Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2237-2248.doi: 10.3864/j.issn.0578-1752.2023.12.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Identification and Genetic Analysis of Plant Height in Wheat Based on 16K SNP Array

YAO QiFu1(), CHEN HuangXin2(), ZHOU JieGuang2, MA RuiYing3, DENG Liang3, TAN ChenXinYu3, SONG JingHan4, LÜ JiJuan5(), MA Jian2,()   

  1. 1 College of Agroforestry Engineering and Planning, Tongren University/Guizhou Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren 554300, Guizhou
    2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130
    3 College of Agronomy, Sichuan Agricultural University, Chengdu 611130
    4 Beijing Foreign Studies University, Beijing 100089
    5 Sichuan Provincial Seed Station, Chengdu 610041
  • Received:2023-02-14 Accepted:2023-03-17 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】There is a close relationship between plant height (PH) and yield. The aim of this study is to further explore quantitative trait loci (QTL) of PH with breeding value in wheat and analyze the genetic effects of major QTL for PH on other yield related traits toward to providing a theoretical basis for molecular breeding. 【Method】A recombinant inbred line population (MC) derived from a cross between the natural mutant msf and Chuannong 16 (CN16) was used for QTL analysis. During 2020 to 2022, planting and PH phenotype identification were conducted at five environments in Wenjiang, Chongzhou, and Ya’an of Sichuan Province. The high-quality genetic linkage map constructed using the 16K SNP array was used for QTL mapping of PH. Genotypes of flanking markers of major QTL for PH were used to analyze the genetic effects of positive alleles on yield related traits and evaluate the potentiality of QTL for yield improvement. 【Result】Eight QTL controlling PH were identified on chromosomes 1A, 3D, 4D, 5A, and 7B, respectively. Among them, two stable and major QTL, QPh.sau-MC-1A and QPh.sau-MC-5A, were located, which explained 9.09% to 25.56% and 3.91% to 13.09% of the phenotypic variation rate, respectively. Their positive alleles were all from CN16. The additive effect analysis showed that PH of the lines carrying positive alleles from QPh.sau-MC-1A and QPh.sau-MC-5A was significantly higher than that of the lines carrying only a single positive allele or none. Correlation analysis showed that PH has a significantly positive correlation with effective tiller number (ETN), a significantly negative correlation with flag leaf width (FLW), and no significant correlation with kernel number per spike (KNPS), kernel weight per spike (KWPS), thousand kernel weight (TKW), flag leaf length (FLL) and anthesis date (AD). Genetic effects analysis showed that positive allele of QPh.sau-MC-1A had a significant effect on improving ETN (56.51%), a significant effect on decreasing KNPS (-11.26%), KWPS (-13.04%), TKW (-5.47%), and FLW (-2.85%), and a significant effect on advancing AD (-0.61%). Positive allele of QPh.sau-MC-5A had a significant effect on improving ETN (10.57%), KNPS (4.32%), and TKW (2.92%), and a significant effect on delaying AD (1.07%). 【Conclusion】A major QTL QPh.sau-MC-5A for PH was mapped on chromosome 5A, and its positive allele significantly increased ETN, KNPS, and TKW, indicating that it may have a positive impact on yield.

Key words: wheat, 16K SNP array, QTL, plant height, yield

Fig. 1

Parental phenotype of MC population"

Table 1

Phenotypic distribution of plant height for parents and RIL in MC population (cm)"

生态环境
Environment
亲本Parents 重组自交系RIL
msf CN16 范围 Range 均值 Mean 标准差 SD
2021WJ 109.4±2.4** 77.8±2.7 44.0—120.0 93.6 11.8
2021CZ 101.1±4.4** 83.6±9.9 67.4—106.2 86.4 7.8
2021YA 80.0±8.0 67.0N 60.0—102.0 78.1 8.8
2022WJ 92.6±3.8** 69.0±3.7 44.1—105.8 75.8 10.8
2022CZ 93.3±3.1** 65.1±1.9 40.0—98.0 71.2 10.4
BLUP 91.9 74.5 68.1—94.7 81.0 5.5

