Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5110-5127.doi: 10.3864/j.issn.0578-1752.2025.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Glu-A3 and Glu-B3 of Low-Molecular-Weight Glutenin in Shanxi Wheat and Its Effect on Quality

XU YuJuan1(), ZHANG Jie2(), WANG TianYi2, CHEN HaoYang2, ZHAO JiaJia1, WU BangBang1, HAO YuQiong1, LI XiaoHua1, ZHENG XingWei1, ZUO JingJing2,*(), ZHENG Jun1,*()   

  1. 1 Institute of Wheat Research, Shanxi Agriculture University/Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Linfen 041000, Shanxi
    2 College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi
  • Received:2025-07-18 Accepted:2025-09-05 Online:2025-12-22 Published:2025-12-22
  • Contact: ZUO JingJing, ZHENG Jun

Abstract:

【Objective】Low molecular weight gluten subunits (LMW-GS) are crucial components in determining the end-use quality of common wheat. Elucidating the diversity and impact on flour quality of LMW-GS is essential for genetic improvement in wheat.【Method】A collection of 421 Shanxi wheat accessions was utilized to identify allelic variations in the Glu-A3 and Glu-B3 using 18 specific markers. The polymorphism, genetic diversity, and cluster analysis of these alleles in Shanxi wheat was then conducted. Additionally, the effects of these alleles on the physicochemical quality, farinograph and extensograph properties, as well as dough viscosity characteristics of flour were investigated.【Result】The allelic variations in the Glu-A3, by frequency, are Glu-A3b, Glu-A3c, Glu-A3g, Glu-A3d, Glu-A3f, Glu-A3a, and Glu-A3e. At the Glu-B3, the identified allelic variations are Glu-B3g, Glu-B3a, Glu-B3d, Glu-B3i, Glu-B3b, Glu-B3h, Glu-B3e, Glu-B3c, and Glu-B3f. The genetic distance range for Shanxi wheat is 0.000 to 0.667, with a mean value of 0.253. It was observed that cultivars exhibited a greater genetic distance than landraces. Geographical distribution and irrigation/dryland types also influenced the genetic diversity of LMW-GS. Correlation analysis revealed that six LMW-GS allelic variations significantly correlated with five physicochemical quality traits. Glu-A3b, Glu-A3d, and Glu-B3i had negative effects on protein content, while Glu-A3b and Glu-B3i had positive effects on starch content. Glu-A3d and Glu-B3i showed positive effects on fiber content, and Glu-B3i increased the whiteness value of flour by 2.10%. Fifteen LMW-GS allelic variations were identified as significantly correlated with 12 processing quality traits, with Glu-A3e and Glu-B3d increasing extensibility by 36.71 and 19.91 mm, respectively. Glu-A3a, Glu-B3b, and Glu-B3e had positive effects on improving development time, stability time, stretch area, extension resistance, stretch ratio, and farinograph quality. Five LMW-GS subunits were significantly correlated with dough viscosity characteristics, with Glu-A3a increasing peak viscosity by 183.19 cp and the pad abort value by 67.79 cp.【Conclusion】LMW-GS alleles in Shanxi wheat exhibited high polymorphism. Geographical distribution and accession types affected the genetic diversity at the Glu-A3 and Glu-B3 loci. Six, fifteen, and five LMW-GS allelic variations were identified as showing significant correlations with flour physicochemical, processing quality, and dough viscosity traits, respectively.

Key words: Shanxi wheat, low molecular weight glutenin, Glu-A3, Glu-B3, genetic diversity

Table 1

Specific primers for amplification of LMW-GS"

