Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (18): 3522-3531.doi: 10.3864/j.issn.0578-1752.2016.18.006

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Nitrogen and Planting Density on Accumulation, Translocation and Utilization Efficiency of Carbon and Nitrogen in Transplanting Rapeseed with Blanket Seedling

ZUO Qing-song1, LIU Hao1, KUAI Jie2, FENG Qian-nan1, FENG Yun-yan1, ZHANG Han-xiao1, LIU Jing-yi1, YANG Guang1, ZHOU Guang-sheng2, LENG Suo-hu1   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu
    2 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070
  • Received:2016-02-19 Online:2016-09-16 Published:2016-09-16

Abstract: Objective In order to discuss the relationship between carbon (C) and nitrogen (N) metabolism and yield in transplanting rapeseed with blanket seedling, the effects of different N application rates and planting densities on accumulation, translocation and utilization efficiency of carbon and nitrogen were studied. Method In this study, Ningza 1818 was planted by artificial transplanting with blanket seedling. The differences of C and N accumulation and translocation rates before and after flowering period, carbon utilization efficiency for grain production (CUEg) and nitrogen utilization efficiency for grain production (NUEg) under different years, nitrogen application rates and densities were studied. ResultThe results showed that transplanting rapeseed with blanket seedling could obtain high yield (3 750 kg·hm-2) under suitable conditions. The yield increased significantly with increased densities under 0 and 225 kg·hm-2 N rates. There was no significant difference among 1 plant per spot, 2 plants per spot and 3 plants per spot with 125 000 spots/hm2 transplanting density under 300 kg·hm-2 N rate. The ability of C accumulation was significantly higher than that of N accumulation in rapeseed. The average C/N ratio before and after the early flowering period was 16.30 and 114.37, respectively. The CUEg and NUEg were declined with the increased N application, and the decline rates of NUEg were higher than those of CUEg. From the flowering period to the ripening period, the N translocation rate of the leaf was the highest, while that of the stem and the root ranked the second and the last, respectively. The N translocation rate of the leaf, stem and root from the flowering period to the ripening period ranged from 73.90% to 78.56%, 38.96% to 67.08% and 24.45% to 37.06% under different treatments. The differences of the N translocation rates of the leaf were slight, whereas those of the stem and root increased with increased N rates. From the flowering period to the ripening period, the C translocation rates of the leaf were positive values, which ranged from 23.16% to 29.08%. It increased generally as the N rates increased, and the differences resulted from N treatments were slight. From the flowering period to the ripening period, the root and the stem still accumulated C, and the C translocation rates of the root and the stem were negative values.ConclusionIn the areas with the late harvest date of former crops, mechanical transplanting technology with blanket seedling could improve the production capacity of rapeseed. The ability of N metabolism before flowering was higher than that of after-flowering period while the ability of C metabolism had an opposite trend. N supply at early stage was conducive to form nutrition framework, which promoted the accumulation of C and yield formation from the flowering period to the ripening period.

Key words: rapeseed, nitrogen, density, carbon and nitrogen translocation, C/N ratio

