Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (20): 3874-3885.doi: 10.3864/j.issn.0578-1752.2016.20.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Research on Methodology of Maize Germplasm Development with Source of Hybrids by Using Marker-Assisted Selection

CONG Chun-sheng, LI Yong-xiang, LI Chun-hui, SHI Yun-su, SONG Yan-chun, ZHANG Deng-feng, LI Yu, WANG Tian-yu   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2016-04-26 Online:2016-10-16 Published:2016-10-16

Abstract: 【Objective】 Research on marker-assisted methodology of developing germplasm suited as female and male parents was of practical importance in improving utilization efficiency of this source and promoting the development of maize breeding, since single-cross hybrids are over 95% in maize production. 【Method】 A popcorn hybrid, "JB1", was used as the initial entry in the present study to obtain polymorphic simple sequence repeat (SSR) markers and determine the parents’ genotype by performing polymerase chain reaction (PCR) amplification with genome-wide SSR markers and native polyacrylamide gel electrophoresis (PAGE). Subsequently, marker-assisted selection was performed in progenies of F2 and two later subsequent generations using the polymorphic markers distributed evenly on the ten chromosomes of maize. As a result, three groups of progenies were obtained, i.e. male parent-like, female parent-like and middle type. To evaluate the heterosis and the breeding value of these selected progenies, hybrid combinations were made by using incomplete diallel cross in F4 among the progenies from the male-like and female-like group which selected by marker-assisted selection. Testcrosses were also made between three testers and the materials selected by marker-assisted selection and breeding experience in early generation, respectively. Yield experiments and comprehensive evaluation of 2 780 hybrids were then conducted in Shunyi of Beijing and Yuxian of Hebei. 【Result】 Marker-assisted selection significantly improved the selection efficiency in the separate communities. In the F4 generation, the similarity to the male parent and the female parent of selected materials could be as high as 79.5% and 73.7%, respectively. The similarity to the parents was much higher than that under the condition of random selection. Genetic distance between the materials from the male-like group and the female-like group was large and the maximum was 86%. Phenotypic analysis showed that the average plot yield of hybrid combinations between the male-like group and the female-like group was higher than that of hybrid combinations within each of the two groups, and there were no combinations whose yield exceeded the control (the original hybrid, JB1). Meanwhile, the testcrosses generated from the male-like materials displayed stronger heterosis and had higher plot yields than those generated from the female-like materials and the materials selected by breeding experience. There also existed some hybrid combinations whose yields exceeded the control. 【Conclusion】The study proposed a technical route of SSR marker-assisted germplasm development based on maize hybrids which could be useful in promoting use efficiency of maize hybrids.

Key words: maize, hybrids, germplasm resources, marker-assisted selection, germplasm development

[1]    戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010(1): 1-5.
Dai J R, E L Z. Scientific and technological innovation of maize breeding in China. Journal of Maize Sciences, 2010(1): 1-5. (in Chinese)
[2]    Hu R F, Huang J K, Jin S Q, Rozelle S. Assessing the contribution of China’s research system and CG genetic materials to the total factor productivity of maize of China. Journal of Rural Development Korea, 2000, 23(1): 33-70.
[3]    王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种植杂交优势利用模式研究. 中国农业科学, 1997, 30(4): 16-24.
Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X. Studies on the heterosis utilizing models of main maize germplasm in China. Scientia Agricultura Sinica, 1997, 30(4): 16-24. (in Chinese)
[4]    刘新芝, 彭泽斌, 傅骏骅, 李连城, 黄长玲. RAPD在玉米类群划分研究中的应用. 中国农业科学, 1997, 30(3): 44-51.
Liu X Z, Peng Z B, Fu J H, Li L C, Huang C L. Heterotic grouping of 15 maize inbreds with RAPD markers. Scientia Agricultura Sinica, 1997, 30(3): 44-51. (in Chinese)
[5]    Laude T P, Carena M J. Genetic diversity and heterotic grouping of tropical and temperate maize populations adapted to the northern U.S. Corn Belt. Euphytica, 2015, 204: 661-677.
