Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 738-754.doi: 10.3864/j.issn.0578-1752.2019.04.014


The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5


  1. Liaoning Normal University School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Molecular Drug Development, Dalian 116029, Liaoning
  • Received:2018-09-03 Accepted:2018-12-03 Online:2019-02-16 Published:2019-02-27


【Objective】 The aim of this study was to screen out the LncRNA associated with villus growth in Liaoning cashmere goat skin fibroblasts, and provide basic data for the study of the function and mechanism of LncRNA related to villus growth. 【Method】 The total RNA of MT and FGF5 treated Liaoning cashmere goat skin fibroblasts was extracted, and the total RNA extracted was detected by total RNA electrophoresis detection, sequencing data quality evaluation, mapping comparison and inter-sample correlation test. The differentially expressed LncRNA was screened and its target gene was predicted. The LncRNA related to villus growth was screened by GO and KEGG enrichment analysis, and the target LncRNA was verified by Real-time PCR. 【Result】 (1) The total RNA quality of the sample showed that the RNA was in good integrity, the GC content was relatively high, the sequence was stable, and the expression level between samples was high, which met the sequencing requirements.(2) Screening of differentially expressed LncRNA showed that there were 32 differentially expressed LncRNA in 1.0g·L -1 24h group, 4 of which were up-regulated and 28 of which were down-regulated. There were 10 differentially expressed LncRNA in 0.2g·L -1 24h group, 4 of which were up-regulated and 6 were down-regulated. There were 113 differentially expressed LncRNA in the 0.2g·L -1 72h group, of which 5 were up-regulated and 108 were down-regulated. There were 164 differentially expressed LncRNA in the 10 -4g·L -1 24 h group, of which 70 were up-regulated and 94 were down-regulated. There were 189 differentially expressed LncRNA in the10 -4g·L -1 72 h group, of which 78 were up-regulated and 111 were down-regulated. There were 123 LncRNA differentially expressed in the 10 -6g·L -1 24 h group, among which 27 up and 96 down.(3) Target gene GO enrichment analysis showed that the 1.0g·L -1 24h group differentially expressed LncRNA target gene enrichment in GO's negative regulation of transcription from RNA polymerase II promoter; 0.2g·L -1 24h group did not differentially express LncRNA target gene enriched GO term;0.2g·L -1 72h group Differentially expressed LncRNA target gene enrichment in GO's cellular metabolic process biological_process, binding molecular_function, FGF5 treatment group only10 -4g·L -1 72 h group differentially expressed LncRNA target gene enriched in cell cellular_component, cell part cellular_component, intracellular cellular_component, binding molecular_function and other six items. (4) Target gene KEGG enrichment analysis showed that the differential expression of LncRNA target gene in 1.0g·L -1 24h group was enriched in Steroid biosynthesis pathway; in 0.2g·L -1 24h group, there was no differential expression of LncRNA target gene enrichment Pathway term; 0.2g·L -1 72h group differentially expressed LncRNA target gene enrichment in Cell cycle, DNA replication, Steroid biosynthesis, TNF, Nod-like receptor, NF-kappa B and other signaling pathways, in which TNF and NF-kappa B signaling pathways are involved in villus growth. In FGF5-treated group, differentially expressed LncRNA targets in 10 -4g·L -1 72 h group The gene was significantly enriched into nine path termes such as Fanconi anemia pathway, Huntington's disease, Metabolic pathway, Aminoacyl-tRNA biosynthesis, among which Metabolic pathway was associated with villus growth; the differentially expressed LncRNA target gene in 10 -4g·L -1 24 h group had no significant enriched pathway term;10 -6g·L -1 24 h The differentially expressed LncRNA target genes were only enriched in the Taste transduction pathway. (5) There are two LncRNA corresponding to the target genes TNFα, TNFAIP3 (A20), NFKBIA (IkBα), NFKB2 and IL8 enriched in NF-κB and TNF signaling pathways, respectively (Gene ID): XLOC_005914; XLOC_018763; There are four LncRNA corresponding to the target genes in the Metabolic pathway, namely (Gene ID): XLOC_011424, XLOC_009522, XLOC_009063, XLOC_01115. Real-time PCR results showed that LncRNA XLOC_011424, XLOC_011157, LncRNA XLOC_005914 and XLOC_018763 were consistent with high-throughput sequencing results. 【Conclusion】 LncRNA XLOC_011424, XLOC_011157, LncRNA XLOC_005914 and XLOC_018763 may increase the density and length of cashmere by regulating NF-κB, TNF or Metabolic signaling pathways related to villus growth, and thus improve the yield and quality of cashmere in Liaoning cashmere goat.

