Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (1): 33-42.doi: 10.3864/j.issn.0578-1752.2015.01.04

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Vigor and Physiological Changes of Different Genotypes of Maize Seed (Zea mays L.) Under Critical Stress Storage Conditions

CHENG Guang-lei, ZHANG Hai-jiao, ZHAO Jiu-ran, LIU Chun-ge, WANG Yuan-dong, WANG Xiao-guang, WANG Rong-huan, CHEN Chuan-yong, XU Tian-jun   

  1. Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
  • Received:2013-12-16 Online:2015-01-01 Published:2015-01-01

Abstract: 【Objective】This experiment was carried out to understand the viability and physiological variation rule of different genotypes maize seeds under critical stress storage conditions, evaluate its of storability objectivity, provide a theoretical basis for clearing the physiological and biochemical mechanisms of maize seed storability. 【Method】 Major maize hybrids(ZD958, ND108, XY335, ZD619, JK968) were used as experimental materials. Seed initial moisture content, vigor and physiological indicators was measured. The moisture content of experimental materials wet back to 14% and stored at temperature of 35, for one year, then the germination energy, germination rate, germination index, vigor index, electrical conductivity, MDA concentration, soluble protein and soluble sugar content and dehydrogenase activity of materials were measured every month. The germination experiment was conducted by using sand culture method, DDS-ⅡA conductivity meter was used to measure the seed electrical conductivity, the TBA was used to measure the MDA content, coomassie brilliant blue G-250 method was used to analyze the soluble sugar content, and dehydrogenase activity was determined by TTC method. The vigor and physiological indicators change of different genotypes maize seeds were compared under the critical stress storage conditions.【Result】Seed genotype was the determinative factor under the same storage condition. The initial moisture content of experimental materials was at a low level, between 7.39% and 8.71%. The germination potential and germination rate of different genotypes maize seed were over 90%, showing a stronger germination ability. After storage for one year, the germination potential and germination rate of JK968 was 50%-60%, germination index was 25%, and vigor index was 0.3. The germination potential and germination rate of ND108, XY335, ZD619 was 15%-25%, germination index was 8%-25%, and vigor index was 0-0.08. The germination potential, germination rate, germination index and vigor index of ZD958 decreased to 0 after storage for one year. Different degrees in decline of germination potential, seed soluble protein content and soluble sugar content changes showed a close relationship with seed vigor. Germination rate, germination index, vigor index were almost the same, however, there was a number of differences in amplitude of variation. Different germination speeds lead to different germination indexes of each genotype of maize seed, seed vigor index declined was always ahead of seed germination ability, which reflected the degree of real seed aging and deterioration. With the storage time extension, the membrane permeability variation of different genotypes of maize seeds, electrical conductivity and MDA content were increased and the change trend was negatively related with seed vigor(R2=0.752). A membrane permeability difference existed among different genotypes of maize seeds. The vigor of different genotypes of maize seed had no significant correlation with the MDA(R2=-0.171-0.094), it significantly positively correlated with soluble protein, soluble sugar and dehydrogenase (R2=0.284- 0.517), but the mechanism of physiological changes of different genotypes of maize seed was complex, the gap was bigger.【Conclusion】 Different genotypes of maize seed were more sensitive to critical stress storage condition, ZD958 was sensitive to critical stress, the vigor and physiological indicator changes of JK968 were stable, showed a higher storability.

Key words: maize, critical stress, vigor, seed physiology, storability

[1]    廖文燕. 金钱松种子贮藏过程中的生理生化变化[D]. 南京: 南京农业大学, 2011.
Liao W Y. Physiological and biochemical change of Pseudolarix kaempferi (Lindl.) Gord in seed storage[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[2]    Sun W Q, Leopold A C. Glassy state and seed storage stability: A viability equation analysis. Annals of Botany, 1994, 74: 601-604.
[3]    Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H. Longevity, storage, and deterioration//Seeds. New York, Springer, 2013: 341-376.
[4]    Suszka J, Plitta B P, Michalak M, Bujarska B B, Tylkowski T, Chmielarz P. Optimal seed water content and storage temperature for preservation of Populus nigra L. germplasm. Annals of Forest Science, 2014, 71: 543-549.
[5]    Ellis R H, Hong T D. Temperature sensitivity of the low-moisture- content limit to negative seed longevity-moisture content relationships in hermetic storage. Annals of Botany, 2006, 97: 785-791.
