Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (20): 4042-4055.doi: 10.3864/j.issn.0578-1752.2015.20.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

The Identification of High-Stable Yield Maize Varieties Using the Henan-Hainan Ecological Difference in Three Growing Season

HUANG Lian-fu, DONG Peng-fei, LI Hong-ping, LI Chao-hai   

  1. College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002
  • Received:2015-02-03 Online:2015-10-20 Published:2015-10-20

Abstract: 【Objective】In order to speed up the screening identification of a high-stable yield and eurytopicity maize hybrid.【Method】This experiment was conducted for three production seasons, using 11 maize varieties (combinations) under 6 kinds of evaluation environments of two ecological regions in Zhengzhou of Henan Province (Henan) and Sanya of Hainan Province (Hainan) during 2011-2012. Through comparisons with the evaluation results of these corn varieties (combinations) in 2011 in nine cities of Henan Province, we analyzed the difference between the two ecological environment conditions to examine the correlation and stability of yield and main agronomic characteristics between them.【Result】These results indicated that the ecological environments were appreciably different between Henan and Hainan, compared with Henan, lighting hours of phases Ⅰ and Ⅱ of Hainan increased by 2.69% and 11.17%, respectively. The average temperature increase was -0.39% and 11.02%, while the rainfall decreased by 15.49% and 8.15% respectively of the maize growth period. The sources of energy in Henan gave priority to shortwave radiation, with phases Ⅰ and Ⅱ in Hainan mainly being longwave radiation. The growth period of phases Ⅰ and Ⅱ in Hainan was shortened by 5.7 days and 7.02 days respectively more than in Henan, yet the main maize agronomic characters in the two places had certain correlations. It could be effective to use the natural environmental conditions of Hainan to identify the growth period duration, plant height, ear diameter, bare tip length, ear rows, numbers of tassel branch, ear-leaf length, and basal third eustipes length of varieties, it is more effective to select in phase Ⅱ of Hainan except the kernel rate. It was appropriate to identify the ear position height, spike length, grain numbers per spike, grain numbers per ear, thousand seed weight, yield, the number of internodes, the ear leaf width, and the base of the third quarter stem diameter. It was appropriate to identify the bacterial wilt and corn rust in Hainan, and leaf spot diseases and maize rough dwarf disease in Henan, with the consistent identification performance for those diseases in both Henan and Hainan. The suitable density in Henan and the arid barren treatment in phase Ⅱ of Hainan were the best among the 6 kinds of evaluation environments, with a strong discriminability and a good representativeness. The normal management of phases Ⅰ and Ⅱ in Hainan came second, while the high density in Henan and the arid barren treatment in phase of Hainan were suitable for the elimination of poor stability varieties. The results showed that the yield differences between different varieties were large under various environmental conditions. It was impossible to exactly evaluate the comprehensive performance of varieties using just one kind of ecological environment.【Conclusion】Partial characteristics of maize varieties (combinations) could be validly selected in Hainan, however, it was more effective to appraise high-stable yield maize varieties (combinations) in all directions using multiple environmental conditions of three quarters of the two locations in one year of Henan and Hainan.

Key words: maize, new variety (combinations), yield stability, eurytopicity, ecological environment, evaluation methodology, Henan, Hainan

[1]    许海涛, 许波, 王友华, 王成业, 张海申. 玉米杂交新品种高产稳产性研究. 湖南农业科学, 2007, 4: 32-34.
Xu H T, Xu B, Wang Y H, Wang C Y, Zhang H S. The high yield stability analysis of new hybrid corn varieties. Hunan Agricultural Sciences, 2007, 4: 32-34. (in Chinese) 
[2]    司书丽, 王占森, 谢虹, 何光荣, 李立公, 张旭. 不同试验设计对玉米杂交组合的选择效果. 中国农学通报, 2010, 26(3): 94-98. 
Si S L, Wang Z S, Xie H, He G R, Li L G, Zhang X. Selection effects of maize hybrids by different trail designs. Chinese Agricultural Science Bulletin, 2010, 26(3): 94-98. (in Chinese)
[3]    Hamblin J, Knight R, Atkinson M J. The influence of systematic micro-environmental variation on individual plant yield within selection plots. Euphytica, 1978, 27(2): 497-503.