Key words: Liaoning cashmere goat, melatonin, FGF5, LncRNA, RNA-seq, signaling pathway

Table 1

RT-PCR Primer sequence"

基因 Gene 引物 Primer 引物序列(5'→3') Primer sequence(5'→3') 产物 Products
β-actin β-actin -F
β-actin -R
LncRNA XLOC_005914 LncRNA XLOC_005914 -F
LncRNA XLOC_005914-R
LncRNA XLOC_018763 LncRNA XLOC_018763 -F
LncRNA XLOC_018763-R
LncRNA XLOC_011424 LncRNA XLOC_011424 -F
LncRNA XLOC_011424-R
116 bp
LncRNA XLOC_009522 LncRNA XLOC_018763 -F
LncRNA XLOC_018763-R
289 bp
LncRNA XLOC_009063 LncRNA XLOC_009063-F
LncRNA XLOC_009063-R
220 bp
LncRNA XLOC_011157 LncRNA XLOC_011157-F
LncRNA XLOC_011157-R
140 bp

Fig. 1

The electrophoresis results of total RNA in samples Panel A is the MT treatment group and Figure B is the FGF5 treatment group. In Figure A, lanes 1, 2, 3, and 4 are M2_72H group, M2_24H group, M1_24H group, and control group C; in Figure B, lanes 1, 2, 3, and 4 are F4_24H group, F6_24H group, and F4_72H group, and control group C."

Table 2

RNA-Seq data list"

Raw reads
Clean reads
Error rate (%)
Q20 (%)
Q30 (%)
GC content(%)
C_1 48045300 46275212 0.03 96.86 93.68 48.39
C_2 48045300 46275212 0.04 94.99 90.67 48.37
M2_72H_1 42277089 40464850 0.03 96.34 92.55 51.77
M2_72H_2 42277089 40464850 0.04 93.42 87.84 51.95
M2_24H_1 50302056 48536611 0.03 96.75 93.50 48.03
M2_24H_2 50302056 48536611 0.03 95.04 90.73 48.03
M1_24H_1 48057476 46336801 0.03 96.80 93.55 48.90
M1_24H_2 48057476 46336801 0.04 94.99 90.66 48.92
F4_24H_1 51394058 49453178 0.03 96.82 93.65 47.67
F4_24H_2 51394058 49453178 0.03 95.31 91.23 47.57
F4_72H_1 49418892 47713121 0.03 96.72 93.27 52.04
F4_72H_2 49418892 47713121 0.04 94.71 90.09 52.26
F6_24H_1 46346088 44739804 0.03 96.88 93.73 48.58
F6_24H_2 46346088 44739804 0.04 94.92 90.55 48.55

Fig. 2

Density distribution of Reads on chromosome Abscissa: the length of a chromosome (in millions of bases); ordinate: log2 (the median of reads density); green is a positive chain, and red is a negative chain"

Fig. 3

Correlation between samples in each treatment group"

Fig. 4

Differentially expressed LncRNA distribution Red dots represent the up-regulated LncRNA and green dots represent the down-regulated LncRNA; Abscissa represents expression level of LncRNA; Ordinate represents statistical significance of LncRNA expression level."

Fig. 5

Differentially expressed LncRNA clusters Each column represents a sample and each row a gene; High relative expression of LncRNA is indicated by red and low relative expression of LncRNA by green."

