape. South China Fruits, 2018,47(3):159-165. (in Chinese)
[14] GUO D L, ZHAO H L, LI Q, ZHANG G H, JIANG J F, LIU C H, YU Y H. Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Horticulture Research, 2019,6:11.
pmid: 30603096
[15] DUEHOLM B, DREW D P, SWEETMAN C, SIMONSEN H T. In planta and in silico characterization of five sesquiterpene synthases fromVitis vinifera(cv. Shiraz) berries. Planta, 2019,249:59-70.
doi: 10.1007/s00425-018-2986-7 pmid: 30136197
[16] WU Y S, DUAN S Y, ZHAO L P, GAO Z, LUO M, SONG S R, XU W P, ZHANG C X, MA C, WANG S P. Aroma characterization based on aromatic series analysis in table grapes. Scientific Reports, 2016,6(1):31116.
[17] RUIZ-GARCÍAA L, HELLÍN P, FLORES P, FENOLL J. Prediction of Muscat aroma in table grape by analysis of rose oxide. Food Chemistry, 2014,15(4):151-157.
[18] WU Y S, ZHANG W W, SONG S R, XU W P, ZHANG C X, MA C, WANG L, WANG S P. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat' (Vitis labrusca ×V. vinifera). Food Chemistry, 2020,309:125778.
pmid: 31704071
[19] 樊秀彩, 张颖, 姜建福, 孙海生, 李民, 刘崇怀. 近20年来国外鲜食葡萄品种选育进展. 中外葡萄与葡萄酒, 2012(2):53-59.
FAN X C, ZHANG Y, JIANG J F, SUN H S, LI M, LIU C H. Progress in the breeding of fresh grape varieties abroad in recent 20 years. Sino-Overseas Grapevine & Wine, 2012(2):53-59. (in Chinese)
[20] 李铁梅. 'DR'优系软核性状改良及玫瑰香型无核葡萄新种质创制[D]. 杨凌: 西北农林科技大学, 2014.
LI T M. Soft seed traits improvement of ‘DR’ lines and novel germplasm innovation of aroma of muscat seedless grapes[D]. Yangling: Northwest Agriculture and Forestry University, 2014. (in Chinese)
[21] 谭伟, 唐晓萍, 董志刚, 李晓梅. 4个无核鲜食葡萄品种及其亲本果实香气成分分析. 果树学报, 2015,32(3):440-447.
TAN W, TANG X P, DONG Z G, LI X M. Analysis on fruit aromatic compounds of four seedless grape and their parents. Journal of Fruit Science, 2015,32(3):440-447. (in Chinese)
[22] 屈田田, 张剑侠, 骆强伟, 王跃进. 无核葡萄抗寒抗病胚挽救育种应用研究. 果树学报, 2017,34(2):157-165.
QU T T, ZHANG J X, LUO Q W, WANG Y J. A Study on the application of seedless grapevine breeding for cold-hardness and disease-resistance using embryo rescue. Journal of Fruit Science, 2017,34(2):157-165. (in Chinese)
[23] 刘巧. 利用胚挽救技术培育抗寒无核葡萄新种质[D]. 杨凌: 西北农林科技大学, 2015.
LIU Q. Breeding new, cold-resistant, seedless grape germplasm using embryo rescue technology[D]. Yangling: Northwest A&F University 2015. (in Chinese)
[24] PARK S K, MORRISON J C, ADAMS D O, NOBLE A C. Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. Journal of Agricultural and Food Chemistry, 1991,39(3):514-518.
[25] 李华. 葡萄的芳香物质. 中外葡萄与葡萄酒, 2001(6):43-44.
LI H. The flavor component of grapes. Sino-Overseas Grapevine & Wine. 2001(6):43-44. (in Chinese)
[26] 谭伟, 李晓梅, 唐晓萍, 董志刚. 鲜食葡萄杂交后代果实玫瑰香味表型的遗传倾向初报. 中外葡萄与葡萄酒, 2013(4):6-9.
TAN W, LI X M, TANG X P, DONG Z G. Preliminary study on the inheritance of the rose fragrance phenotype in hybrids of table grapes. Sino-Overseas Grapevine & Wine, 2013(4):6-9. (in Chinese)
[27] 张剑侠, 牛茹萱. 无核葡萄胚挽救技术的研究现状与展望. 园艺学报, 2013,40(9):1645-1655.
ZHANG J X, NIU R X. The present situation and prospect of embryo rescue technique research in seedless grape breeding. Acta Horticulturae Sinica, 2013,40(9):1645-1655. (in Chinese)
[28] 李桂荣. 无核葡萄胚胎发育的生理特性和胚挽救育种技术的研究[D]. 杨凌: 西北农林科技大学, 2013.
LI G R. Studies on the physiological characteristics of seedless grape embryo development and embryo rescue breeding technology[D]. Yangling: Northwest A & F University, 2013. (in Chinese)
[29] 李志瑛. 无核葡萄胚挽救育种研究[D]. 杨凌: 西北农林科技大学, 2018.
LI Z Y. Study on breeding for seedless grape varieties using embryo rescue[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[30] 徐可遥. 利用胚挽救技术选育香味无核葡萄新种质[D]. 杨凌: 西北农林科技大学, 2018.
