Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1494-1507.doi: 10.3864/j.issn.0578-1752.2025.08.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Green Revolution of Chinese Grain Hybrid Sorghum

CHEN BingRu1(), TANG YuJie1, ZHANG LiXia3, ZHOU YuFei4, YU Miao1, SHI GuiShan1, WANG XinDing1, LI Yang1, GAO ShiJie1, LU XiaoChun3, WANG Nai1(), DIAO XianMin2()   

  1. 1 Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033
    2 Institute of Crop Science, Chinses Academy of Agricultural Sciences, Beijing 100081
    3 Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
    4 College of Agronomy, Shenyang Agricultural University, Shenyang 110866
  • Received:2024-09-11 Accepted:2024-10-17 Online:2025-04-16 Published:2025-04-21
  • Contact: WANG Nai, DIAO XianMin

Abstract:

Sorghum is the main food crop in arid and semi-arid regions of the world, which is of great significance to food security, marginal land use and dietary structure in arid and semi-arid regions. Since the first generation of grain hybrid sorghum was introduced in China in 1958, in order to adapt to mechanized harvesting and reduce labor costs, the plant height of cultivated hybrid sorghum has experienced the change process of high stalk, middle stalk, middle dwarf and dwarf. the green revolution of Chinese grain hybrid sorghum has been completed in the past two decades. This paper summarizes the reasons, history and current situation of grain sorghum dwarfing breeding in China. It shows the trend of decreasing plant height and increasing yield of sorghum varieties in China in the past 60 years. The important germplasms created in the process of green revolution of grain sorghum in China were listed. Through the analysis of genetic relationship, it was found that the dwarf source of restorer line in China came from Chinese local variety Sanchisan, and the dwarf source was traced back to Tx3197B due to the utilization of foreign germplasm Tx3197 A, Tx3197 B. The cloning, variation sites, dwarfing mechanism of sorghum dwarf genes dw1, dw2 and dw3, which play an important role in the green revolution of sorghum, and the contributions of predecessors in exploring new plant height QTLs were reviewed. The dwarfing mechanism of sorghum was different from that of gibberellin regulation system (GA) in rice and wheat. dw1 reduced plant height by regulating the brassinosteroid system (BR) to shorten the length of internodes. dw2 and dw3 encode KIPK protein kinase and auxin efflux transporter (ABCB1), respectively, which regulate the transport of auxin (IAA) to shorten the length of internodes and reduce plant height. The dwarfing genes of dw1, dw2 and dw3 had multiple effects on maturity, spike length, spike grain weight, leaf area while reducing plant height. The distribution and application of dw1, dw2 and dw3 dwarf genes in backbone sterile lines and restorer lines were analyzed by molecular markers and sequencing techniques. It was found that the dwarf genes used more in sorghum restorer lines in China were only dw3, and the combination of dw1dw3 and dw2dw3 formed by dw1, dw2 and dw3 was more widely used in sterile lines. The problems and solutions of sorghum green revolution in China were discussed. It is expected to provide guidance for further improving the process of sorghum green revolution in China and cultivating new germplasm and new varieties with major breakthroughs in yield and stress resistance.

Key words: sorghum, plant height, dwarfism, dwarf germplasm, dwarf genes/QTLs

Fig. 1

Variations of plant height and yield of main grain sorghum hybrids from 1958 to 2020 year in China The data from regional test"

Fig. 2

Genealogy of sorghum restoration lines in early-maturing area of China"

Fig. 3

Genealogy of sorghum sterile lines in early- maturing area of China"

Fig. 4

Schematic representation of dwarfing genes dw1, dw2, dw3 and their mutation sites in sorghum"

Fig. 5

Chromosome location of QTL linked to plant height in sorghum Red indicated cloned genes, blue indicated known but unclosed genes"

Table 1

Genetic types of plant height of elite parents in early- maturing area"