[6]    Barton L V. Seed Preservation and Longevity. New York: Inter Science Publisher Inc. 1961: 138-157.
[7]    Justice O L, Bass L N. Principles and Practices of Seed Storage. Washington D C, 1978.
[8]    陈晓玲, 陈叔平, 卢新雄. 作物内不同类型间种子耐贮性研究. 中国农业科学, 1998, 31(2): 89-91.
Chen X L, Chen S P, Lu X X. Studies on the seed storability of different types within the crop. Scientia Agricultura Sinica, 1998, 31(2): 89-91. (in Chinese)
[9]    Angelica B R, Julio M F. Accelerated aging and controlled deterioration for the determination of the physiological potential of onion seeds. Science Agricola, 2003, 31: 465-469.
[10]   李淑梅, 董丽平, 孙君艳, 马俊. 人工加速老化对2个小麦品种发芽和种子生理生化特性的影响. 吉林农业科学, 2012, 37(5): 18-20.
Li S M, Dong L P, Sun J Y, Ma J. Effect of artificial accelerated aging of 2 wheat cultivars on seed germination and physiological and biochemical characteristics. Journal of Jilin Agricultural Sciences, 2012, 37(5): 18-20. (in Chinese)
[11]   曾钦薇, 谢永俊. 人工老化诱导的油菜种子活力和抗氧化酶活性变化的研究. 云南农业科技, 2012(2): 11-13.
Zeng Q W, Xie Y J. Study on the change of vigor and antioxidant enzyme activity of artificial aging induced rape seeds. Yunnan Nongye Keji, 2012(2): 11-13. (in Chinese)
[12]   卢新雄, 陈晓玲. 水稻种子贮藏过程中生活力丧失特性及预警指标的研究. 中国农业科学, 2002, 35(8): 975-979.
Lu X X, Chen X L. Characteristics and warning indices of rice seeds viability loss during storage at 45 constant temperature. Scientia Agricultura Sinica, 2002, 35(8): 975-979. (in Chinese)
[13]   孔令琪, 王俊峰, 刘国庆, 李高, 黄莺, 毛培胜. 苜蓿硬实种子对人工老化时间处理的生理响应. 草地学报, 2011, 19(1): 81-85.
Kong L Q, Wang J F, Liu G Q, Li G, Huang Y, Mao P S. Physiological response of hard seeds of alfalfa on accelerated aging duration. Acta Agrestia Sinica, 2011, 19(1): 81-85. (in Chinese)
[14]   志德, 王州飞, 刘永惠, 王军, 张祖明, 沈一. 花生种子人工老化对萌发期种子活力的影响. 江苏农业学报, 2011, 27(6): 1411-1413.
Chen Z D, Wang Z F, Liu Y H, Wang J, Zhang Z M, Shen Y. Effects of artificial aging on seed vigor at seed germination stage in peanut (Arachis hypogaea L.).Jiangsu Journal of Agricultural Sciences, 2011, 27(6): 1411-1413. (in Chinese)
[15]   Elena A G, Henk V A, Folkert A H. Membrane chemical stability and seed longevity. European Biophysic Journal, 2010, 39: 657-668.
[16]   王煜, 田廷亮, 扶惠作, 殷荣华, 钱秀珍. 油菜种子老化过程中的生理生化变异. 中国油料, 1994(3): 11-14.
Wang Y, Tian T L, Fu H Z, Yin R H, Qian X Z. Physiology and biochemical changes during the aging process of the rape seeds. Chinese Journal of Oil Crop Sciences, 1994(3): 11-14. (in Chinese)
[17]   毛培胜, 韩建国, 王培, 戎郁平. 无芒雀麦种子发育过程中的生理生化变化. 中国草地, 2001, 23(1): 26-31.
Mao P S, Han J G, Wang P, Rong Y P. Changes of physiology and biochemistry during seed development of smooth bromegrass. Grassland of China, 2001, 23(1): 26-31. (in Chinese)
[18]   欧利叶, 梁红, 刘胜洪, 周儒茂. γ-射线辐射对银杏种子贮藏期间呼吸速率及品质的影响. 植物资源与环境学报, 2000, 9(3): 8-10.
Ou L Y, Liang H, Liu S H, Zhou R M. Influence of gamma radiation on respiration rate and quality of ginkgo seed during storage. Journal of Plant Resources and Environment, 2000, 9(3): 8-10. (in Chinese)
[19]   Sheikh M B. Soluble sugar composition of peanut seed. Journal of Agricultural and Food Chemistry, 1992, 40(5): 780-783.
