Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (14): 2696-2705.doi: 10.3864/j.issn.0578-1752.2017.14.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of AMF Inoculation on N Uptake of Interspecific Competition Between Maize and Soybean Growing on the Purple Soil

ZHAO QianXu1,2, SHI Jing1, XIA YunSheng1,2 , ZHANG NaiMing1,2, NING DongWei1, YUE XianRong1, YANG HaiHong1   

  1. 1Yunnan Agricultural University, Kunming 650201; 2Yunnan Engineering Laboratory of Soil Fertility and Pollution Remediation, Kunming 650201
  • Received:2016-11-09 Online:2017-07-16 Published:2017-07-16

Abstract: 【Objective】 Arbuscular mycorrhizal fungus (AMF) is one of the most important soil beneficial microbe in natural ecosystem. It can effectively promote the nutrition absorption of plants and also regulate the interspecific relative competition ability and nutrition competition ratio between plants by redistributing water and nutritive elements between host plants at the intercropping level. To study the effect of AMF inoculation and different intercropping patterns on the interspecific relative competition ability and nitrogen (N) competition ratio between intercropping maize (Zea mays L.) and soybean (Glycine max L.) growing on the purple soil, and provide a scientific basis for the regulation of nutrient resource utilization and competitive effect between crops. 【Method】 A pot experiment with three different intercropping patterns (no separation, nylon net separation, plastic-film separation) and different AMF treatments [no AMF (NM), Glomus etunicatum inoculation (G.e)] was conducted to analyze intercropping plant growth and N nutrition status, which in order to quantify the effects of AMF treatments and intercropping patterns on the interspecific competition ability and N competition ratio between maize and soybean. 【Result】 The results showed that under the same intercropping conditions, maize always had a stronger competitive advantage, soybean showed a competition disadvantage. The interspecific competition ability and N competition ratio between maize and soybean under G.e-no separation treatment both were the highest. Whether AMF inoculation or not, N concentration, N uptake and the root biomass of maize plants were all in the order of no separation pattern nylon net separation pattern plastic-film separation pattern, while soybeans showed an opposite trend. In comparison with NM, AMF inoculation significantly promoted the interspecific competition ability and N competition ratio between maize and soybean, so that shoot and root biomass of maize was increased by 20.48% and 23.33%, respectively, under no separation patterns, and shoots and roots N uptake were also improved by 64.20% and 34.61%, respectively. For soil available N content, G.e-no separation treatment significantly improved N uptake of maize and soybean in intercropping of maize and soybean, and decreased soil available N content, which reduced soil N residue. 【Conclusion】 In conclusion, different competitive ability of maize with soybean was different in all intercropping patterns, but maize was always in a stronger competitive advantage than soybean. AMF inoculation also improved the interspecific competition ability and N competition ratio of maize to soybean significantly. These revealed that AMF played an important ecological significance in regulating resource utilization between different plants and maintaining the diversity of the crop plants in farmland.

Key words: arbuscular mycorrhizal fungus, intercropping patterns, purple soil, interspecific competition, maize, soybean