Table 3

M2_72H vs C group differential expression LncRNA target gene GO term classification"

Over_represented P value
Corrected P value
细胞代谢过程 Cellular metabolic process 7.15E-06 0.003923
氮化合物代谢过程 Nitrogen compound metabolic process 8.48E-06 0.0039252
细胞氮化合物代谢过程 Cellular nitrogen compound metabolic process 1.67E-05 0.0063413
有机氮化合物代谢过程 Organonitrogen compound metabolic process 8.12E-05 0.019891
细胞芳香化合物代谢过程 Cellular aromatic compound metabolic process 3.26E-05 0.0097043
杂环代谢过程 Heterocycle metabolic process 5.36E-05 0.013956
有机环状化合物代谢过程 Organic cyclic compound metabolic process 3.84E-05 0.01066
染色体组织 Chromosome organization 9.55E-05 0.022102
含核碱基的化合物代谢过程 Nucleobase-containing compound metabolic process 0.00011221 0.024598
染色质修饰 Chromatin modification 0.00025719 0.04581
细胞成分组织或生物发生 Cellular component organization or biogenesis 0.00026397 0.04581
核 Nucleus 1.48E-06 0.0031426
膜结合的细胞器 Membrane-bounded organelle 3.52E-06 0.003923
细胞内膜结合细胞器 Intracellular membrane-bounded organelle 4.25E-06 0.003923
染色体 Chromosome 0.00022214 0.042055
核酸酶活性 Nuclease activity 1.51E-06 0.0031426
腺苷酸核苷酸结合 Adenyl nucleotide binding 5.49E-06 0.003923
腺苷核糖核苷酸结合 Adenyl ribonucleotide binding 7.54E-06 0.003923
ATP结合 ATP binding 6.43E-06 0.003923
蛋白质结合 Protein binding 1.65E-05 0.0063413
细胞因子活性 Cytokine activity 3.00E-05 0.0096034
水解酶活性,作用于酯键 Hydrolase activity, acting on ester bonds 0.00012043 0.02508
催化活性 Catalytic activity 0.00021879 0.042055
结合物 Binding 1.90E-05 0.0065865

Table 4

Fnc_72H vs C group differentially expressed LncRNA target genes GO term classification"

Over_represented P value
Corrected P value
细胞代谢过程 Cellular metabolic process 1.22E-06 0.002285
生物合成过程 Biosynthetic process 3.29E-06 0.002285
有机物生物合成过程 Organic substance biosynthetic process 6.96E-06 0.0034462
细胞生物合成过程 Cellular biosynthetic process 8.88E-06 0.0034462
细胞大分子代谢过程 Cellular macromolecule metabolic process 9.10E-06 0.0034462
基因表达 Gene expression 1.87E-05 0.0051872
细胞蛋白质代谢过程 Cellular protein metabolic process 2.03E-05 0.0052866
翻译 Translation 3.43E-05 0.0071461
高分子生物合成过程 Macromolecule biosynthetic process 7.00E-05 0.013255
细胞大分子生物合成过程 Cellular macromolecule biosynthetic process 8.41E-05 0.015233
有机环状化合物代谢过程 Organic cyclic compound metabolic process 9.81E-05 0.017021
细胞氮化合物代谢过程 Cellular nitrogen compound metabolic process 0.0001207 0.019468
细胞芳香化合物代谢过程 Cellular aromatic compound metabolic process 0.00012153 0.019468
细胞芳香化合物代谢过程 Nitrogen compound metabolic process 0.00013872 0.021399
蛋白质定位 Protein localization 0.00015944 0.023716
杂环代谢过程 Heterocycle metabolic process 0.00018062 0.025736
DNA复制,合成RNA引物 DNA replication, synthesis of RNA primer 0.00023573 0.031671
含核碱基的化合物代谢过程 Nucleobase-containing compound metabolic process 0.00038174 0.045427
细胞内部分 Intracellular part 9.95E-08 0.00041428
细胞质 Cytoplasm 1.93E-06 0.002285
细胞内膜结合细胞器 Intracellular membrane-bounded organelle 2.49E-06 0.002285
膜结合的细胞器 Membrane-bounded organelle 3.16E-06 0.002285
细胞 Cell 7.88E-06 0.0034462
细胞部分 Cell part 7.88E-06 0.0034462
细胞内 Intracellular 1.34E-05 0.0046662
细胞质部分 Cytoplasmic part 1.65E-05 0.0049423
核 Nucleus 1.66E-05 0.0049423
细胞内细胞器 Intracellular organelle 2.56E-05 0.0061674
细胞器 Organelle 2.69E-05 0.0061674
大分子复合物 Macromolecular complex 2.81E-05 0.0061674
核部分 Nuclear part 4.41E-05 0.0087498
膜封闭的管腔 Membrane-enclosed lumen 0.00018537 0.025736
细胞器腔 Organelle lumen 0.00025929 0.032725
细胞内细胞器腔 Intracellular organelle lumen 0.00025929 0.032725
内膜系统 Endomembrane system 0.00031133 0.038138
蛋白质复合物 Protein complex 0.00047111 0.049055
核腔 Nuclear lumen 0.00048565 0.049335
连接酶活性,形成碳 - 氧键 Ligase activity, forming carbon-oxygen bonds 0.00040555 0.045652
Ligase activity, forming aminoacyl-tRNA and related compounds
0.00040555 0.045652
腺苷酸核苷酸结合 Adenyl nucleotide binding 0.00043007 0.047138
结合物 Binding 0.00046 0.049055