Fig. 2

Frequency distribution and correlations of plant height for MC population in different environments * and **: Significant difference at level 0.05 and 0.01. The same as below"

Table 2

Analysis of variance for plant height in MC population"

差异来源
Source
基因型
Genotype
环境
Environment
基因型×环境互作
G×E interaction
区组/环境
Block/E
误差
Error
自由度Degrees of freedom 197 4 739 5 929
均方Mean square 501.25 31662.90 131.60 19.45 15.39
F 32.57 2057.66 8.55 1.26
PP value <0.001 <0.001 <0.001 0.28

Table 3

Correlations between plant height and yield related traits in MC population"

性状
Trait
株高
Plant height
有效分蘖数Effective tiller number 0.54**
每穗粒数Kernel number per spike -0.13
每穗粒重Kernel weight per spike -0.10
千粒重Thousand kernel weight -0.12
旗叶长Flag leaf length 0.01
旗叶宽Flag leaf width -0.16*
开花期Anthesis date 0.10

Table 4

QTL related to plant height in MC population"

QTL 生态环境
Environment
标记区间
Marker interval
遗传位置
Genetic position (cM)
阈值
LOD
表型变异率
PVE (%)
加性效应
Add
QPh.sau-MC-1A 2021WJ 1A_12082541A_3911208 0 6.23 13.83 -4.22
2021YA 1A_39112081A_10060497 1 3.31 9.09 -2.62
2022WJ 1A_39112081A_10060497 1 16.28 25.56 -5.31
2022CZ 1A_39112081A_10060497 1 13.71 25.03 -5.17
BLUP 1A_39112081A_10060497 1 14.26 23.67 -2.65
QPh.sau-MC-3D.1 2022WJ 3D_680397633D_70735603 55 2.59 3.33 1.92
QPh.sau-MC-3D.2 BLUP 3D_1909763413D_147552757 61 3.28 4.61 1.17
QPh.sau-MC-4D BLUP 4D_4566769704D_467767587 42 2.69 3.82 -1.07
2022WJ 4D_4677675874D_474629240 43 3.88 5.10 -2.38
QPh.sau-MC-5A 2022WJ 5A_5638337045A_568561734 101 9.05 13.09 -3.81
BLUP 5A_5695438925A_572006166 105 3.75 5.54 -1.29
2022CZ 5A_5720061665A_572980290 106 2.55 3.91 -2.06
QPh.sau-MC-7B.1 2022CZ 7B_438497B_3090779 0 2.68 7.02 2.31
QPh.sau-MC-7B.2 2021YA 7B_117088417B_19685092 31 2.82 3.66 2.01
QPh.sau-MC-7B.3 2022WJ 7B_315564037B_33812777 38 2.98 4.59 2.21

Table 5

Multi-environment QTL related to plant height in MC population"

QTL 标记区间
Marker interval
阈值
LOD
LOD
(A)
LOD (AbyE) 表型变异率
PVE (%)
PVE
(A)
PVE
(AbyE)
加性效应
Add
QPh.sau-MC-1A 1A_39112081A_10060497 43.35 33.92 9.43 25.91 19.12 6.79 -3.42
- 3D_1223965893D_138793245 6.91 5.52 1.39 4.17 2.89 1.28 1.33
QPh.sau-MC-4D 4D_4566769704D_467767587 7.19 5.15 2.04 3.33 2.69 0.64 -1.29
QPh.sau-MC-5A 5A_5638337045A_568561734 11.01 5.27 5.74 5.23 2.69 2.53 -1.28
QPh.sau-MC-7B.1 7B_438497B_3090779 5.18 3.48 1.70 2.62 1.81 0.80 1.05

Fig. 3

Genetic effect of major QTL for plant height in MC population + and −: Lines carrying and not carrying the positive allele of corresponding QTL; n: Lines. The same as below"

Fig. 4

Additive effect of major QTL for plant height in MC population Different lowercase letters indicate significant differences"

