Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4066-4078.doi: 10.3864/j.issn.0578-1752.2019.22.011

• GERMPLASM RESOURCES • Previous Articles     Next Articles

Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.)

YUAN YuHao1,YANG QingHua1,DANG Ke1,YANG Pu1,GAO JinFeng1,GAO XiaoLi1,WANG PengKe1,LU Ping2,LIU MinXuan2,FENG BaiLi1()   

  1. 1 College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi;
    2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-06-11 Accepted:2019-07-31 Online:2019-11-16 Published:2019-11-16
  • Contact: BaiLi FENG E-mail:fengbaili@nwsuaf.edu.cn

Abstract:

【Objective】 To evaluate the tolerance of broomcorn millet cultivars to salt stress, explore the physiological responses of different salt-tolerant broomcorn millet to salt stress, and establish the salt tolerance identification index system of broomcorn millet, the salt tolerance of broomcorn millet was studied. 【Method】 The growth parameters of 100 genotypes of broomcorn millet at germination stage and the physiological parameters of different salt-tolerant broomcorn millet at seedling stage were measured under salt stress. The tolerance of each variety to salt stress was evaluated by correlation analysis, principal component analysis, cluster analysis and physiological responses to salt stress. 【Result】 the results showed that the measured values of each shoot in the germination stage under 1% NaCl solution stress were lower than that of the control. Correlation analysis showed that there was a significant correlation in the different germination indexes, and there was a significant negative correlation with the relative salt damage rate. The principal component analysis results showed root fresh weight, germination index and germination rate were the larger load in germination factors and these indexes were considered as the main indexes to identify salt tolerance of broomcorn millet germination. The 100 broomcorn millet cultivars were sorted four groups according to the cluster analysis. The cluster analysis results showed eleven cultivars such as Yixuandahongmi, Wujushu, Baishu etc. were classified into salt-tolerant cultivar group, four cultivars including Humengheinianmi, Xiaoheishu, Linheshuanglishu, and Shaan78 were classified into salt sensitive group. There were great differences between salt tolerant cultivars and salt sensitive cultivars in morphological structure and physiological indexes. The scanning electron microscope results showed salt bladders appeared on the surface of salt-tolerant cultivars, the stomatal aperture size was barely changed. The salt-sensitive cultivar showed the stomata were closed in salt-sensitive broomcorn millet cultivar, and the surface of the leaf become rough, and the guard cells death occurred. With the increase of treatment time, the salt tolerant cultivar chloroplast changed from ellipsoid to spherical and starch granules increase, membrane disrupted, grana lamella arranged loosely, the thylakoids swollen and even disintegrate. With the days of salt stress increasing, the relative conductivity were increased. However, the relative conductivity in salt-tolerant broomcorn millet cultivar were lower than salt-sensitive broomcorn millet cultivar. The decreasing of Fv/Fm、Y(Ⅱ) and NPQ in salt-tolerant broomcorn millet cultivar were less than salt-sensitive broomcorn millet cultivar. 【Conclusion】 1% NaCl solution could be used as the suitable concentration of salt tolerance in broomcorn millet. The results showed that salt tolerance evaluation of broomcorn millet was affected with multiple indexes, and root fresh weight, germination index and germination rate could be used as the evaluation indexes of salt tolerance in germination stage. Stomatal state and chloroplast structures could be used as the cytology indexes of salt tolerance evaluation. The relative conductivity and chlorophyll fluorescence coefficient could be used as the physiology indexes of salt tolerance evaluation.

Key words: broomcorn millet, NaCl stress, salt tolerance screening, physiological response

Table 1

Correlation coefficient of all traits of broomcorn millet under salt stress at germination stage"

指标
Index
发芽势
GE
发芽率
GP
发芽指数
GI
芽长
SL
根长
RL
芽鲜重
SFW
根鲜重
RFW
活力指数
VI
盐害率
SDR
发芽势GE 1
发芽率GP 0.625** 1
发芽指数GI 0.748** 0.910** 1
芽长SL 0.310** 0.308** 0.427** 1
根长RL 0.029 0.143 0.150 0.377** 1
芽鲜重SFW 0.125 0.223* 0.213* 0.331** 0.117 1
根鲜重RFW 0.198* 0.275** 0.319** 0.464** 0.564** 0.360** 1
活力指数VI 0.290** 0.387** 0.445** 0.491** 0.543** 0.369** 0.982** 1
盐害率SDR -0.759** -0.916** -0.996** -0.411** -0.144 -0.202* -0.303** -0.425** 1

