Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (12): 2353-2367.doi: 10.3864/j.issn.0578-1752.2016.12.011

• HORTICULTURE • Previous Articles     Next Articles

Construction of SSR Genetic Linkage Map and Comparison on Pears

WANG Lei1,2, WANG Long2, XUE Hua-bai2, LI Xiu-gen2, LI Jiang1   

  1. 1College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, Urumqi 830052
    2Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
  • Received:2015-12-28 Online:2016-06-16 Published:2016-06-16

Abstract: 【Objective】The genetic linkage map was constructed based on the Simple Sequence Repeat primers of pears and apples that have been published and developed from the transcriptome of pears by our team, which will be the foundation for the important trait mapping of QTL and marker-assisted selection in the future.【Method】A F1 mapping population was built on a cross between a western pear (Red Clapp Favorite) as the female parent, and an oriental pear (Mansoo) as the male parent. The SSR primers which matched the "CP" mode in the JoinMap 4.0 software in parents and four individuals by PCR application were selected and then tested in the F1 group. The separation of data was analyzed by JoinMap 4.0 software, and the parent genetic map was constructed respectively. The genetic map of the parents was integrated based on anchor points which were homology marks in the parents’ map on each linkages.【Result】909 pairs of SSR primers from different sources (526 pairs from pears and 283 pairs from apples that have been published, and 100 pairs were developed from the pear transcriptome by our team) was preliminarily screened through a PCR technique. The results showed that amplified fragments and polymorphism of SSR primers from apples were lower, but that the SSR primers from pears and developed through the transcriptome of pears were higher. The parents’ genetic linkage map was constructed based on the 207 pairs of SSR primers which conformed to the drawing. A female genetic map was constructed by 141 markers which was distributed on 17 linkage groups and spanned 757.34 cM in genome with an average distance of 5.37 cM between markers; A male genetic map was constructed by 153 markers which was distributed on 19 linkage groups and spanned 1 149.43 cM in genome with an average distance of 7.51 cM between markers.【Conclusion】The integrated genetic linkage maps of parents were constructed by different sources of SSR molecular markers, which contained 186 SSR markers and finally covered the genome 1 125.33 cM.