[6]   van Heerwaarden J, Hufford M B, Ross-Ibarra       J. Historical genomics of North American maize. Proceedings of   the National Academy of Sciences of the USA, 2012, 109(31): 12420-12425.
[7]    李新海, 傅骏骅 张世煌, 袁力行, 李明顺. 利用SSR标记研究玉米自交系的遗传变异, 中国农业科学, 2000, 33(2): 1-9.
Li X H, Fu J H Zhang S H, Yuan L X, Li M S. Genetic variation of inbred lines of maize detected by SSR markers. Scientia Agricultura Sinica, 2000, 33(2): 1-9. (in Chinese)
[8]    袁力行, 付骏华, 刘新芝, 彭泽斌, 张世煌, 李新海, 李连城. 利用分子标记预测玉米杂种优势的研究. 中国农业科学, 2000, 33(6): 6-12.
Yuan L X, Fu J H, Liu X Z, Peng Z B, Zhang S H, Li X H, Li L C. Study on prediction of heterosis in maize (Zea mays L.) using the molecular markers. Scientia Agricultura Sinica, 2000, 33(6): 6-12. (in Chinese)
[9]    Li Y, Du J P, Wang T Y, Shi Y S, Song Y C, Jia J J. Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers. Maydica, 2002(47): 93-101.
[10]   王懿波, 王振华, 王永普, 张新, 陆利行, 田曾元. 中国玉米主要种质的改良与杂优模式的利用. 玉米科学, 1999, 7(1): 1-8.
Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X, Tian Z Y. The improvement of principal maize germplasms and utilization of heterosis models in China. Journal of Maize Sciences, 1999, 7(1): 1-8. (in Chinese)
[11]   李永祥, 石云素, 宋燕春, 黎裕, 王天宇. 中国玉米品种改良及其种质基础分析. 中国农业科技导报, 2013, 15(3): 30-35.
Li Y S, Shi Y S, Song Y C, Li Y, Wang T Y. Improvement of maize hybrids and the analysis of basal germplasm in China. Journal of Agriculture Science and Technology, 2013, 15(3): 30-35. (in Chinese)
[12]   高翔, 陈泽辉, 祝云芳. 我国玉米育种中美国改良Reid和78599种质的作用及其再利用. 西南农业学报, 2003(3): 98-101.
Gao X, Chen Z H, Zhu Y F. Research and utilization of Reid and 78599 germplasms in China. Southwest China Journal of Agricultural Sciences,2003(3): 98-101. (in Chinese)
[13]   张洋, 张喜华. 玉米78599种质的杂优模式及其改良利用. 玉米科学, 2008(3): 37-40.
Zhang Y, Zhang X H. Heterotic pattern, improvement and utilization of corn 78599 germplasm. Journal of Maize Sciences, 2008(3): 37-40. (in Chinese)
[14]   张仁和, 夏建刚, 薛吉全, 师公贤. 美国玉米种质78599的利用与改良. 农艺科学, 2004(6): 128-130.
Zhang R H, Xia J G, Xue J Q, Shi G X. Improvement and utilization of maize 78599 germplasm. Chinese Agricultural Science Bulletin, 2004(6): 128-130. (in Chinese)
[15]   赵久然, 郭景伦, 郭强, 尉德铭, 孔艳芳. 应用RAPD分子标记技术对我国骨干玉米自交系进行类群划分. 华北农学报, 1999(1): 32-37.
Zhao J R, Guo J L, Guo Q, Yu D M, Kong Y F. Heterotic grouping of 25 maize inbreds with RAPD marker. Acta Agriculturae Boreali-Sinica, 1999(1): 32-37. (in Chinese)
[16]   黎裕, 王天宇. 我国玉米育种种质基础与骨干亲本的形成. 玉米科学, 2010(5): 1-8.