Fig. 1

Germination situation of broomcorn millet under different NaCl stress"

Table 2

Eigen values of 3 principal components and their contribution and cumulative contribution"

主成分Principal component 特征值Eigen value 贡献率Contribution (%) 累计贡献率Cumulative contribution (%)
4.399 49.980 49.980
2.068 22.310 72.290
1.030 9.900 82.190

Table 3

Loading matrix of each component"

主成分Principal component 相对发芽势
Relative germination energy
相对发芽率
Relative germination percentage
相对发芽指数Relative germination index 相对芽长Relative
sprout
length
相对根长Relative root length 相对芽鲜重
Relative shoot fresh weight
相对根鲜重Relative
root fresh
weigh
相对活力指数Relative vitality
index
相对盐害率Relative
salt damage rate
0.704 0.824 0.893 0.626 0.419 0.405 0.666 0.753 -0.886
-0.455 -0.413 -0.410 0.282 0.612 0.283 0.657 0.559 0.430
-0.040 -0.030 -0.045 0.132 -0.413 0.827 -0.074 -0.073 0.052

Table 4

Coefficient matrix of composition scoring"

主成分
Principal component
发芽势
GE
发芽率
GP
发芽指数
GI
芽长
SL
根长
RL
芽鲜重
SFW
根鲜重
RFW
活力指数
VI
盐害率
SDR
0.157 0.183 0.198 0.139 0.093 0.090 0.148 0.167 -0.197
-0.226 -0.205 -0.204 0.140 0.305 0.141 0.327 0.278 0.214
-0.045 -0.034 -0.051 0.148 -0.464 0.929 -0.083 -0.082 0.059

Table 5

The order of highly salt tolerant germplasm"

编号Code 品种资源Germplasm 来源Source FF-value 排序Order
18 伊选大红糜 Yixuandahongmi 中国内蒙古Inner Mongolia, China 269.72 1
27 污咀黍 Wujushu 中国山西Shanxi, China 268.97 2
33 白黍 Baishu 中国山西Shanxi, China 264.54 3
45 竹叶青黄硬糜 Zhuyeqinghuangyingmi 中国甘肃Gansu, China 221.35 4
41 小黄糜子 Xiaohuangmizi 中国宁夏Ningxia, China 205.25 5
69 太原1036 Taiyuan 1036 中国黑龙江Heilongjiang, China 196.97 6
17 达旗青糜子 Daqiqingmizi 中国内蒙古Inner Mongolia, China 174.28 7
93 宁糜8号 Ningmi 8 中国宁夏Ningxia, China 165.39 8
6 蚂蚱眼 Mazhayan 中国辽宁Liaoning, China 157.45 9
86 外引黍8号 Waiyinshu 8 美国America 154.87 10
46 大黄粘糜子 Dahuangnianmizi 中国甘肃Gansu, China 146.75 11

Fig.2

Growth parameters of Shaan 78 and Yixuandahongmi seedlings under saline conditions"

Fig.3

The scanning electron microscopy pictures of leaf surface under salt stress"

Fig. 4

The transmission electron microscopy pictures of chloroplast under salt stress"

Fig.5

Changes of relative conductivity, Fv/Fm, Y(Ⅱ), NPQ under salt stress"