Table 5

Pathways enrichment data for M2_72H vs C group"

Pathway ID
Sample number
Background number
Corrected P value
细胞周期 Cell cycle chx04110 62 116 1.30736872661e-07
DNA复制 DNA replication chx03030 26 34 1.97822480896e-07
范可尼贫血症 Fanconi anemia chx03460 29 50 0.000199893004074
错配修复 Mismatch repair chx03430 15 22 0.00320771571904
赖氨酸降解 Lysine degradation chx00310 25 50 0.0157486842455
癌症中的微小RNA MicroRNAs in cancer chx05206 50 127 0.0399507008006
阿尔茨海默氏病 Alzheimer's disease chx05010 61 164 0.0467892160603
类固醇生物合成 Steroid biosynthesis chx00100 12 20 0.0467892160603
TNF chx04668 39 97 0.0467892160603
Nod样受体 Nod-like receptor chx04621 22 47 0.0467892160603
嘧啶代谢 Pyrimidine metabolism chx00240 37 91 0.0467892160603
RNA转运 RNA transport chx03013 54 144 0.0467892160603
柠檬酸循环 Citrate cycle chx00020 16 31 0.0467892160603
同源重组 Omologous recombination chx03440 14 26 0.0467892160603
NF-kappa B chx04064 32 77 0.0467892160603

Table 6

Differential genes enriched in signaling pathways related cashmere growth between M2_72H and C group"

通路 Pathway 基因ID Gene ID 基因名称 Gene name 方式 Style


Table 7

FGF treatment group,KEGG enrichment analysis results"

样本名称 Sample name 显著富集的信号通路 Significantly enriched signaling pathway Q值 Qvalue
F4_24H vs C cis靶基因 cis target gene 无 No -
trans靶基因 trans target gene 无 No -
F4_72H vs C cis靶基因 cis target gene 无 No -
trans靶基因 trans target gene 核糖体 Ribosome
RNA转运 RNA transport
范可尼贫血途径 Fanconi anemia pathway
亨廷顿氏病 Huntington's disease
代谢途径 Metabolic pathway
氨酰基-tRNA生物合成 Aminoacyl-tRNA biosynthesis
柠檬酸循环(TCA循环) Citrate cycle (TCA cycle)
阿尔茨海默氏病 Alzheimer's disease
泛素介导的蛋白水解 Ubiquitin mediated proteolysis
F6_24H vs C Cis靶基因 Cis target gene 味觉转导 Taste transduction 0.022
Trans靶基因 Trans target gene 无 No -

Table 8

FGF treatment group,the statistical significance enrichment of pathways data"

Pathway ID
Sample number
Background number
Corrected P-value
核糖体 Ribosome chx03010 36 129 0.001
RNA转运 RNA transport chx03013 34 144 0.018
范可尼贫血途径 Fanconi anemia pathway chx03460 16 50 0.018
亨廷顿氏病 Huntington's disease chx05016 38 171 0.018
代谢途径 Metabolic pathway chx01100 178 1126 0.025
氨酰基-tRNA生物合成 Aminoacyl-tRNA biosynthesis chx00970 14 44 0.029
柠檬酸循环(TCA循环) Citrate cycle (TCA cycle) chx00020 11 31 0.033
阿尔茨海默氏病 Alzheimer's disease chx05010 35 164 0.033
泛素介导的蛋白水解 Ubiquitin mediated proteolysis chx04120 28 124 0.037
味觉转导 Taste transduction chx04742 2 35 0.022