序号
Number
种质名称
Germplasm name
种质类型
Germplasm type
株高基因
Plant height genes
株高
Plant height (cm)
1 吉2731B Ji2731B 保持系B-Line Dw1Dw2Dw3dw4 212.23
2 314B 保持系B-Line Dw1Dw2dw3dw4 97.12
3 吉5535B Ji5535B 保持系B-Line Dw1dw2Dw3dw4 85.70
4 SX44B 保持系B-Line Dw1dw2Dw3dw4 120.40
5 吉2055B Ji2055B 保持系B-Line Dw1dw2dw3dw4 86.96
6 吉5575B Ji5575B 保持系B-Line Dw1dw2dw3dw4 91.97
7 A2V4B 保持系B-Line Dw1dw2dw3dw4 130.28
8 吉303B Ji303B 保持系B-Line Dw1dw2dw3dw4 87.00
9 吉1230B Ji1230B 保持系B-Line dw1Dw2dw3dw4 80.00
10 MS22B 保持系B-Line dw1Dw2dw3dw4 68.53
11 吉5522B Ji5522B 保持系B-Line dw1Dw2dw3dw4 84.89
12 吉245B Ji245B 保持系B-Line dw1Dw2dw3dw4 99.66
13 吉115B Ji115B 保持系B-Line dw1Dw2dw3dw4 82.74
14 吉59B Ji59B 保持系B-Line dw1Dw2dw3dw4 87.46
15 吉2316B Ji2316B 保持系B-Line dw1Dw2dw3dw4 89.60
16 吉Y324B JiY324B 保持系B-Line dw1Dw2dw3dw4 106.16
17 B35 保持系B-Line dw1Dw2dw3dw4 133.83
18 Tx623B 保持系B-Line dw1Dw2dw3dw4 129.99
19 QL33B 保持系B-Line dw1Dw2dw3dw4 93.63
20 冀64B Ji64B 保持系B-Line dw1Dw2dw3dw4 85.00
21 352B 保持系B-Line dw1dw2dw3dw4 114.29
22 TAM428B 保持系B-Line dw1dw2dw3dw4 107.22
23 L407B 保持系B-Line dw1dw2dw3dw4 111.67
24 吉2059B Ji2059B 保持系B-Line dw1dw2dw3dw4 65.00
25 吉R209 JiR209 恢复系R-Line Dw1Dw2dw3dw4 87.68
26 南133 Nan133 恢复系R-Line Dw1Dw2dw3dw4 134.56
27 10125 恢复系R-Line Dw1Dw2dw3dw4 128.15
28 吉R 2483 JiR2483 恢复系R-Line Dw1Dw2dw3dw4 128.66
29 吉R117 JiR117 恢复系R-Line Dw1Dw2dw3dw4 136.33
30 吉R4334 JiR4334 恢复系R-Line Dw1Dw2dw3dw4 140.65
31 吉R4392 JiR4392 恢复系R-Line Dw1Dw2dw3dw4 158.00
32 吉R127 JiR127 恢复系R-Line Dw1Dw2Dw3dw4 124.45
33 吉R06H419 JiR06H419 恢复系R-Line Dw1Dw2dw3dw4 126.38
34 吉RK1781 JiRK1781 恢复系R-Line Dw1Dw2dw3dw4 96.93
35 吉R8036 JiR8036 恢复系R-Line Dw1Dw2dw3dw4 133.02
36 吉R107 JiR107 恢复系R-Line Dw1Dw2dw3dw4 135.59
37 T180 恢复系R-Line Dw1Dw2dw3dw4 162.67
38 02001 恢复系R-Line dw1Dw2dw3dw4 85.24
39 k1414 恢复系R-Line dw1Dw2dw3dw4 90.00
40 南40 Nan40 恢复系R-Line dw1dw2Dw3dw4 88.12
[1]
PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F, SUDHAKAR D, CHRISTOU P, SNAPE J W, GALE M D, HARBERD N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741): 256-261.
[2]
SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, ITOH H, NISHIMURA A, SWAPAN D, ISHIYAMA K, SAITO T, KOBAYASHI M, KHUSH G S, KITANO H, MATSUOKA M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416(6882): 701-702.
[3]
HEDDEN P. The genes of the green revolution. Trends in Genetics, 2003, 19(1): 5-9.

doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[4]
刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52(22): 3943-3949. doi: 10.3864/j.issn.0578-1752.2019. 22.001.
DIAO X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Scientia Agricultura Sinica, 2019, 52(22): 3943-3949. doi: 10.3864/j.issn.0578-1752.2019.22.001. (in Chinese)
[5]
QUINBY J R. The genetics of sorghum improvement. Journal of Heredity, 1975, 66(2): 56-62.
[6]
李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 471-482. doi: 10.3864/j.issn.0578-1752.2021.03.002.
LI S G, LIU M, LIU F, ZOU J Q, LU X C, DIAO X M. Current status and future prospective of sorghum production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 471-482. doi: 10. 3864/j.issn.0578-1752.2021.03.002. (in Chinese)
[7]
QUINBY J R, KARPER R E. Inheritance of height in sorghum. Agronomy Journal, 1954, 46(5): 211-216.
[8]
QUINBY J R. Sorghum Improvement and the Genetics of Growth, Texas: The Texas Agricultural Experiment Station in cooperation with the Pioneer Hi-Bred Company, 1974.
[9]
KARPER R E, QUINBY J R. Additional information concerning the introduction of milo into the United States. Agronomy Journal, 1947, 39(10): 937-938.
[10]
KARPER R E, QUINBY J R. The history and evolution of milo in the United States. Agronomy Journal, 1946, 38(5): 441-453.
[11]
STEPHENS J C, HOLLAND R F. Cytoplasmic male-sterility for hybrid sorghum seed production. Agronomy Journal, 1954, 46(1): 20-23.
[12]
SMITH C W, FREDERIKSEN R A. History of cultivar development in the United States: From memoirs of A. B. Maunder-sorghum breeder. 2000.
[13]
宋仁本, 卢峰, 卢庆善. 建国50年来中国高粱品种改良发展阶段及代表品种. 杂粮作物, 2002, 22(2): 75-77.
SONG R B, LU F, LU Q S. Developing stages of sorghum varieties and representative varieties in China from 1949. Rain Fed Crops, 2002, 22(2): 75-77. (in Chinese)
[14]
高士杰, 刘晓辉, 李继洪. 中国杂交高粱育种研究进展. 中国农业信息, 2008, 20(12): 15-19.
GAO S J, LIU X H, LI J H. Research progress of hybrid sorghum breeding in China. China Agricultural Information, 2008, 20(12): 15-19. (in Chinese)
[15]
李嵩博, 唐朝臣, 陈峰, 谢光辉. 中国粒用高粱改良品种的产量和品质性状时空变化. 中国农业科学, 2018, 51(2): 246-256. doi: 10.3864/j.issn.0578-1752.2018.02.005.
LI S B, TANG C C, CHEN F, XIE G H. Temporal and spatial changes in yield and quality with grain sorghum variety improvement in China. Scientia Agricultura Sinica, 2018, 51(2): 246-256. doi: 10.3864/j.issn.0578-1752.2018.02.005. (in Chinese)
[16]
吉林省农业科学院, 吉林省种子公司. 吉林省农作物品种志(1963-1986年). 长春: 吉林科学技术出版社, 1988.
Jilin Academy of Agricultural Sciences, The Seed Company of Jilin Privince. Catalogue of Agricultural Products in Jilin Province (1963-1986). Changchun: Jilin Science and Technology Press, 1988. (in Chinese)
[17]
侯荷亭, 何策熙. 高粱晋辐1号的选育及其系谱分析. 山西农业科学, 1987, 15(9): 13-15.
HOU H T, HE C X. Breeding and pedigree analysis of sorghum Jinfu 1. Journal of Shanxi Agricultural Sciences, 1987, 15(9): 13-15. (in Chinese)
[18]
侯荷亭, 侯旭东, 何策熙, 牛天堂. 我国高粱两大主干恢复系晋粱5号和晋辐1号的选育及利用. 山西农业科学, 2000, 28(2): 27-29.
HOU H T, HOU X D, HE C X, NIU T T. The selection and utilization of two main sorghum restorer line Jinliang5 and Jinfu1. Journal of Shanxi Agricultural Sciences, 2000, 28(2): 27-29. (in Chinese)
[19]
赵秀华, 刘家裕, 柏德华, 王文斗. 高粱恢复系“4003”及其衍生系的选育与利用研究. 辽宁农业科学, 1995(1): 37-41.
ZHAO X H, LIU J Y, BAI D H, WANG W D. Breeding and utilization of sorghum restorer line “4003” and its derived lines. Liaoning Agricultural Sciences, 1995(1): 37-41. (in Chinese)
[20]
马忠良, 张淑君, 周紫阳, 王江红, 闫鸿雁, 李光华, 马英慧. 优良高粱恢复系南133的选育与利用. 杂粮作物, 2006, 26(3): 178-179.
MA Z L, ZHANG S J, ZHOU Z Y, WANG J H, YAN H Y, LI G H, MA Y H. Selection and utilization of a good-quality Sorghum restorer line ‘Nan 133’. Rain Fed Crops, 2006, 26(3): 178-179. (in Chinese)
[21]
邹剑秋, 朱凯, 王艳秋, 杨晓光. 高粱雄性不育系7050A的选育与应用. 作物杂志, 2010(2): 101-104.
ZOU J Q, ZHU K, WANG Y Q, YANG X G. Development and application of sorghum male sterile line 7050A. Crops, 2010(2): 101-104. (in Chinese)
[22]
李继洪, 陈冰嬬, 高士杰. 高粱不育系吉2055A特征特性与应用潜力分析. 安徽农业科学, 2011, 39(28): 17192-17194.
LI J H, CHEN B R, GAO S J. Characteristics and application potential analysis of sterile line sorghum Ji2055A. Journal of Anhui Agricultural Sciences, 2011, 39(28): 17192-17194. (in Chinese)
[23]
邹剑秋, 王艳秋, 李金红, 朱凯. 优异高粱雄性不育系01-26A的组配降秆效应及其分子机理. 中国农业科学, 2020, 53(14): 2814-2827. doi: 10.3864/j.issn.0578-1752.2020.14.006.
ZOU J Q, WANG Y Q, LI J H, ZHU K. Dwarfing effect and molecular mechanism of an elite sorghum male sterile line 01-26A in its hybrids. Scientia Agricultura Sinica, 2020, 53(14): 2814-2827. doi: 10.3864/j.issn.0578-1752.2020.14.006. (in Chinese)
[24]
陈冰嬬, 于淼, 石贵山, 王江红, 唐玉劼, 徐晨, 李海青, 徐宁, 周紫阳, 王鼐. 优异糯高粱不育系吉5535A的创制与应用. 作物杂志, 2023(4): 260-266.
CHEN B R, YU M, SHI G S, WANG J H, TANG Y J, XU C, LI H Q, XU N, ZHOU Z Y, WANG N. Breeding and application of elite waxy sorghum male sterile line Ji 5535A. Crops, 2023(4): 260-266. (in Chinese)
[25]
SIEGLINGER J B. Inheritance of height in broomcorn. Journal of Agricultural Research. 1932, 44:13-20.
[26]
KARPER R E. A dominant mutation of frequent recurrence in sorghum. The American Naturalist, 1932, 66(707): 511-529.
[27]
HADLEY H H. An analysis of variation in height in sorghum. Agronomy Journal, 1957, 49(3): 144-147.
[28]
QUINBY J R, KARPER R E. Inheritance of duration of growth in the milo group of sorghum. Crop Science, 1961, 1(1): 8-10.
[29]
BROWN P J, ROONEY W L, FRANKS C, KRESOVICH S. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics, 2008, 180(1): 629-637.