[1] IVITS E V A, CHERLET M, TÓTH T, LEWIŃSKA K E, TÓTH G . Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators. Land Degradation & Development, 2013,24(5):438-452.
[2] GUPTA B, HUANG B R . Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014(1):701596.
[3] FLOWERS T J, FLOWERS S A . Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, 2005,78(1/2):15-24.
[4] GUO H L, WANG Y, LI D D, CHEN J B, ZONG J Q, WANG Z Y, CHEN X, LIU J X . Growth response and ion regulation of seashore paspalum accessions to increasing salinity. Environmental & Experimental Botany, 2016,131:137-145.
[5] 蒋静, 翟登攀, 张超波 . 灌溉施肥水平对盐渍化农田水盐分布及玉米产量的影响. 应用生态学报, 2019,30(4):1207-1217.
JIANG J, ZHAI D P, ZHANG C B . Effects of irrigation and fertilizer levels on the distribution of water and salt in saline field and maize yield. Chinese Journal of Applied Ecology, 2019,30(4):1207-1217. (in Chinese)
[6] 李彬, 王志春, 孙志高, 陈渊, 杨福 . 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005,23(2):154-158.
LI B, WANG Z C, SUN Z G, CHEN Y, YANG F . Resources and sustainable resource exploitation of salinized land in China. Agricultural Research in the Arid Areas, 2005,23(2):154-158. (in Chinese)
[7] QADIR M, QUILLEROU E, NANGIA V, MUTAZA G . Economics of salt‐induced land degradation and restoration. Natural Resources Forum, 2014,38(4):282-295.
[8] JESUS J M, DANKO A S, FIUZA A, BORGES M T . Phytoremediation of salt-affected soils: A review of processes, applicability, and the impact of climate change. Environmental Science and Pollution Research, 2015,22(9):6511-6525.
[9] ZHU J K . Abiotic stress signaling and responses in plants. Cell, 2016,167(2):313-324.
[10] YANG Y Q, GUO Y . Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 2018,217(2):523-539.
[11] YANG Y Q, GUO Y . Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 2018,60(9):58-66.
[12] 马佩勇, 边小峰, 郭小丁, 贾赵东, 禹阳, 谢一芝 . 甘薯全生育期耐盐种质筛选与耐盐性评价. 植物遗传资源学报, 2018,19(3):174-181.
MA P Y, BIAN X F, GUO X D, JIA Z D, YU Y, XIE Y Z . Evaluation and screening for salt-tolerant sweetpotato accessions during growth period. Journal of Plant Genetic Resources, 2018,19(3):174-181. (in Chinese)
[13] 韩飞, 诸葛玉平, 娄燕宏, 王会, 张乃丹, 何伟, 晁赢 . 63份谷子种质的耐盐综合评价及耐盐品种筛选. 植物遗传资源学报, 2018,19(4):685-693.
HAN F, ZHUGE Y P, LOU Y H, WANG H, ZHANG N D, HE W, CHAO Y . Evaluation of salt tolerance and screening for salt tolerant accessions of 63 foxtail millet germplasm. Journal of Plant Genetic Resources, 2018,19(4):685-693. (in Chinese)
[14] YANG Q H, ZHANG P P, QU Y, GAO X L, LIANG J B, YANG P, FENG B L . Comparison of physicochemical properties and cooking edibility of waxy and non-waxy proso millet ( Panicum miliaceum L.). Food Chemistry, 2018,257:271-278.
[15] ARAB A, BRADARAN R, VAHIDIPOUR T H . Effect of irrigation and mycorrhizal bio-fertilizers on yield and agronomic traits of millet ( Panicum miliaceum L.). International Journal of Agriculture & Crop Sciences, 2013,6(2):103-109.
[16] YUE H, WANG M, LIU S Y, DU X H, SONG W N, NIE X J . Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet ( Panicum miliaceum L.). BMC Genomics, 2016,17(1):343.
[17] ZHANG D Z, PANHWAR R B, LIU J J, GONG X W, LIANG J B, LIU M X, LU P, GAO X L, FENG B L . Morphological diversity and correlation analysis of phenotypes and quality traits of proso millet ( Panicum miliaceum L.) core collections. Journal of Integrative Agriculture, 2019,18(5):958-969.