XU K Y. Development of novel muscat seedless grapevine germplasm by embryo rescue[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[31] 赵雅楠, 骆强伟, 王跃进. 利用胚挽救技术创制无核抗寒葡萄新种质. 中国农业科学, 2018,51(21):4119-4130.
doi: 10.3864/j.issn.0578-1752.2018.21.010
ZHAO Y N, LUO Q W, WANG Y J. Breeding for grape germplasm involved in seedlessness with cold-resistant using embryo rescue. Scientia Agricultura Sinica, 2018,51(21):4119-4130. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.21.010
[32] 李志瑛, 骆强伟, 王跃进. 无核葡萄胚挽救育种与杂种后代分子标记辅助选择. 果树学报, 2019,36(1):31-42.
LI Z Y, LUO Q W, WANG Y J. Breeding seedless grapevine via embryo rescue and marker-assisted selection in hybrid progenies. Journal of Fruit Science, 2019, 36(1):31-42. (in Chinese)
[33] 邓向阳, 卫志明. 幼胚长度、2,4-D浓度、光强度等对花生体细胞胚发生的影响及高效再生系统的建立. 植物生理学报, 2000,26(6):525-531.
DENG X Y, WEI Z M. Influence of length of immature embryos excised for culture, con-centration of 2,4-D, light intensity and other factors on somatic embryogenesis and establishment of a highly efficient system for regeneration of peanut plantlets. Acta Phytophysiologica Sinica, 2000,26(6):525-531. (in Chinese)
[34] 王跃进, LAMIKANRA O, 卢江, RAMMING D. 葡萄无核基因的RAPD遗传标记. 西北农业大学学报, 1996(5):12-21.
WANG Y J, LAMIKANRA O, LU J, RAMMING D. Analysis of sequencing the RAPD marker linked to seedless genes in grapes. Acta Universitatis Agriculturalis Boreali-Occidentalis, 1996(5):12-21. (in Chinese)
[35] LAHOGUE F, THIS P, BOUQUET A. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theoretical and Applied Genetics, 1998,97(5/6):950-959.
doi: 10.1007/s001220050976
[36] MEJIA N, GEBAUER M, MUNOZ L, HEWSTONE N, MUNOZ SCHICK C E, HINRICHSEN P. Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. American Journal of Enology & Viticulture, 2007,58(4):499-507.
[37] MEJIA N, HINRICHSEN P. A new, highly assertive scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Horticulturae, 2003,603:559-564.
[1] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[2] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[3] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[4] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[5] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[6] XIE KaiDong,PENG Jun,YUAN DongYa,QIANG RuiRui,XIE ShanPeng,ZHOU Rui,XIA QiangMing,WU XiaoMeng,KE FuZhi,LIU GaoPing,GROSSER Jude W,GUO WenWu. Production of Citrus Triploids Based on Interploidy Crossing with Bendizao and Man Tangerines as Female Parents [J]. Scientia Agricultura Sinica, 2020, 53(23): 4961-4968.
[7] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[8] SUN Hong,JIANG YiWen,YU Xin,XIANG GuangQing,YAO YuXin. Effects of Local Root Zone Salinity on Grapevine Injury, Na + Accumulation and Allocation of Carbon and Nitrogen [J]. Scientia Agricultura Sinica, 2019, 52(7): 1173-1182.
[9] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[10] SHI XiangBin,WANG XiaoDi,WANG BaoLiang,WANG ZhiQiang,JI XiaoHao,WANG XiaoLong,LIU FengZhi,WANG HaiBo. Requirement Characteristics of Mineral Elements in Different Developmental Phases of Kyoho Grapevine [J]. Scientia Agricultura Sinica, 2019, 52(15): 2686-2694.
[11] ZHANG ZhaoHua, WANG ZhiHui, HUAI DongXin, TAN JiaZhuang, CHEN JianHong, YAN LiYing, WANG XiaoJun, WAN LiYun, CHEN Ao, KANG YanPing, JIANG HuiFang, LEI Yong, LIAO BoShou. Fast Development of High Oleate Peanut Cultivars by Using Marker-Assisted Backcrossing and Their Evaluation [J]. Scientia Agricultura Sinica, 2018, 51(9): 1641-1652.
[12] BIAN FengE, XIAO QiuHong, HAO GuiMei, SUN YongJiang, LU WenLi, DU YuanPeng, ZHAI Heng. Effect of Root-Applied Melatonin on Endogenous Melatonin and Chlorophyll Fluorescence Characteristics in Grapevine Under NaCl Stress [J]. Scientia Agricultura Sinica, 2018, 51(5): 952-963.
[13] ZHA Qian, XI XiaoJun, JIANG AiLi, TIAN YiHua. Influence of Heat Stress on the Expression of Related Genes and Proteins in Grapevines [J]. Scientia Agricultura Sinica, 2017, 50(9): 1674-1683.
[14] YAN XiaoCui, LI ZaiFeng, YANG HuaLi, ZHANG HuanHuan, GEBREWAHID Takele Weldu, YAO ZhanJun, LIU DaQun, ZHOU Yue. Analysis of Wheat Leaf Rust Resistance Genes in 30 Important Wheat Cultivars [J]. Scientia Agricultura Sinica, 2017, 50(2): 272-285.
[15] YU Yi-he, LI Xiu-zhen, GUO Da-long, YANG Ying-jun, LI Xue-qiang, ZHANG Guo-hai. Screening and Identification of the Interacting Protein of Cytokinin Response Regulator VvRR2 in Grapevine [J]. Scientia Agricultura Sinica, 2016, 49(6): 1097-1105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!