Fig. 5

Effect of the major QTL for plant height on yield related traits a-g: Effects of QPh.sau-MC-1A on yield related traits, + and - contain 84 and 93 lines; h-n: Effects of QPh.sau-MC-5A on yield related traits, + and - contain 70 and 92 lines"

[1]
SHEWRY P R. Wheat. Journal of Experimental Botany, 2009, 60(6): 1537-1553.

doi: 10.1093/jxb/erp058 pmid: 19386614
[2]
吕广德, 靳雪梅, 郭营, 赵岩, 钱兆国, 吴科, 李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22(3): 571-582.

doi: 10.13430/j.cnki.jpgr.20200927001
G D, JIN X M, GUO Y, ZHAO Y, QIAN Z G, WU K, LI S S. Advances in molecular genetics of wheat plant height. Journal of Plant Genetic Resources, 2021, 22(3): 571-582. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20200927001
[3]
KHUSH G S. Green revolution: Preparing for the 21st century. Genome, 1999, 42(4): 646-655.

pmid: 10464789
[4]
SAINI D K, SRIVASTAVA P, PAL N, GUPTA P K. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135(3): 1049-1081.

doi: 10.1007/s00122-021-04018-3
[5]
PENG J R, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F, SUDHAKAR D, CHRISTOU P, SNAPE J W, GALE M D, HARBERD N P. ‘Green revolution’genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741): 256-261.

doi: 10.1038/22307
[6]
CHAI L L, XIN M M, DONG C Q, CHEN Z Y, ZHAI H J, ZHUANG J H, CHENG X J, WANG N J, GENG J, WANG X B, BIAN R L, YAO Y Y, GUO W L, HU Z R, PENG H R, BAI G H, SUN Q X, SU Z Q, LIU J, NI Z F. A natural variation in Ribonuclease H-like gene underlies Rht8 to confer Green Revolution trait in wheat. Molecular Plant, 2022, 15(3): 377-380.

doi: 10.1016/j.molp.2022.01.013
[7]
XIONG H C, ZHOU C Y, FU M Y, GUO H J, XIE Y D, ZHAO L S, GU J Y, ZHAO S R, DING Y P, LI Y T, ZHANG J Z, WANG K, LI X J, LIU L X. Cloning and functional characterization of Rht8, a ‘Green Revolution’ replacement gene in wheat. Molecular Plant, 2022, 15(3): 373-376.

doi: 10.1016/j.molp.2022.01.014
[8]
BORRILL P, MAGO R, XU T, FORD B, WILLIAMS S J, DERKX A, BOVILL W D, HYLES J, BHATT D, XIA X, MACMILLAN C, WHITE R, BUSS W, MOLN R I, WALKOWIAK S, OLSEN O-A, DOLEŽEL J, POZNIAK C J, SPIELMEYER W. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(48): e2209875119.
[9]
WANG C, BAO Y J, YAO Q, LONG D, XIAO X, FAN X, KANG H Y, ZENG J, SHA L N, ZHANG H Q, WU D D, ZHOU Y H, ZHOU Q, WANG Y, CHENG Y R. Fine mapping of the reduced height gene Rht22 in tetraploid wheat Landrace Jianyangailanmai (Triticum turgidum L.). Theoretical and Applied Genetics, 2022, 135(10): 3643-3660.

doi: 10.1007/s00122-022-04207-8
[10]
TIAN X L, XIA X C, XU D A, LIU Y Q, XIE L, HASSAN M A, SONG J, LI F J, WANG D S, ZHANG Y, HAO Y F, LI G Y, CHU C C, HE Z H, CAO S H. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. The New Phytologist, 2022, 233(2): 738-750.

doi: 10.1111/nph.v233.2
[11]
MO Y, VANZETTI L S, HALE I, SPAGNOLO E J, GUIDOBALDI F, AL-OBOUDI J, ODLE N, PEARCE S, HELGUERA M, DUBCOVSKY J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theoretical and Applied Genetics, 2018, 131(10): 2021-2035.