[4]    Onenanyoli A H A, Fasoulas A C. Yield response to honeycomb selection in maize. Euphytica, 1989, 40(1-2): 43-88.
[5]    Fasoula V A, Tollenaar M. The impact of plant population density on crop yield and response to selection in maize. Maydica, 2005, 50: 39-48.
[6]    Tokatlidis I S, Koutsika-Sotiriou M K, Tamoutsidis E. Benefits from using maize density-independent hybrids. Maydica, 2005, 50: 9-17.
[7]    王元东, 段民孝, 邢锦丰, 张雪原, 王继东, 张春原, 赵久然. 高密度条件下不同生态区变换地选育优良玉米自交系的研究. 玉米科学, 2009, 17(3): 55-59.
Wang Y D, Duan M X, Xing J F, Zhang X Y, Wang J D, Zhang C Y, Zhao J R. Studying on elite inbred lines breeding in maize by selecting in high density under different ecological conditions. Journal of Maize Sciences, 2009, 17(3): 55-59. (in Chinese)
[8]    陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36(7): 1153-1160.
Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)
[9]    郑洪建, 董树亭, 王空军, 郭玉秋, 胡昌浩, 张吉旺. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001, 27(06): 862-868. 
Zheng H J, Dong S T, Wang K J, Guo Y Q, Hu C H, Zhang J W. Effects of ecological factors on maize yield of different varieties and corresponding regulative measure. Acta Agronomica Sinica, 2001, 27(6): 862-868. (in Chinese)
[10]   张卫星, 赵致, 柏光晓, 付芳婧, 曹绍书. 不同玉米杂交种对水分和氮胁迫的响应及其抗逆性. 中国农业科学, 2007, 40(7): 1361-1370.
Zhang W X, Zhao Z, Bai G X, Fu F J, Cao S S. Response on water stress and low nitrogen in different maize hybrid varieties and evaluation for their adversity resistance. Scientia Agricultura Sinica, 2007, 40(7): 1361-1370. (in Chinese)
[11]   王元东, 赵久然, 李登海. 不同生态环境对玉米杂交后代选择效果的分析. 中国农学通报, 2008, 24(12): 136-138.
Wang Y D, Zhao J R, Li D H. Effects of different ecological conditions on selection of progenies of maize crosses. Chinese Agricultural Science Bulletin, 2008, 24(12): 136-138. (in Chinese)
[12]   Tokatlidis I S, Koutroubas S D. A review of maize hybrids dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004, 88(2-3): 103-114.
[13]   吴子恺. 在两种环境条件下玉米八个农艺性状的研究. 作物学报, 1988, 14(1): 39-45.
Wu Z K. Research on eight agronomic traits of maize under two environmental conditions. Acta Agronomica Sinica, 1988, 14(1): 39-45. (in Chinese)
[14]   郝小琴, 吕凤连, 姚鹏鹤, 吴子恺. 异地种植对微胚乳玉米百粒重和含油率的效应研究. 玉米科学, 2012, 20(1): 67-72, 78. 
Hao X Q, Lü F L, Yao P H, Wu Z K. Study on the effect of plant in different places on the 100-kerenl weight and oil percentage in micro-endoeperm maize. Journal of Maize Sciences, 2012, 20(1): 67-72, 78. (in Chinese)
[15]   刘淑云, 董树亭, 胡昌浩, 白萍, 吕新. 玉米产量和品质与生态环境的关系. 作物学报, 2005, 31(5): 571-576. 
Liu S Y, Dong S T, HU C H, Bai P, Lü X. Relationship between ecological environment and maize yield and quality. Acta Agronomica Sinica, 2005, 31(5): 571-576. (in Chinese)
[16]   吴东兵, 曹广才, 强小林, 冬梅, 寇皞, 王建林, 王秀芳. 西藏和北京异地种植小麦的品质变化. 应用生态学报, 2003, 14(12): 2195-2199.