[1]    VAN DER HEIJDEN M G A, WIEMKEN A, SANDERS I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 2003, 157(3): 569-578.
[2]    GROSS N, BAGOUSSE-PINGUET Y L, LIANCOURT P, URCELAY C, CATHERINE R, LAVOREL S. Trait-mediated effect of arbuscular mycorrhizal on the competitive effect and response of a monopolistic species. Functional Ecology, 2010, 24(5): 1122-1132.
[3]    张宇亭, 王文华, 申鸿, 郭涛. 接种AMF对菌根植物和非菌根植物竞争的影响. 生态学报, 2012, 32(5): 1428-1435.
ZHANG Y T, WANG W H, SHEN H, GUO T. Influence of arbuscular mycorrhizal associations on the interspecific competition between mycorrhizal and non-mycorrhizal plants. Acta Ecologica Sinica, 2012, 32(5): 1428-1435. (in Chinese)
[4]    肖同建, 杨庆松, 冉炜, 徐国华, 沈其荣. 接种菌根真菌的旱作水稻-绿豆间作系统养分利用研究. 中国农业科学, 2010, 43(4): 753-760.
XIAO T J, YANG Q S, RAN W, XU G H, SHEN Q R. Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Scientia Agricultura Sinica, 2010, 43(4): 753-760. (in Chinese)
[5]    吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 玉米/大豆间作系统的作物资源竞争. 应用生态学报, 2014, 25(1): 139-146.
LÜ Y, WU P T, CHEN X L, WANG Y B, ZHAO X N. Resource competition in maize/soybean intercropping system. Chinese Journal of Applied Ecology, 2014, 25(1): 139-146. (in Chinese)
[6]    李淑敏, 武帆. 大豆/玉米间作体系中接种AM真菌和根瘤菌对氮素吸收的促进作用. 植物营养与肥料学报, 2011, 17(1): 110-116.
LI S M, WU F. Nitrogen uptake facilitation in soybean/maize intercropping system inoculated with rhizobium and arbuscular mycorrhizal fungi. Plant Nutrition and Fertilizer Science, 2011, 17(1): 110-116. (in Chinese)
[7]    高阳, 段爱旺, 刘祖贵, 申孝军. 玉米和大豆条带间作模式下的光环境特性. 应用生态学报, 2008, 19(6): 1248-1254.
GAO Y, DUAN A W, LIU Z G, SHEN X J. Light environment characteristics in maize-soybean strip intercropping system. Chinese Journal of Applied Ecology, 2008, 19(6): 1248-1254. (in Chinese)
[8]    赵建华, 孙建好, 樊廷录, 李伟琦, 唐晓东. 玉米行距对大豆/玉米间作产量及种间竞争力的影响. 干旱地区农业研究, 2015, 33(3): 159-163.
ZHAO J H, SUN J H, FAN T L, LI W Q, TANG X D. Effect of row spacing of maize on yield and interspecific competition of crops in soybean/maize intercropping system. Agricultural Research in the Arid Areas, 2015, 33(3): 159-163. (in Chinese)
[9]    SMITH S E, READ D J. Mycorrhizal Symbiosis. London: Academic Press, 1996: 397-383.
[10]   ORWIN K H, KIRSCHBAUM M U F, ST JOHN M G, DICKIE I A. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters, 2011, 14(5): 493-502.
[11]   VAN DER HEIJDEN M G A, HORTON T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139-1150.
[12]   SCHEUBLIN T R, VAN LOGTESTIJN R S P, VAN DER HEIJDEN M G A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology, 2007, 95(4): 631-638.
[13]   BEVER J D, DICKIE I A, FACELLI E, FACELLI J M, KLIRONOMOS J, MOORA M, RILLING M, STOCK W D, TIBBETT M, ZOBEL M. Rooting theories of plant community ecology in microbial interactions. Trends in Ecology & Evolution, 2010, 25(8): 468-478.
[14]   白来汉, 张仕颖, 张乃明, 夏运生, 王幼珊, 姜蓉, 赵涵. 不同磷石膏添加量与接种菌根对玉米生长及磷, 砷, 硫吸收的影响. 环境科学学报, 2011, 31(11): 2485-2492.
BAI L H, ZHANG S Y, ZHANG N M, XIA Y S, WANG Y S, JIANG R, ZHAO H. Effect of different phosphogypsum addition levels and mycorrhizal inoculation on growth and phosphorus, sulfur and arsenic uptake by maize plants (Zea mays L). Acta Scientiae Circumstantiae, 2011, 31(11): 2485-2492. (in Chinese)
[15]   鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.
BAO S D. Soil Agrochemical Analysis. 3rd ed. Beijing: China Agricultural Press, 2000. (in Chinese)
[16]   WILLEY R W, RAO M R. A competitive ratio for quantifying competition between intercrops. Experimental Agriculture, 1980, 16(2): 117-125.
[17]   MORRIS R A, GARRITY D P. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Research, 1993, 34(3/4): 319-334.
[18]   李元敬, 刘智蕾, 何兴元, 田春杰. 丛枝菌根共生体的氮代谢运输及其生态作用. 应用生态学报, 2013, 24(3): 861-868.
LI Y J, LIU Z L, HE X Y, TIAN C J. Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications. Chinese Journal of Applied Ecology, 2013, 24(3): 861-868. (in Chinese)
[19]   姚青, 冯固, 李晓林. 不同作物对VA菌根真菌的依赖性差异. 作物学报, 2000, 26(6): 874-878.
YAO Q, FENG G, LI X L. Variation between mycorrhizal dependency of different crops. Acta Agronomica Sinica, 2000, 26(6): 874-878. (in Chinese)
[20]   雍太文, 杨文钰, 向达兵, 陈小容, 万燕. 小麦/玉米/大豆套作的产量, 氮营养表现及其种间竞争力的评定. 草业学报, 2012, 21(1): 50-58.
YONG T W, YANG W Y, XIANG D B,CHEN X R, WAN Y. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Prataculturae Sinica, 2012, 21(1): 50-58. (in Chinese)
[21]   XIAO Y, LI L, ZHANG F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant and Soil, 2004, 262(1/2): 45-54.
[22]   FREY-KLETT P, GARBAYE J, TARKKA M. The mycorrhiza helper bacteria revisited. New Phytologist, 2007, 176(1): 22-36.
[23]   李玉英, 余常兵, 孙建好, 李春杰, 李隆, 程序. 蚕豆/玉米间作系统经济生态施氮量及对氮素环境承受力. 农业工程学报, 2008, 24(3): 223-227.
LI Y Y, YU C B, SUN J H, LI C J, LI L, CHENG X. Nitrogen environmental endurance and economically-ecologically appropriate amount of nitrogen fertilizer in faba bean/maize intercropping system. Transactions of Chinese Society of Agricultural Engineering, 2008, 24(3): 223-227. (in Chinese)
[24]   唐劲驰, Mboreha I A, 佘丽娜, 廖红, 陈怀珠, 孙祖东, 严小龙. 大豆根构型在玉米/大豆间作系统中的营养作用. 中国农业科学, 2005, 38(6): 1196-1203.
TANG J C, MBOREHA I A, SHE L N, LIAO H, CHEN H Z, SUN Z D, YAN X L. Nutritional effects of soybean root architecture in a maize/soybean intercropping system. Scientia Agricultura Sinica, 2005, 38(6): 1196-1203. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[10] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[11] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!