Table 9

Differential genes enriched in signaling pathways related cashmere growth between F4_72H and C group"

通路 Pathway 基因ID Gene ID 基因名称 Gene name 方式 Style
Metabolic pathway
102172231 CTH UP
102190784 PSAT1 UP
102178128 PHGDH UP
102184920 NAPRT1 UP
102187590 GCNT1 UP
102179919 SHMT2 UP
102186540 FDPS UP
102171848 DHCRT UP
102184667 CBS UP

Fig. 7

Real-time PCR verifies correlated LncRNA expression in RNA-Seq"

[1] YANG M, SONG S, DONG K, CHEN X, LIU X, ROUZI M, ZHAO Q, HE X, PU Y, GUAN W, MA Y, JIANG L . Skin transcriptome reveals the intrinsic molecular mechanisms underlying hair follicle cycling in Cashmere goats under natural and shortened photoperiod conditions. Scientific Reports, 2017,7(1):135.
doi: 10.1038/s41598-017-00185-w pmid: 28273933
[2] JIN M, GUO C L, HU J H, GAO W B, WANG W . Correlation Analysis of Economic Traits in Liaoning New Breed of Cashmere Goats Using Microsatellite DNA Markers. Yi Chuan Xue Bao, 2006,33(3):230-235.
doi: 10.1016/S0379-4172(06)60045-0 pmid: 16553211
[3] ZHANG C Z, SUN H Z, LI S L, SANG D, ZHANG C H, JIN L, ANTONINI M, ZHAO C F . Effects of photoperiod on nutrient digestibility, hair follicle activity and cashmere quality in Inner Mongolia white cashmere goats. Asian-Australasian Journal of Animal Sciences, 2018,27.
[4] ZHANG Q L, LI J P, CHEN Y, CHANG Q, LI Y M, YAO J Y, JIANG H Z, ZHAO Z H, GUO D . Growth and viability of Liaoning Cashmere goat hair follicles during the annual hair follicle cycle. Genetics And Molecular Research, 2014 , 13(2):4433-4443.
doi: 10.4238/2014.June.16.2 pmid: 25036348
[5] YU F, LIU Z, JIAO S, ZHANG X, BAI C, ZHANG J, YAN S . A nonsense mutation in the FGF5 gene is associated with the long- haired phenotype in domestic guinea pigs (Cavia porcellus). Animal Genetics, 2018 , 49(3):269.
doi: 10.1111/age.12656 pmid: 29603294
[6] 付绍印, 赵宏丽, 郑竹清, 李金泉, 张文广 . 褪黑激素对绒山羊皮肤中毛囊周期相关 miRNAs表达模式的影响. 遗传, 2014,36(12):1235-1242.
doi: 10.3724/SP.J.1005.2014.1235
FU S Y, ZHAO H L, ZHENG Z Q, LI J Q, ZHANG W G . Melatonin regulating the expression of miRNAs involved in hair follicle cycle of cashmere goats skin. YiChuan., 2014,36(12):1235-1242. (in Chinese)
doi: 10.3724/SP.J.1005.2014.1235
[7] YANG Q, DAI S, LUO X, ZHU J, LI F, LIU J, YAO G, SUN Y . Melatonin attenuates postovulatory oocyte dysfunction by regulating SIRT1 expression. Reproduction, 2018,156(1):81-92.
doi: 10.1530/REP-18-0211 pmid: 29752296
[8] FISCHER T W, SWEATMAN T W, SEMAK I, SAYRE R M, WORTSMAN J, SLOMINSKI A . Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. Faseb Journal, 2006,20(9):1564-1566.
doi: 10.1096/fj.05-5227fje pmid: 16793870
[9] IBRAHEEM M, GALBRAITH H, SCAIFE J, EWEN S . Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin. Journal of Anatomy, 1994 , 185(1):135-142.
[10] LOGAN A, WEATHERHEAD B . Post-tyrosinase inhibition of melanogenesis by melatonin in hair follicles in vitro. Journal of Investigative Dermatology, 1980,74(1):47-50.
doi: 10.1111/1523-1747.ep12514608 pmid: 6766170
[11] GE W, WANG S H, SUN B, ZHANG Y L, SHEN W, KHATIB H, WANG X . Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: a view from integrated analysis of long non-coding and coding RNAs. Cell Cycle, 2018,17(10):1255-1267.