Key words: pear, SSR, genetic linkage map, integrated the genetic map

[1]    殷豪, 吴俊, 张绍铃. 梨分子遗传连锁图构建及重要农艺性状定位. 果树学报, 2012, 29(5): 918-928.
Yin H, Wu J, Zhang S L. Construction of molecular genetic maps and location of important agronomic traits in pear. Journal of Fruit Science, 2012, 29(5): 918-928. (in Chinese)
[2]    Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T. Mapping of Disease-Related Genes in Japanese pear using a molecular linkage map with RAPD markers. Breeding Science, 2001, 51(3): 179-184.
[3]    Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theoretical and Applied Genetics, 2002, 106(1): 9-18.
[4]    Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T. Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breeding Science, 2007, 57(4): 321-329.
[5]    Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T. Genetic linkage map of the Japanese pear 'Housui' identifying three homozygous genomic regions. Journal of the Japanese Society for Horticultural Science, 2009, 78(4): 417-424.
[6]    Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T. Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breeding Science, 2014, 64(4): 351-361.
[7]    Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N, Saito T, Yamamoto T. Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree genetics & Genomes, 2014, 10(4): 853-863.
[8]    张丽. 早美酥×红香酥F1代群体分子遗传图谱的构建[D]. 保定: 河北农业大学, 2006.
Zhang L. Construction of a molecular genetic map in Zaomeisu pear and Hongxiangsu pear F1 hybrid population [D]. Baoding: Agricultural University of Hebei, 2006. (in Chinese)
[9]    孙文英, 张玉星, 张新忠, 乐文全, 张海娥. 梨分子遗传图谱构建及生长性状的QTL分析. 植物遗传资源学报, 2009, 10(2): 182-189.
Sun W Y, Zhang Y X, Zhang X Z, Le W Q, Zhang H E. Construction of a genetic linkage map and QTL analysis for some growth traits in pear. Journal of Plant Genetic Resources, 2009, 10(2): 182-189. (in Chinese)
[10]   韩明丽, 刘永立, 郑小艳, 杨健, 王龙, 王苏珂, 李秀根, 滕元文. 梨遗传连锁图谱的构建及部分果实性状QTL的定位. 果树学报, 2010, 27(4): 496-503.
Han M L, Liu Y L, Zheng X Y, Yang J, Wang L, Wang S K, Li X G, Teng Y W. Construction of a genetic linkage map and QTL analysis for some fruit traits in pear. Journal of Fruit Science, 2010, 27(4): 496-503. (in Chinese)
[11]   Wu J, Li L T, Li M, Khan M A, Li X G, Chen H, Yin H, Zhang S L. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. Journal of Experimental Botany, 2014, 65(20): 5771-5781.
[12]   Chen H, Song Y, Li L T, Khan M A, Li X G, Schuyler S, Korban S S, Wu J, Zhang S L. Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Molecular Biology Reporter, 2014, 33(2): 1-10.
[13]   陈昆松, 李方, 徐昌杰, 张上隆, 傅承新. 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004, 26(4): 529-531.
Chen K S, Li F, Xu C J, Zhang S L, Fu C X. An efficient macro-method of genomic DNA isolation from actinidia chinensis leaves. Hereditas, 2004, 26(4): 529-531. (in Chinese)
[14]   Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni A, Stover E, Bell R, Wisniewski M, Korban S. Characteristics and transferability of new apple EST-derived SSRs to other rosaceae species. Molecular Breeding, 2009, 23(3): 397-411.
[15]   Silfverberg-Dilworth E, Matasci C L, Van de Weg W E, Van Kaauwen M P W, Walser M, Kodde L P, Soglio V, Gianfranceschi L, Durel C E, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A. Microsatellite markers spanning the apple (Malus×domestica Borkh.) genome. Tree Genetics & Genomes, 2006, 2(4): 202-224.
[16]   Guilford P, Prakash S, Zhu J M, Rikkerink E, Gardiner S, Bassett H, Forster R. Microsatellites in Malus ×domestica (apple): abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics, 1997, 94(2): 249-254.
[17]   Liebhardt R, Gianfranceschi L, Koller B, Ryder C D, Tarchini R, Van De Weg W E, Gessler C. Development   and characterisation of 140 new microsatellites in apple (Malus× domestica Borkh.). Molecular Breeding, 2002, 10(4): 217-241.
[18]   Fernández-Fernández F, Harvey N G, James C M. Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Molecular Ecology Notes, 2006, 6(4): 1039-1041.