Wu D B, Cao G C, Qiang X L, Dong M, Kou H, Wang J L, Wang X F. Quality variation of wheat planted in different regions of Tibet and Beijing. Chinese Journal of Applied Ecology, 2003, 14(12): 2195-2199. (in Chinese)
[17]   李召锋, 艾尼瓦尔, 仲家楷, 李卫华, 李前荣, 曹彦龙, 陈小龙. 异地种植春小麦主要农艺性状变化规律研究. 新疆农业科学, 2014, 51(7): 1184-1189.
Li S F, Ai N W E, Zhong J K, Li W H, Li Q R, Cao Y L, Chen X L. Study on the changing laws of major agronomic traits of spring wheat caused by different Environments in Xinjiang and Yunnan. Xijiang Agricultural Science, 2014, 51(7): 1184-1189. (in Chinese)
[18]   任志龙, 张宏, 范宏军, 宋玉连, 杜联盟. 冬小麦异地加代中性状变化规律研究. 中国农学通报, 2007, 23(1): 189-193.
Ren Z L, Zhang H, Fan H J, Song Y L, Du L M. Study on characterlstic variability in the acceleration of generation advancement for winter weat grown in different areas. Chinese Agricultural Science Bulletin, 2007, 23(1): 189-193. (in Chinese)
[19]   田佩占. 大豆品种南北异地种植的主要性状变化规律及其应用. 中国农业科学, 1979, 12(01): 56-61.
Tian P Z. Soybean performance in northeast China and South China as affected by variety and ecological factors and its breeding value. Scientia Agricultura Sinica, 1979, 12(01): 56-61. (in Chinese)
[20]   李永春, 喻德跃, 徐冉, 盖钧镒, 邢邯. 大豆异地衍生RIL群体主要数量性状的自然选择效应. 中国农业科学, 2008, 41(7): 1917-1926. 
Li Y C, Yu D Y, Xu R, Gai J Y, Xing H. Effects of natural selection of several quantitative traits of soybean ril populations derived from the combinations of Peking×7605 and RN-9×7605 under two ecological sites. Scientia Agricultura Sinica, 2008, 41(7): 1917-1926. (in Chinese)
[21]   杨小昆. 棉花品种南北异地种植经济性状的相关和配合力反应. 棉花学报, 1989, 1: 19-24.
Yang X K. Study on correlation between economic characters and their combining abilities in upland cotton varieties grown in the South and the North of China. Cotton Science, 1989, 1: 19-24. (in Chinese)
[22]   王殿瀛, 陈玉香. 谷子品种南北异地种植主要性状变化及其应用. 中国农业科学, 1980, 13(04): 33-38.
Wang D Y, Chen Y X. The main characters variation of the millet varieties grown both in north and south areas and its use in practice. Scientia Agricultura Sinica, 1980, 13(04): 33-38. (in Chinese)
[23]   冯继林, 异地气候条件对青稞主要性状的影响, 大麦科学, 2002, 2: 27-28.
Feng J L. Influence of different climatic conditions on the main characters of highland barley. Barley Science, 2002, 2: 27-28. (in Chinese)
[24]   严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36(11): 1805-1819. 
Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36(11): 1805-1819. (in Chinese)
[25]   许乃银, 张国伟, 李健, 周治国. 基于GGE双标图的棉花品种生态区划分. 应用生态学报. 2013, 24(3): 771-776.
Xu N Y, Zhang G W, Li J, Zhou Z G. Ecological regionalization of cotton varieties based on GGE biplot. Chinese Journal of Applied Ecology, 2013, 24 (3): 771-776. (in Chinese)
[26]   Mohammadi R, Haghparast R, Amri A, Ceccarelli S. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop & Pasture Science, 2010, 61(1): 92-101.
[27]   Mohammadi R, Amri A, Ansari Y. Biplot analysis of rainfed barley multienvironment trials in Iran. Agronomy Journal, 2009, 101(4): 789-796.
[28]   唐丽媛, 李从锋, 马玮, 赵明, 李向岭, 李连禄. 渐密种植条件下玉米植株形态特征及其相关性分析. 作物学报, 2012, 38(8): 1529-1537.