doi: 10.1007/s00122-018-3130-6
[12]
ZHANG J L, LI C X, ZHANG W J, ZHANG X Q, MO Y J, TRANQUILLI G E, VANZETTI L S, DUBCOVSKY J. Wheat plant height locus RHT25 encodes a PLATZ transcription factor that interacts with DELLA (RHT1). bioRxiv, 2023.01.05.522836. doi: 0.1101/2023.01.05.522836.

doi: 0.1101/2023.01.05.522836
[13]
WANG C J, ZHANG L L, XIE Y D, IRSHAD A, GUO H J, GU J Y, ZHAO L S, XIONG H C, ZHAO S R, WANG C S, LIU L X. Agronomic trait analysis and genetic mapping of a new wheat semidwarf gene Rht-SN33d. Internstional Journal of Molecular Sciences, 2022, 24(1): 583.
[14]
胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48(6): 1346-1356.

doi: 10.3724/SP.J.1006.2022.11055
HU W J, LI D S, YI X, ZHANG C M, ZHANG Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. (in Chinese)

doi: 10.3724/SP.J.1006.2022.11055
[15]
关攀锋, 逯腊虎, 刘刚, 汪永法, 辛明明, 胡兆荣, 姚颖垠, 倪中福, 孙其信, 彭惠茹. 一个小麦强优势组合的杂种优势遗传基础解析. 科学通报, 2022, 67(26): 3207-3220.
GUAN P F, LU L H, LIU G, WANG Y F, XIN M M, HU Z R, YAO Y Y, NI Z F, SUN Q X, PENG H R. Genetic basis of heterosis in a common wheat cross with strong-heterosis. Chinese Science Bulletin, 2022, 67(26): 3207-3220. (in Chinese)
[16]
廖思敏, 冯波, 徐智斌, 樊小莉, 周强, 纪光思, 刘小凤, 余琴, 王涛. 基于55K SNP芯片检测小麦株高QTL. 应用与环境生物学报, 2022, 28(3): 576-581.
LIAO S M, FENG B, XU Z B, FAN X L, ZHOU Q, JI G S, LIU X F, YU Q, WANG T. Detection of QTLs for plant height in wheat based on the 55K SNP array. Chinese Journal of Applied and Environmental Biology, 2022, 28(3): 576-581. (in Chinese)
[17]
LIU H, SHI Z P, MA F F, XU Y F, HAN G H, ZHANG J P, LIU D C, AN D G. Identification and validation of plant height, spike length and spike compactness loci in common wheat (Triticum aestivum L.). BMC Plant Biology, 2022, 22(1): 568.

doi: 10.1186/s12870-022-03968-0
[18]
REBETZKE G J, ELLIS M H, BONNETT D G, MICKELSON B, CONDON A G, RICHARDS R A. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Research, 2012, 126: 87-96.

doi: 10.1016/j.fcr.2011.09.022
[19]
李聪, 马建, 刘航, 丁浦洋, 杨聪聪, 张涵, 秦娜娜, 兰秀锦. 基于小麦55K SNP芯片检测小麦穗长和株高性状QTL. 麦类作物学报, 2019, 39(11): 1284-1292.
LI C, MA J, LIU H, DING P Y, YANG C C, ZHANG H, QIN N N, LAN X J. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. Journal of Triticeae Crops, 2019, 39(11): 1284-1292. (in Chinese)
[20]
陈士强, 张容, 王建华, 陈刚, 刘建凤, 陈秀兰, 何震天. 小麦赤霉病抗性与株高及穗部性状的相关性研究. 江西农业学报, 2020, 32(6): 23-29.
CHEN S Q, ZHANG R, WANG J H, CHEN G, LIU J F, CHEN X L, HE Z T. Studies on correlation between Fusarium head blight resistance and plant height, ear traits of wheat. Acta Agriculturae Jiangxi, 2020, 32(6): 23-29. (in Chinese)
[21]
GERVAIS L, DEDRYVER F, MORLAIS J Y, BODUSSEAU V, NEGRE S, BILOUS M, GROOS C, TROTTET M. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theoretical and Applied Genetics, 2003, 106(6): 961-970.