[20]   张永娟, 韩蕊, 原烨, 梁虹, 冯子蓉, 戎郁萍. 罗布麻种子老化过程中的生理生化特性. 草业科学, 2011, 28(12): 2130-2135.
Zhang Y J, Han R, Yuan Y, Liang H, Feng Z R, Rong Y P. Gong L Q. The physiological and biochemical characteristics during bluish dogbane seed Aging. Pratacultural Science, 2011, 28(12): 2130-2135. (in Chinese)
[21]   国家技术监督局. 农作物种子检验规程——发芽试验. 北京: 中国标准出版社, 1995.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rules for Agricultural Seed Testing- Germination Test. Beijing: Standards Press of China, 1995. (in Chinese)
[22]   舒英杰, 王爽, 陶源, 宋利茹, 黄丽燕, 周玉丽, 麻浩. 生理成熟期高温高湿胁迫对春大豆种子活力、主要营养成分及种皮结构的影响. 应用生态学报, 2014, 25(5): 1380-1386.
Shu Y J, Wang S, Tao Y, Song L R, Huang L Y, Zhou Y L, Ma H. Effects of high temperature and humidity stress at the physiological maturity stage on seed vigor, main nutrients and coat structure of spring soybean. Chinese Journal of Applied Ecology, 2014, 25(5): 1380-1386. (in Chinese)
[23]   自阳, 姜小苓, 茹振钢, 李淦, 刘明久. 人工老化对杂交小麦种子生理特性和种子活力变化的影响. 江苏农业科学, 2013, 41(2): 81-83.
Zhang Z Y, Jiang X L, Ru Z G, Li G, Liu M J. The effects of artificial on hybrid wheat seed physiological characteristics and vigor changes. Jiangsu Agricultural Sciences, 2013, 41(2): 81-83. (in Chinese)
[24]   Govender V, Aveling T A S, Kritzinger O. The effect of traditional storage methods on germination and vigour of maize (Zea mays L.) from northern KwaZulu-Natal and southern Mozambique. Journal of Botany, 2008, 74: 190-196.
[25]   张玉兰, 汪晓峰, 景新明, 林坚. 水稻种子含水量及其对贮藏寿命的影响. 中国农业科学, 2005, 38(7): 1480-1486.
Zhang Y L, Wang X F, Jing X M, Lin J. Effect of moisture content on storage life of rice seeds. Scientia Agriculture Sinica, 2005, 38(7), 1480-1486. (in Chinese)
[26]   殷换弟, 汤青林, 王志敏, 宋明. 大葱种子贮藏期间生理生化指标变化研究. 南方农业, 2007, 1(1): 66-68.
Yin H D, Tang Q L, Wang Z M, Song M. Study on physiological and biochemical indexes changes of onion seed during storage. South China Agriculture, 2007, 1(1): 66-68. (in Chinese)
[27]   刘明久, 王铁固, 陈士林, 王春虎, 赵新亮. 玉米种子人工老化过程中生理特性与种子活力的变化. 核农学报, 2008, 22(4): 510-513.
Liu M J, Wang T G, Chen S L, Wang C H, Zhao X L. Physioloycial and seed vigour changes of maize seeds during artificial aging courses. Journal of Nuclear Agricultural Sciences, 2008, 22(4): 510-513. (in Chinese)
[28]   乔燕祥, 高平平, 马俊华, 周建萍, 马建萍. 两个玉米自交系在种子老化过程中的生理特性和种子活力变化的研究. 作物学报, 2003, 29(1): 123-127.
Qiao Y X, Gao P P, Ma J H, Zhou J P, Ma J P. Study on physiological characteristics and seed activity changes of two maize inbreds in ageing course. Acta Agronomica Sinica, 2003, 29(1): 123-127. (in Chinese)
[29]   杨剑平, 唐玉林, 王文平. 小麦种子衰老的生理生化分析. 种子, 1996, 75(2): 13-14.
Yang J P, Tang Y L, Wang W P. Analysis of physiology and biochemistry for senescence of wheat seed. Seed, 1996, 75(2): 13-14. (in Chinese)
[30]   陈晓玲, 卢新雄, 陈叔平. 豇豆种子耐贮性的三种人工老化方法的比较研究. 中国农业科学, 2001, 34(2): 219-222.