Tang L Y, Li C F, Ma W, Zhao M, Li X L, Li L L. Characteristics of plant morphological parameters and its correlation analysis in maize under planting with gradually increased density. Acta Agronomica Sinica, 2012, 38(8): 1529-1537. (in Chinese)
[29]   罗俊, 张华, 邓祖湖, 阙友雄. 用GGE双标图分析甘蔗品种性状稳定性及试点代表性. 应用生态学报, 2012, 23(5): 1319-1325.
Luo J, Zhang H, Deng Z H, Que Y X. Trait stability and test site representativeness of sugarcane varieties based on GGE-biplot analysis. Chinese Journal of Applied Ecology, 2012, 23(5): 1319-1325. (in Chinese)
[30]   Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crop, 2002, 75(2-3), 161-169.
[31]   曹镇北. 关于玉米生育期与引种关系问题的商榷. 中国农业科学, 1961, 2(4): 44-48.
Cao Z B. Discussion on the relationship between maize growth period duration and the introduction of germplasm resources. Scientia Agricultura Sinica, 1961, 2(4): 44-48. (in Chinese)
[32]   杜成凤, 李潮海, 刘天学, 赵亚丽. 遮阴对两个基因型玉米玉米解剖结构及光合特性的影响. 生态学报, 2011, 31(21): 6633-6640.
Du C F, Li C H, Liu T X, Zhao Y L. Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecologica Sinica, 2011, 31(21): 6633-6640. (in Chinese)
[33]   贾士芳, 董树亭, 王空军, 张吉旺, 刘鹏. 弱光胁迫对玉米产量及光合特性的影响. 应用生态学报, 2007, 18(11): 2456-2461.
Jia S F, Dong S T, Wang K J, Zhang J W, Liu P. Effects of weak light stress on grain yield and photosynthetic traits of maize. Chinese Journal of Plant Ecology, 2007, 18(11): 2456-2461. (in Chinese)
[34]   顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料籽粒灌浆特性的分析. 作物学报, 2001, 27(1): 7-14.
Gu S L, Zhu Q S, Yang J C, Peng S B. Analysis on grain filling characteristics for different rice types. Acta Agronomica Sinica, 2001, 27(1): 7-14. (in Chinese)
[35]   金益, 张永林, 王振华, 孙朝杰. 玉米灌浆后期的百粒重变化的品种间差异分析. 东北农业大学学报, 1998, 29(1): 7-10.
Jin Y, Zhang Y L, Wang Z H, Sun C J. Difference analysis on 100 kernel weight in 30-60 days after silking in maize hydrids. Journal of Northeast Agricultural University, 1998, 29(1): 7-10. (in Chinese)
[36]   Rakshit S, Ganapathy K N, Gomashe S S, Rathore A, Ghorade R B, Nagesh Kumar M V, Ganesmurthy K, Jain S K, Kamtar M Y, Sachan J S, Ambekar S S, Ranwa B R, Kanawade D G, Balusamy M, Kadam D, Sarkar A, Tonapi V A, Patil J V. GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi- location data. Euphytica, 2012, 185(3): 465-479.
[37]   Badu-apraku B, Oyekunle M, Obeng-Antwi K, Osuman A S, Ado S G, Coulibay N, Yallou C G, Abdulal M, Boakyewaa G A, Didjeira A. Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. The Journal of Agricultural Science, 2012, 150(4): 473-483.
[38]   Yan W K, Pageau D, Frégeau-Reid J, Durand J. Assessing the representativeness and repeatability of test locations for genotype evaluation. Crop Science, 2011, 51(4): 1603-1610.
[39]   常磊, 韩凡香, 柴守玺, 岳云, 杨德龙, 杨长刚, 黄彩霞, 程宏波. 我国旱地小麦区域试验精确度及其环境综合评价. 应用生态学报, 2013, 24(10): 2814-2820.
Chang L, Han F X, Chai S X, Yue Y, Yang D L, Yang C G, Huang C X, Cheng H B. Experiment precision and comprehensive environmental evaluation of regional wheat trials in rainfed regions of China. Chinese Journal of Applied Ecology, 2013, 24 (10): 2814-2820. (in Chinese)
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!