[1]    周广生, 左青松, 廖庆喜, 吴江生, 傅廷栋. 我国油菜机械化生产现状、存在问题及对策. 湖北农业科学, 2013, 52(9): 2153-2156.
Zhou G S, Zuo Q S, Liao Q X, Wu J S, Fu T D. Mechanical production status, existing problems and strategy discussion of rapeseed in China. Hubei Agricultural Sciences, 2013, 52(9): 2153-2156. (in Chinese)
[2]    左青松, 蒯婕, 杨士芬, 曹石, 杨阳, 吴莲蓉, 孙盈盈, 周广生, 吴江生. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响. 作物学报, 2015, 41(5): 758-765.
Zuo Q S, Kuai J, Yang S F, Cao S, Yang Y, Wu L R, Sun Y Y, Zhou G S, Wu J S. Effects of nitrogen fertilizer and planting density on canopy structure and population characteristic of rapeseed with direct seeding treatment. Acta Agronomica Sinica, 2015, 41(5): 758-765. (in Chinese)
[3]    史宏志, 韩锦峰. 烤烟碳氮代谢几个问题的探讨. 烟草科技, 1998(2): 34-36.
Shi H Z, Han J F. Discussion on carbon and nitrogen metabolism of flue-cured tobacco. Tobacco Science & Technology, 1998(2): 34-36. (in Chinese)
[4]    王强, 钟旭华, 黄农荣, 郑海波. 光、氮及其互作对作物碳氮代谢的影响研究进展. 广东农业科学, 2006(2): 37-40.
Wang Q, Zhong X H, Huang N R, Zheng H B. Interactions of nitrogen with light in the photosynthetic traits and metabolism of carbon and nitrogen of crop. Guangdong Agricultural Sciences, 2006(2): 37-40. (in Chinese)
[5]    金继运, 何萍. 氮钾营养对春玉米后期碳氮代谢与粒重形成的影响. 中国农业科学, 1999, 32(4): 55-62.
Jin J Y, He P. Effect of N and K nutrition on post metabolism of carbon and nitrogen and grain weight formation in maize. Scientia Agricultura Sinica, 1999, 32(4): 55-62. (in Chinese)
[6]    郭天财, 宋晓, 马冬云, 查菲娜, 岳艳军. 氮素营养水平对冬小麦碳氮运转的影响. 西北植物学报, 2007, 27(8): 1605-1610.
Guo T C, Song X, Ma D Y, Zha F N, Yue Y J. Effects of nitrogen application rate on carbon and nitrogen transportation in winter wheat. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(8): 1605-1610. (in Chinese)
[7]    岳红宾. 不同氮素水平对烟草碳氮代谢关键酶活性的影响. 中国烟草科学, 2007, 28(1): 18-20, 24.
Yue H B. Effects of various nitrogen levels on key enzymes activeness of flue-cured tobacco leaves in carbon and nitrogen metabolism. Chinese Tobacco Science, 2007, 28(1): 18-20, 24. (in Chinese)
[8]    吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响. 作物学报, 2008, 34(3): 718-723.
LÜ L H, Tao H B, Wang P, Liu M, Zhao M, Wang R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 718-723. (in Chinese)
[9]    孙永健, 孙园园, 李旭毅. 水氮互作对水稻氮磷钾吸收、转运及分配的影响. 作物学报, 2010, 36(4): 655-664.
Sun Y J, Sun Y Y, Li X Y. Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice. Acta Agronomica Sinica, 2010, 36(4): 655-664. (in Chinese)
[10]   冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18(4): 250-257.
Leng S H, Zhu G R, Deng X L. Studies on the sources of the dry matter in the seed of rapeseed. Acta Agronomica Sinica, 1992, 18(4): 250-257. (in Chinese)
[11]   胡会庆, 刘安国, 王维金. 油菜光合速率日变化的初步研究. 华中农业大学学报, 1998, 17(5): 430-433.
Hu H Q, Liu A G, Wang W J. Study on daily change and midday depression of photosynthetic rate in rape leaves under field condition. Journal of Huazhong Agricultural University, 1998, 17(5): 430-433. (in Chinese)
[12]   魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34(1): 119-125.
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agronomica Sinica, 2008, 34(1): 119-125. (in Chinese)
[13]   郑成岩, 于振文, 王西芝, 武同华. 灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响. 植物营养与肥料学报, 2009, 15(6): 1324-1332.
Zheng C Y, Yu Z W, Wang X Z, Wu T H. Effects of irrigation amount and stage on nitrogen accumulation, distribution, translocation and soil NO3--N content in high-yield wheat. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1324-1332. (in Chinese)
[14]   时向东, 时映, 王瑞宝, 戴吉林, 夏开宝, 张庆刚. 稳定氮同位素示踪技术在烟草研究中的应用. 中国烟草学报, 2008, 14(1): 51-57.
Shi X D, Shi Y, Wang R B, Dai J L, Xia K B, Zhang Q G. Applications of stable nitrogen isotope on tobacco research. Acta Tabacaria Sinica, 2008, 14(1): 51-57. (in Chinese)
[15]   左青松, 杨海燕, 冷锁虎, 曹石, 曾讲学, 吴江生, 周广生. 施氮量对油菜氮素积累和运转及氮素利用率的影响. 作物学报, 2014, 40(3): 511-518.
Zuo Q S, Yang H Y, Leng S H, Cao S, Zeng J X, Wu J S, Zhou G S. Effects of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen use efficiency in rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2014, 40(3): 511-518. (in Chinese)
[16]   申丽霞, 王璞, 兰林旺, 孙西欢. 施氮对夏玉米碳氮代谢及穗粒形成的影响. 植物营养与肥料学报, 2007, 13(6): 1074-1079.
Shen L X , Wang P, Lan L W, Sun X H. Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1074-1079. (in Chinese)
[17]   冯蕾, 童成立, 石辉, 吴金水, 李勇, 黄铁平, 夏海鳌. 水稻碳氮吸收、分配与积累对施肥的响应. 环境科学, 2011, 32(2): 574-580.