Chen X L, Lu X X, Chen S P. Comparative Study on three artificial aging methods in evaluating the storability of common cowpea [Vigna unguiculata(Linn.)Walp.] seeds. Scientia Agricultura Sinica, 2001, 34(2): 219-222. (in Chinese)
[31]   闫慧芳, 夏方山, 毛培胜. 种子老化及活力修复研究进展. 中国农学通报, 2014, 30(3): 20-26.
Yan H F, Xia F S, Mao P S. Research progress of seed aging and vigor repair. Chinese Agricultural Science Bulletin, 2014, 30(3): 20-26. (in Chinese)
[32]   Bernal-Lugo I, Leopold A C. Changes in soluble carbohydrates during seed storage. Plant Physiology, 1992, 98: 1207-1210.
[33]   刘霞, 刘菲. 蓝萼香茶菜种子人工老化过程中生理生化特性的研究. 种子, 2012, 31(4): 27-30.
Liu X, Liu F. Study on physiological and biochemical characteristics in seed artificial aging of Rabdosia japonica(Burm.f.)Hara. Seed, 2012, 31(4): 27-30. (in Chinese)
[34]   孙春青, 杨伟, 戴忠良, 潘跃平. 人工老化处理对结球甘蓝种子生理生化特性的影响. 西北植物学报, 2012, 32(8): 1615-1620.
Sun C Q, Yang W, Dai Z L, Pan Y P. Physiological and biochemical characteristics of ‘Dongsheng’ cabbage seeds during artificial aging. Acta Botanica Boreali-Qccidentalia Sinica, 2012, 32(8): 1615-1620. (in Chinese)
[35]   马跃青, 张雷, 吴卫国, 张远宾, 张瑛, 张正竹. 人工加速老化对茶叶籽储藏特性的影响. 中国粮油学报, 2012, 27(6): 61-65.
Ma Y Q, Zhang L, Wu W G, Zhang Y B, Zhang Y, Zhang Z Z. The influence of artificial aging for tea seed storage characteristics. Journal of Chinese Cereals and Oils Association, 2012, 27(6): 61-65. (in Chinese)
[36]   范国强, 黄道发, 傅家瑞. 花生不同品种老化种子的蛋白质变化. 华北农学报, 1996, 11(1): 133-136.
Fan G Q, Huang D F, Fu J R. Proteins change in panut seeds of different varieties after aging. Acta Agriculturae Boreall-Ainica, 1996, 11(1): 133-136. (in Chinese)
[37]   钱俊芝, 韩建国, 倪小琴, 孙洁峰. 贮藏期对结缕草种子生理生化的影响. 草地学报, 2000, 8(3): 177-185.
Qian J Z, Han J G, Ni X Q, Sun J F. A study on physiological and biochemical changes in storing Zoysiagrass seed. Acta Agrestia Sinica, 2000, 8(3): 177-185. (in Chinese)
[38]   彭健, 李在留, 李磊, 王成, 李樱花, 郭宏伟. 不同贮藏条件对掌叶木种子生理特性的影响. 北方园艺, 2013(7): 63-66.
Peng J, Li Z L, Li L, Wang C, LI Y H, Guo H W. Effects of different storage conditions on physiological characteristics of Handeliodendron bodinieri seeds. Northern Horticulture, 2013(7): 63-66. (in Chinese)
[39]   滕海涛, 赵久然, 李勇, 史亚兴. 甜糯玉米采收后营养品质变化的研究. 作物杂志, 2007(2): 36-37.
Teng H T, Zhao J R, Li Y, Shi Y X. Study on changes of nutritional quality of harvested sweet and glutinous maize. Crops, 2007(2): 36-37. (in Chinese)
[40]   王勇, 徐春波, 韩磊. 不同贮藏年限老麦芒种子活力研究. 种子,2012, 8(31): 14-17.
Wang Y, Xu C B, Han L. Studies on seed vigor and physiological indicators of different storage duration Elymus sibiricus L.. Seed, 2012, 8(31): 14-17. (in Chinese)
[41]   杨建肖. 玉米种子活力及营养元素对衰老种子活力的修复作用[D]. 河北保定: 河北农业大学, 2008.
Yang J X. Studies on maize (Zea mays L.) seeds vigor and the effect of nutrient elements on restoring vigor of aged seed[D]. Baoding, Hebei: Agricultural University of Hebei Province, 2008. (in Chinese)
[42]   Chis Mare V H, Dirk I. Superoxide dismutase and stress tolerance. Annual Review Plant Physiology and Plant Molecular Biology, 1992, 43: 83.
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!