doi: 10.1080/15384101.2018.1471318 pmid: 29895193
[12] FISCHER T W . The influence of melatonin on hair physiology. Hautarzt, 2009,60(12):962-972.
doi: 10.1007/s00105-009-1817-y pmid: 19957072
[13] KOBAYASHI H, KROMMINGA A, DUNLOP T W, TYCHSEN B, CONRAD F, SUZUKI N, MEMEZAWA A, BETTERMANN A, AIBA S, CARLBERG C, PAUS R . A role of melatonin in neuroectodermal-mesodermal interactions: the hairfollicle synthesizes melatonin and expresses functional receptors. Faseb Journal, 2005,19(12):1710-1712.
doi: 10.1096/fj.04-2293fje pmid: 16030176
[14] FOLDES A, HOSKINSON R M, BAKER P, MCDONALD B J, MAXWELL C A, RESTALL B J . Effect of immunization against melatonin on seasonal fleece growth in feral goats. Journal of Pineal Research, 1992,13(2):85-94.
doi: 10.1111/j.1600-079X.1992.tb00059.x pmid: 1453313
[15] NIXON A J, CHOY V J, PARRY A L, PEARSON A J . Fiber growth initiation in hair follicles of goats treated with melatonin. Journal of Experimental Zoology Part A-Ecological Genetics and Physiology, 1993,267(1):47-56.
doi: 10.1002/jez.1402670108 pmid: 8376951
[16] FISCHER T W, SLOMINSKI A, TOBIN D J, PAUS R . Melatonin and the hair follicle. Journal of Pineal Research, 2008,44(1):1-15.
[17] HÉBERT J M, ROSENQUIST T, GǑTZ J, MARTIN G R . FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell, 1994,78(6):1017-1025.
doi: 10.1016/0092-8674(94)90276-3 pmid: 7923352
[18] KEHLER J S, DAVID V A, SCHÄFFER A A, BAJEMA K, EIZIRIK E, RYUGO D K, HANNAH S S, O'BRIEN S J, MENOTTI- RAYMOND M .L . Four independent mutations in the feline fibroblast growth factor 5 gene determine the long-haired phenotype in domestic cats. Journal of Heredity, 2007,98(6):555-566.
doi: 10.1093/jhered/esm072 pmid: 17767004
[19] SUZUKI S, OTA Y, OZAWA K, IMAMURA T . Dual-mode regulation of hair growth cycle by two FGF5 gene products. Journal of Investigative Dermatology, 2000,114(3):456-463.
doi: 10.1046/j.1523-1747.2000.00912.x pmid: 10692103
[20] KONYUKHOV B V, MARTYNOVA M Y, NESTEROVA A P . Gene angora as a modifier of the mouse hairless gene. Genetika-Belgrade, 2007,43(2):254-260.
doi: 10.1134/S1022795407020147 pmid: 17385325
[21] JOHNSTON A P, NASKA S, JONES K, JINNO H, KAPLAN D R, MILLER F D . Sox2-Mediated Regulation of Adult Neural Crest Precursors and Skin Repair. Stem Cell Reports, 2013,1(1):38-45.
doi: 10.1016/j.stemcr.2013.04.004 pmid: 24052940
[22] ULITSKY I, BARTEL D P . lincRNAs: genomics, evolution and mechanisms. Cell, 2013,154(1):26-46.
doi: 10.1016/j.cell.2013.06.020 pmid: 23827673
[23] KAPRANOV P, CHENG J, DIKE S, NIX D A, DUTTAGUPTA R, WILLINGHAM A T, STADLER P F, HERTEL J, HACKERMÜLLER J, HOFACKER I L, BELL I, CHEUNG E, DRENKOW J, DUMAIS E, PATEL S, HELT G, GANESH M, GHOSH S, PICCOLBONI A, SEMENTCHENKO V, TAMMANA H, GINGERAS T R . RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007,316(5830):1484-1488.
doi: 10.1126/science.1138341
[24] FEJES-TOTH K, SOTIROVA V, SACHIDANANDAM R, ASSAF G, HANNON GJ, KAPRANOV P, FOISSAC S, WILLINGHAM A T, DUTTAGUPTA R, DUMAIS E, GINGERAS T R . Post- transcriptional processing generates a diversity of 59-modified long and short RNAs. Nature, 2009,457(7232):1028-1032.
doi: 10.1038/nature07759