[18] XIE F L, WANG Q L, SUN R R, ZHANG B H . Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. Journal of Experimental Botany, 2014,66(3):789-804.
[19] SUN Y, XU W, JIA Y B, WANG M C . The wheat TaGBF1 gene is involved in the blue‐light response and salt tolerance. The Plant Journal, 2015,84(6):1219-1230.
[20] HUANG Y, ZHANG X X, LI Y H, DING J Z, DU H M, ZHAO Z, ZHOU L N, LIU C, GAO S B, CAO M J, LU Y L, ZHANG S Z . Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays. Journal of Integrative Agriculture, 2018,17(12):2612-2623.
[21] CHEN G, HU Q D, LUO L, YANG T Y, ZHANG S, HU Y B, YU L, XU G H . Rice potassium transporter OsHAK1 is essential for maintaining potassium‐mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant, Cell & Environment, 2015,38(12):2747-2765.
[22] LI W, ZHAO F A, FANG W P, XIE D Y, HOU J N, YANG X J, ZHAO Y M, TANG Z J, NIE L H, LV S P . Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Frontiers in Plant Science, 2015,6:732.
[23] WANG F B, ZHAI H, AN Y Y, SI Z Z, HE S Z, LIU Q C . Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato. Journal of Integrative Agriculture, 2016,15(2):271-281.
[24] 李占成, 张丽丽, 李玮 . 盐胁迫对糜子种子发芽的影响. 作物杂志, 2011(6):122-123.
LI Z C, ZHANG L L, LI W . Effect of salt stress on germination of gardenia seeds. Crop, 2011(6):122-123. (in Chinese)
[25] LIU M X, QIAO Z J, ZHANG S, WANG Y Y, LU P . Response of broomcorn millet (Panicum miliaceum L.) genotypes from semiarid regions of China to salt stress. Journal of Integrative Agriculture, 2015,3(1):57-66.
[26] SHI J P, MA X X, ZHANG J H, ZHOU Y S, LIU M X, HUANG L L, SU S L, ZHANG X B, GAO X, ZHAN W, LI P H, WANG L, LU P, ZHAO H M, SONG W B, LAI J S . Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nature Communications, 2019,10(1):464-477.
[27] ZOU C S, LI L T, MILI D, LI D L, TANG Q M, XIAO L H, RAJPUT S, DENG P, PENG L, JIA W, HUANG R, ZHANG M L, SUN Y D, HU J M, FU X, SCHNABLE P S, CHANG Y X, LI F, ZHANG H, FENG B L, ZHU X G, LIU R Y, SCHNABLE J C, ZHU J K, ZHANG H . The genome of broomcorn millet. Nature Communications, 2019,10(1):436.
[28] 陈宣, 郭海林, 陈静波, 刘建秀 . 结缕草属植物两种耐盐评价方法的比较. 草业科学, 2014,31(6):1052-1057.
CHEN X, GUO H L, CHEN J B, LIU J X . Comparison of salinity tolerance evaluation system of Zoysia grass. Pratacultural Science, 2014,31(6):1052-1057. (in Chinese)
[29] 张寒, 潘香逾, 王秀华, 李家丽, 姜慧新, 赵岩 . 苜蓿萌发期耐盐性综合评价与耐盐种质筛选. 草地学报, 2018(3):666-672.
ZHANG H, PAN X Y, WANG X H, LI J L, JIANG H X, ZHAO Y . Comprehensive evaluation of salt tolerance and screening for salt tolerant germplasm of Alfalfa (Medicago) at germination stage. Acta Agrestia Sinica, 2018(3):666-672. (in Chinese)
[30] 李娜娜, 张煜, 王俊峰, 张晓冬, 马玉敏, 丁汉凤 . 栽培大豆种质资源耐盐性的研究进展. 中国农学通报, 2011,27(27):6-11.
LI N N, ZHANG Y, WANG J F, ZHANG X D, MA Y M, DING H F . Advances in studies of salt tolerance in cultivated soybean. Chinese Agricultural Science Bulletin, 2011,27(27):6-11. (in Chinese)
[31] 张金霞, 董德坤, 胡兴旺, 陈芬, 朱丹华 . 三个大豆品种萌发期和苗期的耐盐性比较. 浙江农业学报, 2016,28(7):1101-1107.
ZHANG J X, DONG D K, HU X W, CHEN F, ZHU D H . Research on salt tolerance of three soybean varieties at both germination and seedling stage. Acta Agriculturae Zhejiangensis, 2016,28(7):1101-1107. (in Chinese)
[32] BARTON L, NEWSOME S D, CHEN F H, WANG H, GUILDERSON T P, BETTINGER R . Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences of the USA, 2009,106(14):5523-5528.