doi: 10.1534/genetics.108.092239 pmid: 18757942
[30]
HILLEY J, TRUONG S, OLSON S, MORISHIGE D, MULLET J. Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE, 2016, 11(3): e0151271.
[31]
YAMAGUCHI M, FUJIMOTO H, HIRANO K, ARAKI-NAKAMURA S, OHMAE-SHINOHARA K, FUJII A, TSUNASHIMA M, SONG X J, ITO Y, NAGAE R, WU J Z, MIZUNO H, YONEMARU J I, MATSUMOTO T, KITANO H, MATSUOKA M, KASUGA S, SAZUKA T. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Scientific Reports, 2016, 6: 28366.
[32]
HIRANO K, KAWAMURA M, ARAKI-NAKAMURA S, FUJIMOTO H, OHMAE-SHINOHARA K, YAMAGUCHI M, FUJII A, SASAKI H, KASUGA S, SAZUKA T. sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Scientific Reports, 2017, 7(1): 126.

doi: 10.1038/s41598-017-00096-w pmid: 28273925
[33]
KLEIN R R, MULLET J E, JORDAN D R, MILLER F R, ROONEY W L, MENZ M A, FRANKS C D, KLEIN P E. The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Science, 2008, 48(S1): S12-S26.
[34]
MORISHIGE D T, KLEIN P E, HILLEY J L, SAHRAEIAN S M E, SHARMA A, MULLET J E. Digital genotyping of sorghum - a diverse plant species with a large repeat-rich genome. BMC Genomics, 2013, 14: 448.