Feng L, Tong C L, Shi H, Wu J S, Li Y, Huang T P, Xia H A. Effect of fertilization on the absorption, partition and accumulation of carbon and nitrogen of rice under the equal N conditions. Environmental Science, 2011, 32(2): 574-580. (in Chinese)
[18]   Asare E, Scarisbrick D H. Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (Brassica napus L.). Field Crops Research, 1995, 44: 41-46.
[19]   王维国, 李建龙, 韩庆保, 李庆生, 成强生. 优质油菜高产施氮技术. 土壤肥料, 1997, (4): 34-36.
Wang W G, Li J L, Han Q B, Li Q S, Cheng Q S. Study on nitrogen application techniques on rapeseed cultivar with high quality. Soils and Fertilizers, 1997, (4): 34-36. (in Chinese)
[20]   冷锁虎, 单玉华, 周宝梅. 氮素营养对油菜成熟期生物产量的调 控. 中国油料作物学报, 2000, 22(2): 53-56.
Leng S H, Shan Y H, Zhou B M. Regulation of N nutrition to biomass of oilseed in ripening stage.Chinese Journal of Oil Crop Sciences, 2000, 22(2): 53-56. (in Chinese)
[21]   苏伟, 鲁剑巍, 周广生, 李小坤, 韩自航, 雷海霞. 免耕及直播密度对油菜生长、养分吸收和产量的影响. 中国农业科学, 2011, 44(7): 1519-1526.
SU W, LU J W, ZHOU G S, LI X K, HAN Z H, LEI H X. Effect of no-tillage and direct sowing density on growth, nutrient uptake and yield of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2011, 44(7): 1519-1526. (in Chinese)
[22]   袁谦. 两种耕作制度下油菜菌核病的发生动态及盾壳霉防效评价[D]. 武汉: 华中农业大学, 2013.
Yuan Q. Epidemics of sclerotinia stem rot of oilseed rape in two rotation systems and biocontrol of the disease using coniothyrium minitans[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[23]   赵合句, 李光明, 李英德, 李培武. 油菜秋发高产技术. 中国油料, 1989(3): 58-60.
Zhao H J, Li G M, Li Y D, Li P W. Autumn vigorousand high yield technology in rape. Chinese Journal of Oil Crop Sciences, 1989(3): 58-60. (in Chinese)
[24]   傅寿仲, 戚存扣, 浦惠明, 张洁夫. 中国油菜栽培科学技术的发展. 中国油料作物学报, 2006, 28(1): 86-91.
Fu S Z, Qi C K, Pu H M, Zhang J F. The development of science and technology in rape cultivation in China. Chinese Journal of Oil Crop Sciences, 2006, 28(1): 86-91. (in Chinese)
[25]   喻义珠, 张梅生, 杨正山, 问才干, 蔡瑞生. 杂交油菜超高产栽培技术研究. 中国油料, 1997, 19(4): 28-32.
Yu Y Z, Zhang M S, Yang Z S, Wen C G, Cai R S. Cultural practices of hybrid rape for extro-high yield. Chinese Journal of Oil Crop Sciences, 1997, 19(4): 28-32. (in Chinese)
[26]   Dreccer M F, Schapendonk A H C M, Slafer G A, Rabbinge R. Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil, 2000, 220: 189-205.
[27]   殷艳, 王汉中, 廖星. 2009年我国油菜产业发展形势分析及对策建议. 中国油料作物学报, 2009, 31(2): 259-262.
Yin Y, Wang H Z, Liao X. Analysis and strategy for 2009 rapeseed industry development in China. Chinese Journal of Oil Crop Sciences, 2009, 31(2): 259-262. (in Chinese)
[28]   陈新军, 戚存扣, 高建芹, 伍贻美. 不同栽培密度对杂交油菜产量的影响. 江苏农业科学, 2001(l): 29-30.
Chen X J, Qi C K, Gao J Q, Wu Y M. Effect of planting density on yield of hybrid rapeseed. Jiangsu Agricultural Sciences, 2001(l): 29-30. (in Chinese)
[29]   马霓, 张春雷, 李俊, 李光明. 种植密度对直播油菜结实期源库关系及产量的调节. 中国油料作物学报, 2009, 31(2): 180-184.
Ma N, Zhang C L, Li J, Li G M. Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.). Chinese Journal of Oil Crop Sciences, 2009, 31(2): 180-184. (in Chinese)
[30]   宋稀, 刘凤兰, 郑普英, 张学昆, 陆光远, 付桂萍, 程勇. 高密度种植专用油菜重要农艺性状与产量的关系分析. 中国农业科学, 2010, 43(9): 1800-1806.
Song X, Liu F L, Zheng P Y, Zhang X K, Lu G Y, Fu G P, Cheng Y. Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high-density planting. Scientia Agricultura Sinica, 2010, 43(9): 1800-1806. (in Chinese)
[31]   张传胜, 龙银成, 周娟, 董桂春, 王余龙. 不同产量类型籼稻品种氮素吸收利用特征的研究. 扬州大学学报: 农业与生命科学版, 2004, 25(2): 17-21.
Zhang C S, Long Y C, Zhou J, Dong G C, Wang Y L. Study on nitrogen uptake and use efficiency in different grain yield types of indica rice (Oryza sativa L.) varieties. Journal of Yandzhou University: Agriculture and Life Science Edition, 2004, 25(2): 17-21. (in Chinese)
[32]   Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Research, 2005, 94: 103-113.
[33] 卢艳丽, 陆卫平, 王继丰, 刘萍, 刘小兵, 陆大雷, 苏辉. 不同基因型糯玉米氮素吸收利用效率的研究Ⅰ. 氮素吸收利用的基因型差异. 植物营养与肥料学报, 2006, 12(3): 321-326.
Lu Y L, Lu W P, Wang J F, Liu P, Liu X B, Lu D L, Su Hui. The differences of nitrogen uptake and utilization in waxy cornⅠ. The difference genotypes in absorption and utilization of nitrogen. Plant Nutrition and Fertilizer Science, 2006, 12(3): 321-326. (in Chinese)
[1] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[2] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[3] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[11] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[12] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[15] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!