[33] YUE H, WANG M, LIU S . Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet ( Panicum miliaceum L.). BMC Genomics, 2016,17(1):343.
[34] RAJPUT S G, SANTRA D K, SCHNABLE J . Mapping QTLs for morpho-agronomic traits in Proso millet ( Panicum miliaceum L.): New strategies in plant improvement. Molecular Breeding, 2016,36(4):1-18.
[35] 张洪鹏, 陈德龙, 马强 . 不同糜子品种芽期耐盐性比较. 安徽农业科学, 2016,44(23):11-13.
ZHANG H P, CHEN D L, MA Q . Comparative study on salt tolerance of different varieties of broomcorn millet at the germination stage. Journal of Anhui Agricultural Sciences, 2016,44(23):11-13. (in Chinese)
[36] 苏国兴, 洪法水 . 桑品种耐盐性的隶属函数法之评价. 江苏农业学报, 2002,18(1):42-47.
SU G X, HONG F S . Evaluation of salt tolerance for partial mulberry varieties with subordinate function. Jiangsu Journal of Agricultural Sciences, 2002,18(1):42-47. (in Chinese)
[37] 王志春, 梁正伟 . 植物耐盐研究概况与展望. 生态环境, 2003,12(1):106-109.
WANG Z C, LIANG Z W . Advances of salt tolerance in plants. Journal of Environmental Sciences, 2003,12(1):106-109. (in Chinese)
[38] 刘敏轩, 张宗文, 吴斌, 陆平 . 黍稷种质资源芽、苗期耐中性混合盐胁迫评价与耐盐生理机制研究. 中国农业科学, 2012,45(18):3733-3743.
LIU M X, ZHANG Z W, WU B, LU P . Evaluation of mixed salt-tolerance at germination stage and seedling stage and the related physiological characteristics of Panicum miliaceum L. Scientia Agricultura Sinica, 2012,45(18):3733-3743. (in Chinese)
[39] 张国伟, 路海玲, 张雷, 陈兵林, 周治国 . 棉花萌发期和苗期耐盐性评价及耐盐指标筛选. 应用生态学报, 2011,22(8):2045-2053.
ZHANG G W, LU H L, ZHANG L, CHEN B L, ZHOU Z G . Salt tolerance evaluation of cotton at its germinating and seedling stages and selection of related indices. Chinese Journal of Applied Ecology, 2011,22(8):2045-2053. (in Chinese)
[40] YANG Y Q, GUO Y . Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 2018,217(2):523-539.
[41] GAO W, XU F C, GUO D D, ZHAO J R, LIU J, GUO Y W, SINGH P K, MA X N, LONG L, BOTELLA J R, SONG C P . Calcium- dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biology, 2018,18(1):15.
[42] YANG Y Q, GUO Y . Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 2018,60(9):58-66.
[43] 左凤月 . 盐胁迫对3种白刺生长、生理生化及解剖结构的影响[D]. 重庆: 西南大学, 2013.
ZUO F Y . The effect of NaCl treatment on the seed germination,the seedling growth,the leaf physiology and biochemistry and the anatomical structures of leaf and stem of 3 Nitraria species[D]. Chongqing: Southwest University, 2013. (in Chinese)
[44] 杨美娟, 杨德奎, 李法曾 . 中亚滨藜盐囊泡形态结构与发育研究. 西北植物学报, 2006,26(8):1575-1578.
YANG M J, YANG D K, LI F Z . Morphological structure and development of salt bladder of Atriplex centralasiatica. Acta Botanica Boreali-Occidentalia Sinica, 2006,26(8):1575-1578. (in Chinese)
[45] KHAN M S, HEMALATHA S . Biochemical and molecular changes induced by salinity stress in Oryza sativa L. Acta Physiologiae Plantarum, 2016,38(7):1-9.
[46] ZHO J L, WANG X F, JIAO Y L, QIN Y H, LIU X G, HE K, CHEN C, MA L G, WANG J, XIOMG L Z, ZHANG Q F, FAN L M, DENG X W . Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology, 2007,63(5):591-608.
[47] AMAKO K, CHEN G X, ASADA K . Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant & Cell Physiology, 1994,35(3):497-504.
[48] FOYER C H, NOCTOR G . Tansley review No. 112. Oxygen processing in photosynthesis: regulation and signalling. New Phytologist, 2000,146(3):359-388.
[49] 付晴晴, 谭雅中, 翟衡, 杜远鹏 . NaCl胁迫对耐盐性不同葡萄株系叶片活性氧代谢及清除系统的影响. 园艺学报, 2018,45(1):30-40.