doi: 10.1186/1471-2164-14-448 pmid: 23829350
[35]
MORRIS G P, RAMU P, DESHPANDE S P, HASH C T, SHAH T, UPADHYAYA H D, RIERA-LIZARAZU O, BROWN P J, ACHARYA C B, MITCHELL S E, HARRIMAN J, GLAUBITZ J C, BUCKLER E S, KRESOVICH S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 453-458.
[36]
HIGGINS R H, THURBER C S, ASSARANURAK I, BROWN P J. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3, 2014, 4(9): 1593-1602.
[37]
HILLEY J L, WEERS B D, TRUONG S K, MCCORMICK R F, MATTISON A J, MCKINLEY B A, MORISHIGE D T, MULLET J E. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Scientific Reports, 2017, 7(1): 4616.

doi: 10.1038/s41598-017-04609-5 pmid: 28676627
[38]
MACE E S, JORDAN D R. Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics, 2010, 121(7): 1339-1356.
[39]
MULTANI D S, BRIGGS S P, CHAMBERLIN M A, BLAKESLEE J J, MURPHY A S, JOHAL G S. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants. Science, 2003, 302(5642): 81-84.
[40]
XIN Z, FRANKS C, PAYTON P, BURKE J J. A simple method to determine transpiration efficiency in sorghum. Field Crops Research, 2008, 107(2): 180-183.
[41]
XIN Z G, CHEN J P, JIAO Y P, GLADMAN N, HAYES C, BUROW G, EMENDACK Y, BURKE J J. Registration of BTx623, a new and easily identifiable nuclear male sterile mutant in sorghum. Journal of Plant Registrations, 2018, 12(2): 278-281.
[42]
CHEN J P, XIN Z G, LAZA H. Registration of BTx623, a new sorghum dwarf mutant. Journal of Plant Registrations, 2019, 13(2): 254.
[43]
ASHIKARI M, SASAKI A, UEGUCHI-TANAKA M, ITOH H, NISHIMURA A, DATTA S, ISHIYAMA K, SAITO T, KOBAYASHI M, KHUSH G S, KITANO H, MATSUOKA M. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breeding Science, 2002, 52(2): 143-150.
[44]
CHONO M, HONDA I, ZENIYA H, YONEYAMA K, SAISHO D, TAKEDA K, TAKATSUTO S, HOSHINO T, WATANABE Y. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiology, 2003, 133(3): 1209-1219.

doi: 10.1104/pp.103.026195 pmid: 14551335
[45]
LIN Y R, SCHERTZ K F, PATERSON A H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics, 1995, 141(1): 391-411.

doi: 10.1093/genetics/141.1.391 pmid: 8536986
[46]
PEREIRA M G, LEE M. Identification of genomic regions affecting plant height in sorghum and maize. Theoretical and Applied Genetics, 1995, 90(3/4): 380-388.
[47]
RAMI J F, DUFOUR P, TROUCHE G, FLIEDEL G, MESTRES C, DAVRIEUX F, BLANCHARD P, HAMON P. Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics, 1998, 97(4): 605-616.
[48]
KLEIN R R, RODRIGUEZ-HERRERA R, SCHLUETER J A, KLEIN P E, YU Z H, ROONEY W L. Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theoretical and Applied Genetics, 2001, 102(2): 307-319.
[49]
HART G E, SCHERTZ K F, PENG Y, SYED N H. Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theoretical and Applied Genetics, 2001, 103(8): 1232-1242.
[50]
UPADHYAYA H D, WANG Y H, SHARMA S, SINGH S. Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome, 2012, 55(6): 471-479.

doi: 10.1139/g2012-034 pmid: 22680231
[51]
UPADHYAYA H D, WANG Y H, GOWDA C L L, SHARMA S. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theoretical and Applied Genetics, 2013, 126(8): 2003-2015.