[25] CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I . A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011,147(2):358-369.
doi: 10.1016/j.cell.2011.09.028 pmid: 22000014
[26] KLATTENHOFF C A, SCHEUERMANN J C, SURFACE L E, BRADLEY R K, FIELDS P A, STEINHAUSER M L, DING H, BUTTY V L, TORREY L, HAAS S, ABO R, TABEBORDBAR M, LEE R T, BURGE CB, BOYER LA . Braveheart, A long noncoding RNA required for cardiovascular lineage commitment. Cell, 2013,152(3):570-583.
doi: 10.1016/j.cell.2013.01.003 pmid: 23352431
[27] REN H, WANG G, CHEN L, JIANG J, LIU L, LI N, ZHAO J, SUN X, ZHOU P . Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus). BMC Genomics, 2016,17:67.
doi: 10.1186/s12864-016-2365-3 pmid: 26785828
[28] ZHU Y B, WANG Z Y, YIN R H, JIAO Q, ZHAO S J, CONG Y Y, XUE H L, GUO D, WANG S Q, ZHU Y X, BAI W L . A LncRNA-H19 transcript from secondary hair follicle of Liaoning cashmere goat: Identification, regulatory network and expression regulated potentially by its promoter methylation. Gene, 2018, 30, 641:78-85.
[29] LIN C M, LIU Y, HUANG K, CHEN X C, CAI B Z, LI H H, YUAN Y P, ZHANG H, LI Y . Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochemical And Biophysical Research Communications, 2014,453(3):508-514.
doi: 10.1016/j.bbrc.2014.09.119
[30] BAKHTIARIZADEH M R, HOSSEINPOUR B, AREFNEZHAD B, SHAMABADI N, SALAMI S A . In silico prediction of long intergenic non-coding RNAs in sheep. Genome, 2016,59(4):263-275.
doi: 10.1139/gen-2015-0141 pmid: 1011392015014139882003
[31] BAI W L, ZHAO S J, WANG Z Y, ZHU Y B, DANG Y L, CONG Y Y, XUE H L, WANG W, DENG L, GUO D, WANG S Q, ZHU Y X, YIN R H . LncRNAs in Secondary Hair Follicle of Cashmere Goat: Identification, Expression, and Their Regulatory Network in Wnt Signaling Pathway. Animal Biotechnology, 2018,29(3):199-211.
doi: 10.1080/10495398.2017.1356731 pmid: 28846493
[32] CAI B, ZHENG Y, MA S, XING Q, WANG X, YANG B, YIN G, GUAN F . Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Frontiers in Physiology, 2018,17(4):5477-5483.
doi: 10.3892/mmr.2018.8546 pmid: 29393477
[33] ZHOU G, KANG D, MA S, WANG X, GAO Y, YANG Y, WANG X, CHEN Y . Integrative analysis reveals LncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goat BMC Genomics. 2018,19(1):222.
doi: 10.1186/s12864-018-4603-3
[34] NIE Y, LI S, ZHENG X, CHEN W, LI X, LIU Z, HU Y, QIAO H, QI Q, PEI Q, CAI D, YU M, MOU C . Transcriptome reveals long non-coding RNAs and mRNAs involved in primary wool follicle induction in carpet sheep fetal skin. Frontiers in Physiology, 2018,9:446.
doi: 10.3389/fphys.2018.00446
[35] KLOEPPER J E, ERNST N, KRIEGER K, BODÓ E, BÍRÓ T, HASLAM I S, SCHMIDT-ULLRICH R, PAUS R . NF-κB activity is required for anagen maintenance in human hair follicles in vitro. Journal of Investigative Dermatology, 134(7):2036-2038.
doi: 10.1038/jid.2014.82 pmid: 24518172
[36] GILON M, SHER N, COHEN S, GAT U . Transcriptional activation of a subset of hair keratin genes by the NF-κB effector p65/RelA. Differentiation, 2008,76(5):518-530.
doi: 10.1111/j.1432-0436.2007.00246.x pmid: 18021261
[37] SCHMIDT-ULLRICH R, AEBISCHER T, HÜLSKEN J, BIRCHMEIER W, KLEMM U, SCHEIDEREIT C . Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices. Development, 2001,128(19):3843-3853.