FU Q Q, TAN Y Z, ZHAI H, DU Y P . Effects of salt stress on the generation and scavenging of reactive oxygen species in leaves of grape strains with different salt tolerance. Acta Horticulturae Sinica, 2018,45(1):30-40. (in Chinese)
[1] XiaoFeng LU,GuoDong DU,Jing SHAO,JingRu ZHANG,HaiLong SUN. Physiological Response of Mitochondrial Function of Strawberry Roots to Exogenous Phenolic Acid [J]. Scientia Agricultura Sinica, 2021, 54(5): 1029-1042.
[2] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[3] WANG JunJie,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Comprehensive Evaluation of Photoperiod Sensitivity Based on Different Traits of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2020, 53(3): 474-485.
[4] CHEN Ling,WANG JunJie,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Screening of Broomcorn Millet Varieties Tolerant to Low Nitrogen Stress and the Comprehensive Evaluation of Their Agronomic Traits [J]. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224.
[5] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[6] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[7] DIAO XianMin. Progresses in Stress Tolerance and Field Cultivation Studies of Orphan Cereals in China [J]. Scientia Agricultura Sinica, 2019, 52(22): 3943-3949.
[8] WANG JunJie,CHEN Ling,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Effects of Hyperspectral Prediction on Leaf Nitrogen Content and the Grain Protein Content of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2019, 52(15): 2593-2603.
[9] GONG XiangWei, HAN HaoKun, ZHANG DaZhong, LI Jing, WANG Meng, XUE ZhiHe, YANG Pu, GAO XiaoLi, FENG BaiLi. Effects of Nitrogen Fertilizer on Dry Matter Accumulation, Transportation and Nitrogen Metabolism in Functional Leaves of Broomcorn Millet at Late Growth Stage [J]. Scientia Agricultura Sinica, 2018, 51(6): 1045-1056.
[10] BIAN FengE, XIAO QiuHong, HAO GuiMei, SUN YongJiang, LU WenLi, DU YuanPeng, ZHAI Heng. Effect of Root-Applied Melatonin on Endogenous Melatonin and Chlorophyll Fluorescence Characteristics in Grapevine Under NaCl Stress [J]. Scientia Agricultura Sinica, 2018, 51(5): 952-963.
[11] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[12] DONG KongJun, LIU TianPeng, HE JiHong, REN RuiYu, ZHANG Lei, XU Yan, YANG TianYu. Effects of Different Film Mulching-Patterns on Soil Thermal-Moisture and Broomcorn Millet Water Consumption Characteristics in Semiarid Region on Northwest Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(12): 2274-2287.
[13] YANG Pu, Rabia Begum Panhwar, LI Jing, GAO JinFeng, GAO XiaoLi, WANG PengKe, FENG BaiLi. Changes of Yield and Traits of Broomcorn Millet Cultivars in China Based on the Data from National Cultivars Regional Adaptation Test [J]. Scientia Agricultura Sinica, 2017, 50(23): 4517-4529.
[14] YANG QingHua, QIU Jun, LI Hai, YANG TianYu, CHENG BingWen, ZHAO Min, LIU GuoQing, GAO XiaoLi, FENG BaiLi. Comprehensive Evaluation of Agronomic, Yield and Quality Traits of Broomcorn Millet (Panicum miliaceum L.) Cultivars [J]. Scientia Agricultura Sinica, 2017, 50(23): 4530-4544.
[15] ZHOU Yu, LIU Jia-jia, ZHANG Pan-pan, QU Yang, ZHANG Ji-ru-fei, ZHU Ming-qi, FENG Bai-li. Response of Leaf Defensive Enzymes and Antioxidant to Smut Fungus Stress in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2016, 49(17): 3298-3307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!