doi: 10.1007/s00122-013-2113-x pmid: 23649651
[52]
LI X, LI X R, FRIDMAN E, TESSO T T, YU J M. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(38): 11823-11828.
[53]
黄瑞冬, 高悦, 周宇飞, 吴奇, 张姣, 尚培培, 张壮, 高铭悦, 韩熠, 许文娟. 矮秆高粱辽杂35光合特性与产量构成因素. 中国农业科学, 2017, 50(5): 822-829. doi: 10.3864/j.issn.0578-1752. 2017.05.005.
HUANG R D, GAO Y, ZHOU Y F, WU Q, ZHANG J, SHANG P P, ZHANG Z, GAO M Y, HAN Y, XU W J. Photosynthetic characteristics and yield components of dwarf Sorghum hybrid liaoza 35. Scientia Agricultura Sinica, 2017, 50(5): 822-829. doi: 10.3864/ j.issn.0578-1752.2017.05.005. (in Chinese)
[54]
GRAHAM D, LESSMAN K J. Effect of height on yield and yield components of two isogenic lines of Sorghum vulgare Pers. Crop Science, 1966, 6(4): 372-374.
[55]
BROWN P J, KLEIN P E, BORTIRI E, ACHARYA C B, ROONEY W L, KRESOVICH S. Inheritance of inflorescence architecture in sorghum. Theoretical and Applied Genetics, 2006, 113(5): 931-942.

doi: 10.1007/s00122-006-0352-9 pmid: 16847662
[56]
WANG Y B, LV N, YIN F, DUAN G Q, NIU H, CHU J Q, YAN H S, JU L, FAN F F, LV X, PING J N. Research on genotype markers for plant height and assisted breeding of key sorghum resources in China. Genes, 2024, 15(1): 83.
[57]
CASSADY A J. Effect of a single height (Dw) gene of sorghum on grain yield, grain yield components, and test weight. Crop Science, 1965, 5(5): 385-388.
[58]
TRUONG S K, MCCORMICK R F, ROONEY W L, MULLET J E. Harnessing genetic variation in leaf angle to increase productivity of Sorghum bicolor. Genetics, 2015, 201(3): 1229-1238.
[59]
HAO H Q, LI Z G, LENG C Y, LU C, LUO H, LIU Y M, WU X Y, LIU Z Q, SHANG L, JING H C. Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics, 2021, 134(7): 1899-1924.
[60]
YANG L, ZHOU Q, SHENG X, CHEN X Q, HUA Y Q, LIN S, LUO Q Y, YU B J, SHAO T, WU Y X, CHANG J L, LI Y, TU M. Harnessing the genetic basis of sorghum biomass-related traits to facilitate bioenergy applications. International Journal of Molecular Sciences, 2023, 24(19): 14549.
[61]
YAMAGUCHI S. Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 2008, 59: 225-251.

doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[62]
HEDDEN P, PHILLIPS A L. Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 2000, 5(12): 523-530.

doi: 10.1016/s1360-1385(00)01790-8 pmid: 11120474
[1] QIAO ZhengYan, YU Miao, TANG YuJie, SHI GuiShan, LIU XinYu, LIU XiaoHan, WANG XinDing, LI Yang, WANG Nai, CHEN BingRu. Comprehensive Evaluation for Soda Salinity and Alkalinity in Sorghum Seedling Stage and Selection of Indicators [J]. Scientia Agricultura Sinica, 2025, 58(1): 30-42.
[2] HAN LiJie, CAI HongWei. Progress on Genetic Transformation of Sorghum [J]. Scientia Agricultura Sinica, 2024, 57(3): 454-468.
[3] ZHANG JianLong, XING WenWen, YE ShaoBo, ZHANG Chao, ZHENG DeCong. Oat Plant Height Estimation Based on a Dual Output Regression Convolutional Neural Network [J]. Scientia Agricultura Sinica, 2024, 57(20): 3974-3985.
[4] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[5] YANG WenHui, LUO HaoCheng, DONG ErWei, WANG JinSong, WANG Yuan, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Long-Term Fertilization and Deep Plough on Crop Potassium Utilization and Soil Potassium Forms in Maize-Sorghum Rotation System [J]. Scientia Agricultura Sinica, 2024, 57(12): 2390-2403.
[6] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[7] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[8] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[9] YAO QiFu, CHEN HuangXin, ZHOU JieGuang, MA RuiYing, DENG Liang, TAN ChenXinYu, SONG JingHan, LÜ JiJuan, MA Jian. QTL Identification and Genetic Analysis of Plant Height in Wheat Based on 16K SNP Array [J]. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248.
[10] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[11] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[12] SHI XiaoLong, GUO Pei, REN JingYao, ZHANG He, DONG QiQi, ZHAO XinHua, ZHOU YuFei, ZHANG Zheng, WAN ShuBo, YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[15] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!