[38] WANG X, CHEN H, TIAN R, ZHANG Y, DRUTSKAYA MS, WANG C, GE J, FAN Z, KONG D, WANG X, CAI T, ZHOU Y, WANG J, WANG J, WANG S, QIN Z, JIA H, WU Y, LIU J, NEDOSPASOV SA, TREDGET EE, LIN M, LIU J, JIANG Y, WU Y . Macrophages induce AKT/-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nature Communications, 2017,8:14091.
doi: 10.1038/ncomms14091 pmid: 5378973
[39] LAURIKKALA J, PISPA J, JUNG HS, NIEMINEN P, MIKKOLA M, WANG X, SAARIALHO-KERE U, GALCERAN J, GROSSCHEDL R, THESLEFF I . Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development, 2002,129(10):2541-2553.
doi: 10.1007/s00429-002-0240-2 pmid: 11973284
[40] MINIACI M C, IRACE C, CAPUOZZO A, PICCOLO M, DI PASCALE A, RUSSO A, LIPPIELLO P, LEPRE F, RUSSO G, SANTAMARIA R . Cysteine prevents the reduction in keratin synthesis induced by iron deficiency in human keratinocytes. Journal of Cellular Biochemistry, 2016,117(2):402-412.
doi: 10.1002/jcb.25286 pmid: 26212225
[41] ZHAO M, CHEN H, WANG X, YU H, WANG M, WANG J, LAN X Y, ZHANG C F, ZHANG L Z, GUO Y K, ZHANG B, HU S R . aPCR-SSCP and DNA sequencing detecting two silent SNPs at KAP8.1 gene in the cashmere goat. Molecular Biology Reports, 2009,36(6):1387-1391.
doi: 10.1007/s11033-008-9325-1 pmid: 18670906
[42] TONG X, COULOMBE P A . Keratin 17 modulates hair follicle cycling in a TNF alphadependent fashion. Genes & Development, 2006,20(10):1353-1364.
doi: 10.1101/gad.1387406
[43] DONG Y, XIE M, JIANG Y, XIAO N, DU X, ZHANG W, TOSSER-KLOPP G, WANG J, YANG S, LIANG J, CHEN W, CHEN J, ZENG P, HOU Y, BIAN C, PAN S, LI Y, LIU X, WANG W, SERVIN B, SAYRE B, ZHU B, SWEENEY D, MOORE R, NIE W, SHEN Y, ZHAO R, ZHANG G, LI J, FARAUT T, WOMACK J, ZHANG Y, KIJAS J, COCKETT N, XU X, ZHAO S, WANG J, WANG W . Sequencing and automated whole-genome optical mapping of the genome of adomestic goat (Capra hircus). Nature Biotechnology, 2013,31(2):135-141.
doi: 10.1038/nbt.2478 pmid: 23263233
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[3] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[4] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[5] WEI JingJie,JIANG NingBo,LIANG Yan,ZHANG Qian,SUN YingJian,HU Ge. Effect of Matrine on NLRP3 Inflammasome Signaling Pathway in H9N2 AIV Infected Mice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4315-4326.
[6] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[7] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[8] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[9] ZHAO DongMin,HUANG XinMei,ZHANG LiJiao,LIU QingTao,YANG Jing,HAN KaiKai,LIU YuZhuo,LI Yin. The Induction of Unfolded Protein Response in Tembusu Virus Infected Ducklings [J]. Scientia Agricultura Sinica, 2021, 54(4): 855-863.
[10] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[11] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[12] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[13] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[14] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[15] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
Full text



No Suggested Reading articles found!