[19]   Inoue E, Matsuki Y, Anzai H, Evans K. Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Molecular Ecology Notes, 2007, 7(3): 445-447.
[20]   Yue X Y, Liu G Q, Zong Y, Teng Y W, Cai D Y. Development of genic SSR markers from transcriptome sequencing of pear buds. Zhejiang University Science B, 2014, 15(4): 303-312.
[21]   Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N. Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Molecular Ecology Notes, 2002, 2(1): 14-16.
[22]   Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N. Simple sequence repeats for genetic analysis in pear. Euphytica, 2002, 124(1): 129-137.
[23]   Sawamura Y, Saito T, Takada N, Yamamoto T, Kimura T, Hayashi T, Kotobuki K. Identification of parentage of Japanese pear Housui. Journal of the Japanese Society for Horticultural Science, 2004, 73: 511-518.
[24]   Hemmat M, Weedon N F, Manganaris A G, Lawson D M. Molecular marker linkage map for apple. Journal of heredity, 1994, 85(1): 4-11.
[25]   Weeden N F, Hemmat M, Lawson D M, Lodhi M, Bell R L, Manganaris A G, Reisch B I, Brown S K, Ye G N. Development and application of molecular marker linkage maps in woody fruit crops. Euphytica, 1994, 77(1/2): 71-75.
[26]   曹玉芬, 刘凤之, 高源, 姜立杰, 王昆, 马智勇, 张开春. 梨栽培品种SSR鉴定及遗传多样性. 园艺学报, 2007, 34(2): 305-310.
Cao Y F, Liu F Z, Gao Y, Jiang L J, Wang K, Ma Z Y, Zhang K C. SSR analysis of genetic diversity of pear cultivars. Acta Horticulturae Sinica, 2007, 34(2): 305-310. (in Chinese)
[27]   路娟, 吴俊, 张绍铃, 吴华清, 张妤艳. 不同系统梨种质遗传多样性与分类关系的SSR分析. 南京农业大学学报, 2011, 34(2): 38-46.
Lu J, Wu J, Zhang S L, Wu Q H, Zhang Y Y. Genetic diversity and polygentic relationship among pears reveled by SSR analysis. Journal of Nanjing Agricultural University, 2011, 34(2): 38-46. (in Chinese)
[28]   江先莆, 初庆刚, 张长胜. 中国梨属植物的分类和演化. 莱阳农学院学报, 1992, 9(1): 18-21.
Jiang X P, Chu Q G, Zhang C S. Studies on the classification and evolution of the genus pyrus in china. Journal of Laiyang Agricultural College, 1992, 9(1): 18-21. (in Chinese)
[29]   蔡长福. 牡丹高密度遗传图谱构建及重要性状QTL分析[D]. 北京: 北京林业大学, 2015.
Cai C F. High-density genetic linkage map construction and QTLs analyses for phenotypic traits in tree peony [D]. Beijing: Beijing Forestry University, 2015. (in Chinese)
[30]   万怡震, 王跃进, 张今今, 孙马, 杨克强, 徐炎. 多年生果树植物分子遗传作图. 园艺学报, 2002. 29(S1): 629-634.
Wan Y Z, Wang Y J, Zhang J J, Sun M, Yang K Q , Xu Y. Molecular genetic mapping in fruit crops. Acta Horticulturae Sinica, 2002, 29(S1): 629-634. (in Chinese)
[31]   陈慧, 宋跃, 李雷霆, 吴俊, 张绍铃. 梨遗传连锁图谱的构建及其与苹果图谱的比较. 西北植物学报, 2012, 32(7): 1343-1348.
Chen H, Song Y, Li L T, Wu J, Zhang S L. Construction of a genetic linkage map in pear and compared the map with apples. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(7): 1343-1348. (in Chinese)
[32]   刘金义, 崔海荣, 王龙, 王新卫, 杨健, 章镇, 李秀根, 乔玉山. 梨果实酸/低酸性状的 SSR 分析. 果树学报, 2011, 28(3): 389-393.
Liu J Y, Cui H R, Wang L, Wang X W, Yang J, Zhang Z, Li X G, Qiao Y S. Analysis of pear fruit acid/low-acid trait by SSR marker. Journal of Fruit Science, 2011, 28(3): 389-393. (in Chinese)
[33]   关玲, 章镇, 王新卫, 薛华柏, 刘艳红, 王三红, 乔玉山. 苹果基因组SSR位点分析与应用. 中国农业科学, 2011, 44(21): 4415-4428.
Guan L, Zhang Z, Wang X W, Xue H B, Liu Y H, Wang S H, Qiao Y S. Evaluation and application of the SSR loci in apple genome. Scientia Agricultura Sinica, 2011, 44(21): 4415-4428. (in Chinese)
[34]   王西成, 姜淑苓, 上官凌飞, 曹玉芬, 乔玉山, 章镇, 房经贵. 梨EST-SSR标记的开发及其在梨品种遗传多样性分析中的应用评价. 中国农业科学, 2010, 43(24): 5079-5087.
Wang X C, Jiang S L, Shangguan L F, Cao Y F, Qiao Y S, Zhang Z, Fang J G. Development of EST-derived SSR markers for pear and evaluation of their application in pear genetic diversity analysis. Scientia Agricultura Sinica, 2010, 43(24): 5079-5087. (in Chinese)
[35]   崔海荣, 刘金义, 佟兆国, 王新卫, 章镇, 乔玉山. 砂梨EST-SSR引物开发及其应用. 西北植物学报, 2010(8): 1551-1556.
Cui H R, Liu J Y, Tong Z G, Wang X W, Zhang Z, Qiao Y S. Development and application of EST-SSRs in sand pear. Acta Botanica Boreali-Occidentalia Sinica, 2010(8): 1551-1556. (in Chinese)