doi: 10.1007/s00122-002-1160-5
[22]
ZHOU J G, LI W, YANG Y Y, XIE X L, LIU J J, LIU Y L, TANG H, DENG M, XU Q, JIANG Q, CHEN G Y, QI P, JIANG Y F, CHEN G D, HE Y J, REN Y P, TANG L W, GOU L, ZHENG Y L, WEI Y M, MA J. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO1 for wheat spikelet number per spike shows no adverse effects on yield-related traits. bioRxiv, 2023. doi: 10.1101/2023.02.17.528911.

doi: 10.1101/2023.02.17.528911
[23]
LIU J J, LUO W, QIN N N, DING P Y, ZHANG H, YANG C C, MU Y, TANG H P, LIU Y X, LI W, JIANG Q T, CHEN G Y, WEI Y M, ZHENG Y L, LIU C J, LAN X J, MA J. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 2018, 131(11): 2439-2450.

doi: 10.1007/s00122-018-3164-9
[24]
唐华苹, 陈黄鑫, 李聪, 苟璐璐, 谭翠, 牟杨, 唐力为, 兰秀锦, 魏育明, 马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析. 中国农业科学, 2022, 55(8): 1492-1502.

doi: 10.3864/j.issn.0578-1752.2022.08.002
TANG H P, CHEN H X, LI C, GOU L L, TAN C, MU Y, TANG L W, LAN X J, WEI Y M, MA J. Unconditional and conditional QTL analysis of wheat spike length in common wheat based on 55K SNP array. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.08.002
[25]
陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42(7): 799-807.
CHEN H X, LI C, WU K Y, WANG Y, MU Y, TANG H P, TANG L W, LAN X J, MA J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. Journal of Triticeae Crops, 2022, 42(7): 799-807. (in Chinese)
[26]
MCINTOSH R, YAMAZAKI Y, DUBCOVSKY J, ROGERS J, MORRIS C, APPELS R. Catalogue of gene symbols for wheat; proceedings of the proceedings of the 12th international wheat genetics symposium, F, 2013. Yokohama Japan.
[27]
INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.

doi: 10.1126/science.aar7191
[28]
MA S W, WANG M, WU J H, GUO W L, CHEN Y M, LI G W, WANG Y P, SHI W M, XIA G M, FU D L, KANG Z S, NI F. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 2021, 14(12): 1965-1968.

doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[29]
ZHU T T, WANG L, RODRIGUEZ J C, DEAL K R, AVNI R, DISTELFELD A, MCGUIRE P E, DVORAK J, LUO M C. Improved genome sequence of wild emmer wheat zavitan with the aid of optical maps. G3 Genes|Genomes|Genetics, 2019, 9(3): 619-624.

doi: 10.1534/g3.118.200902
[30]
GUO Z F, YANG Q N, HUANG F F, ZHENG H J, SANG Z Q, XU Y F, ZHANG C, WU K S, TAO J J, PRASANNA B M, OLSEN M S, WANG Y B, ZHANG J N, XU Y B. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Communications, 2021, 2(6): 100230.

doi: 10.1016/j.xplc.2021.100230
[31]
QIU D, HUANG J, GUO G H, HU J H, LI Y H, ZHANG H J, LIU H W, YANG L, ZHOU Y, YANG B Z, ZHANG Y D, LIU Z Y, LI H J. The Pm5e gene has No negative effect on wheat agronomic performance: Evidence from newly established near-isogenic lines. Frontiers in Plant Science, 2022, 13: 918559.

doi: 10.3389/fpls.2022.918559
[32]
HUANG S, ZHANG Y B, REN H, LI X, ZHANG X, ZHANG Z Y, ZHANG C L, LIU S J, WANG X T, ZENG Q D, WANG Q L, SINGH R P, BHAVANI S, WU J H, HAN D J, KANG Z S. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. Theoretical and Applied Genetics, 2022, 135(7): 2501-2513.