Li Y, Wang T Y. Germplasm base of maize breeding in China and formation of foundation parents. Journal of Maize Sciences, 2010(5): 1-8. (in Chinese)
[17]   Poethig R S. Maize, the plant and its parts// Sheridan W F. Maize for Biological Research. University North Dakota Press, Grand Forks, ND. 1982, 434.
[18]   Wang J, Zhong G Y, Chin E C L, Register J C, Riley R D, Niebur W S, Smith J S C. Identification of parents of F1 hybrids through SSR profiling of maternal and hybrid tissue. Euphytica, 2002, 124: 29-33.
[19]   赵久然, 刘龙洲, 王凤格, 郭景伦, 王元东. 利用杂交种玉米F1代种子果皮组织鉴定母本真实性的SSR研究. 玉米科学, 2014(3): 6-8.
Zhao J R, Liu L Z, Wang F G, Guo J L, Wang Y D. Identification authenticity of female parent of F1 hybrids through SSR profiling of pericarp tissue in hybrid. Journal of Maize Science, 2014(3): 6-8. (in Chinese)
[20]   Guan Y X, Wang B H, Feng Y, Li P. Development and application of marker-assisted reverse breeding using hybrid maize germplasm. Journal of Integrative Agriculture, 2015, 14(12): 2538-2546.
[21]   刘龙洲. 自玉米F1种子获得父本、母本全套DNA指纹图谱的研究 [D]. 乌鲁木齐: 新疆农业大学, 2004.
Liu L Z. Study on the hybrid and parents DNA fingerprint from F1 seeds [D]. Urumqi: Xinjiang Agricultural University, 2004. (in Chinese)
[22]   高玉峰, 张攀, 郝晓敏, 严建兵, 李建生, 杨小红. 一种快速提取玉米大群体基因组DNA的方法. 中国农业大学学报, 2011(6): 32-36.
Gao Y F, Zhang P, Hao X M, Yan J B, Li J S, Yang X H. A rapid DNA extraction method for large maize populations. Journal of China Agricultural University, 2011(6): 32-36. (in Chinese)
[23]   Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochemical Genetics, 1976, 14(11/12): 1041-1055.
[24]   Saghai Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the USA, 1994, 91(12): 5466-5470.
[25]   Berloo P V. GGT 2.0: Versatile software for visualization and analysis of genetic data. Journal of Heredity, 2008, 99(2): 232-236.
[26]   Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
[27]   Huang J, Qi H H, Feng X M, Huang Y Q, Zhu L L, Yue B. General combining ability of most yield-related traits had a genetic basis different from their corresponding traits per se in a set of maize introgression lines. Genetica, 2013, 141(10): 453-461.
[28]   Dirks R, van Dun K, de Snoo C B, van den Berg M, Lelivelt C L C, Voermans W, Woudenberg L, de Wit J P C, Reinink K, Schut J W, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling E W, Keppel M N, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E. Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnology Journal, 2009, 7(9): 837-845.
[29]   Wijnker E, van Dun K, de Snoo C B, Lelivelt C L C, Keurentjes J J B, Naharudin N S, Ravi M, Chan S W L, de Jong H, Dirks R. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nature Genetics, 2012, 44(4): 467-470.
[30]   Wijnker E, Deurhof L, van de Belt J, de Snoo C B, Blankestijn H, Becker F, Ravi M, Chan S W L, van Dun K, Lelivelt C L C, de Jong H, Dirks R, Keurentjes J J B. Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nature Protocols, 2014, 9(4): 761-772.
[31]   Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E. Deployment of new biotechnologies in plant breeding. Nature Biotechnology, 2012, 30(3): 231-239.
[32]   刘忠松. 作物遗传育种研究进展:Ⅳ. 双单倍体育种与反向育种. 作物研究, 2014, 28(5): 575-579.
Liu Z S. Research development of crop genetic and breeding: Ⅳ Doubled haploid breeding and reverse breeding. Crop Research, 2014, 28(5): 575-579. (in Chinese)
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[10] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!