[36]   Staub J E, Serquen F C, Gupta M. Genetic markers, map construction, and their application in plant breeding. HortScience, 1996, 31(5): 729-741.
[37]   Gaudet M. Molecular approach to dissect adaptive traits in native European Populus nigra L.: Construction of a genetic linkage map based on AFLP, SSR and SNP markers [D]. Viterbo: Università degli Studi della Tuscia, 2006.
[38]   Fernandez-Fernandez F, Antanaviciute L, van Dyk M M, Tobutt K R, Evans K M, Rees D J G, Dunwell J M, Sargent D J. A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree genetics & genomes, 2012, 8(5): 991-1002.
[39]   高妍. 桃(Prunus persica (L.) Batsch) AFLP分子标记遗传连锁图谱的构建[D]. 陕西杨凌: 西北农林科技大学, 2008.
Gao Y. construction of AFLP molecular markers linkage map in peach (Prunus persica (L.) Batsch) [D]. Yangling, Shaanxi: Northwest A&F University, 2008. (in Chinese)
[40]   刘镇东. 山葡萄高密度分子遗传图谱构建及抗寒性QTL定位研究[D]. 沈阳: 沈阳农业大学, 2012.
Liu Z D. High density molecular genetic map construction in Virus amurensis Rupr. and QTL location for grape cold hardiness [D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese)
[41]   王晶, 闫国华, 张晓明, 周宇, 张开春. 甜樱桃高密度连锁图谱的构建. 果树学报, 2014, 31(s1): 29-35.
Wang J, Yan G H, Zhang X M, Zhou Y, Zhang K C. Construction of sweet cherry (Prunus avium) high density genetic linkage map. Journal of Fruit Science, 2014, 31(s1): 29-35. (in Chinese)
[42]   Lorieux M, Goffinet B, Perrier X, Deleon D G, Lanaud C. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theoretical and Applied Genetics, 1995, 90(1): 73-80.
[43]   Lorieux M, Perrier X, Goffinet B, Lanaud C, Deleon D G. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theoretical and Applied Genetics, 1995, 90(1): 81-89.
[44]   Charlesworth B. Driving genes and chromosomes. Nature, 1988, 332(6163): 394-395.
[45]   Lu M, Tang H, Chen X, Gao J, Chen Q, Lin L. Comparative genome mapping between apple and pear by apple mapped SSR markers. American-Eurasian Journal of Agricultural and Environmental Science, 2010, 9: 303-309.
[46]   Pierantoni L, Cho K H, Shin I S, Chiodini R, Tartarini S, Dondini L, Kang S J, Sansavini S. Characterisation and transferability of apple SSRs to two European pear F1 populations. Theoretical and Applied Genetics, 2004, 109(7): 1519-1524.
[47]   Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald L M, Gutin N, Lanchbury J, Macalma T, Mitchell J T, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu V T, King S T, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater M M, Masiero S, Lasserre P, Lespinasse Y, Allan A C, Bus V, Chagne D, Crowhurst R N, Gleave A P, Lavezzo E, Fawcett J A, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens R P, Durel C E, Gutin A, Bumgarner R E, Gardiner S E, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 2010, 42(10): 833-839.
[48]   Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans K M, Viola R, Velasco R, Dunwell J M, Troggio M, Sargent D J. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genomics, 2012, 13(1): 203.
[49]   Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T. Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breeding Science, 2014, 64(3): 240-251.
[1] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[2] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[3] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[8] WANG Yang,WANG WenHui,TONG Wei,JIA XiaoHui,DU YanMin. Quality Analysis of Frozen Pear Based on Color, Aroma, Taste and Texture [J]. Scientia Agricultura Sinica, 2021, 54(9): 1981-1992.
[9] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[10] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[11] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[12] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[13] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
[14] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[15] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!