doi: 10.1007/s00122-022-04133-9
[33]
HU J H, GEBREMARIAM T G, ZHANG P, QU Y F, QIU D, LIU H W, SHI X H, LI Y H, WU Q H, LUO M, YANG L J, ZHANG H J, YANG L, ZHOU Y, LIU Z Y, WANG B T, LI H J. Resistance to powdery mildew is conferred by different genetic loci at the adult-plant and seedling stages in winter wheat line Tianmin 668. Plant Disease, 2022. doi: 10.1094/PDIS-11-22-2633-RE.

doi: 10.1094/PDIS-11-22-2633-RE
[34]
YU M, LIU Z H, YANG B, CHEN H, ZHANG H, HOU D B. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Scientific Reports, 2020, 10(1): 12261.

doi: 10.1038/s41598-020-69138-0 pmid: 32703989
[35]
ELLIS M H, REBETZKE G J, AZANZA F, RICHARDS R A, SPIELMEYER W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics, 2005, 111(3): 423-430.

doi: 10.1007/s00122-005-2008-6 pmid: 15968526
[36]
SUN L H, YANG W L, LI Y F, SHAN Q Q, YE X B, WANG D Z, YU K, LU W W, XIN P Y, PEI Z, GUO X L, LIU D C, SUN J Z, ZHAN K H, CHU J F, ZHANG A M. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. The Plant Journal, 2019, 97(5): 887-900.

doi: 10.1111/tpj.2019.97.issue-5
[37]
ZHANG N, FAN X L, CUI F, ZHAO C H, ZHANG W, ZHAO X Q, YANG L J, PAN R Q, CHEN M, HAN J, JI J, LIU D C, ZHAO Z W, TONG Y P, ZHANG A M, WANG T, LI J M. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130(6): 1235-1252.

doi: 10.1007/s00122-017-2884-6
[38]
陈朝阳, 易晓余, 熊君, 杨珂, 许珂, 匡成浩, 张志鹏, 丁丽, 蒲至恩, 陈国跃, 李伟. 118个小麦新品系的农艺性状和分子标记评价. 四川农业大学学报, 2018, 36(6): 722-728.
CHEN Z Y, YI X Y, XIONG J, YANG K, XU K, KUANG C H, ZHANG Z P, DING L, PU Z E, CHEN G Y, LI W. Evaluation of agronomic traits and molecular markers in 118 new wheat strains. Journal of Sichuan Agricultural University, 2018, 36(6): 722-728. (in Chinese)
[39]
赵秋月, 张咪咪, 孙清鹏, 韩俊. 小麦微核心种质株高及籽粒性状遗传分析. 安徽农业科学, 2022, 50(7): 37-40, 45.
ZHAO Q Y, ZHANG M M, SUN Q P, HAN J. Genetic analysis of pant height and grain traits of wheat micro-core germplasms. Journal of Anhui Agricultural Sciences, 2022, 50(7): 37-40, 45. (in Chinese)
[40]
GAO F F, WEN W E, LIU J D, RASHEED A, YIN G H, XIA X C, WU X X, HE Z H. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese spring. Frontiers in Plant Science, 2015, 6: 1099.

doi: 10.3389/fpls.2015.01099 pmid: 26734019
[41]
DAOURA B G, CHEN L, HU Y G. Agronomic traits affected by dwarfing gene Rht-5 in common wheat (Triticum aestivum L.). Australian Journal of Crop Science, 2013, 7(9): 1270-1276.
[42]
LU Y, XING L P, XING S J, HU P, CUI C F, ZHANG M Y, XIAO J, WANG H Y, ZHANG R Q, WANG X E, CHEN P D, CAO A Z. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). Journal of Genetics and Genomics, 2015, 42(12): 685-698.

doi: 10.1016/j.jgg.2015.08.007
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[7] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[8] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[9] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[10] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[11] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[12] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[13] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[14] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[15] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!