位点 Loci 序号 Number 亚基 Subunits 引物序列 Primer sequence (5′-3′) 片段大小 Target bands (bp)
Glu-A3 P1 Glu-A3a F: AAACAGAATTATTAAAGCCGG 529
R: GGTTGTTGTTGTTGCAGCA
P2 Glu-A3b F: TTCAGATGCAGCCAAACAA 894
R: GCTGTGCTTGGATGATACTCTA
P3 Glu-A3ac F: AAACAGAATTATTAAAGCCGG 573
R: GTGGCTGTTGTGAAAACGA
P4 Glu-A3d F: TTCAGATGCAGCCAAACAA 967
R: TGGGGTTGGGAGACACATA
P5 Glu-A3e F: AAACAGAATTATTAAAGCCGG 158
R: GGCACAGACGAGGAAGGTT
P6 Glu-A3f F: AAACAGAATTATTAAAGCCGG 552
R: GCTGCTGCTGCTGTGTAAA
P7 Glu-A3g F: AAACAGAATTATTAAAGCCGG 1345
R: AAACAACGGTGATCCAACTAA
Glu-B3 P8 Glu-B3a F: CACAAGCATCAAAACCAAGA 1095
R: TGGCACACTAGTGGTGGTC
P9 Glu-B3b F: ATCAGGTGTAAAAGTGATAG 1570
R: TGCTACATCGACATATCCA
P10 Glu-B3c F: CAAATGTTGCAGCAGAGA 472
R: CATATCCATCGACTAAACAAA
P11 Glu-B3d F: CACCATGAAGACCTTCCTCA 662
R: GTTGTTGCAGTAGAACTGGA
P12 Glu-B3e F: GACCTTCCTCATCTTCGCA 669
R: GCAAGACTTTGTGGCATT
P13 Glu-B3fg F: TATAGCTAGTGCAACCTACCAT 812
R: CAACTACTCTGCCACAACG
P14 Glu-B3g F: CCAAGAAATACTAGTTAACACTAGTC 853
R: GTTGGGGTTGGGAAACA
P15 Glu-B3h F: CCACCACAACAAACATTAA 1022
R: GTGGTGGTTCTATACAACGA
P16 Glu-B3i F: TATAGCTAGTGCAACCTACCAT 621
R: TGGTTGTTGCGGTATAATTT
1B/1R P17 Glu-B3j F: GCAGACATCATGAAACATTTG 1500
R: CTGTTGTTGGGGCAGAAAG
P18 ω-secalin F: ACCTTCCTCATCTTTGTCCT 1100
R: CCGATGCCTATACCACTACT

Fig. 1

Electrophoresis detection results of PCR products of 18 pairs of primers of LMW-GS M: Marker; 1-7: Varieties tested with different LMW-GS"

Fig. 2

The number and proportion distribution of Glu-A3 in different varieties (a, b, c, d) and ecological regions (e, f)"

Fig. 3

The number and proportion distribution of Glu-B3 in different varieties (a, b, c, d) and ecological regions (e, f)"

Fig. 4

Effects of variety types (a) and breeding years (b) on genetic diversity of LMW-GS in wheat"

Table 2

Correlation analysis between low molecular weight glutenin subunits and quality characteristics"

亚基类型Subunit types 是否携带Existence 蛋白质含量
Protein content (%)
淀粉含量
Starch content (%)
纤维含量
Fiber content (%)
白度
Whiteness (%)
硬度指数
Hardness index
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
Glu-A3b 0 13.04 -0.216** 58.26 0.154** 0.48 0.007 70.00 -0.026 60.47 0.049
1 12.41 59.37 0.49 69.69 61.41
Glu-A3d 0 12.77 -0.149* 58.88 0.113 0.41 0.127* 69.82 0.044 60.95 0.023
1 12.43 59.52 0.55 70.15 61.32
Glu-B3a 0 12.34 0.458** 59.50 -0.331** 0.51 -0.213** 69.65 0.059 61.67 -0.175**
1 13.70 57.07 0.29 70.38 58.21
Glu-B3i 0 12.53 -0.168** 59.04 0.245** 0.47 0.142* 69.41 0.208** 61.62 -0.117
1 12.12 60.54 0.60 71.51 59.69
Glu-B3j 0 12.52 -0.084 59.29 -0.022 0.45 0.213** 70.24 -0.245** 61.23 0.023
1 12.35 59.18 0.60 68.20 61.54
ω-secalin 0 12.53 -0.101 59.23 0.022 0.45 0.192** 70.17 -0.211** 61.32 -0.002
1 12.32 59.34 0.59 68.44 61.29

Table 3

Correlation analysis of low molecular weight glutenin subunits with farinograph properties of flour"

亚基类型
Subunit types
是否携带
Existence
吸水率
Water absorption (%)
形成时间
Development time (min)
稳定时间
Stability time (min)
粉质质量指数
Farinograph quality number (%)
弱化度/10
Degree of softing/10
弱化度/12
Degree of softing/12
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
Glu-A3a 0 59.51 -0.037 1.59 0.122* 2.39 0.159** 32.78 0.199** 103.91 -0.202** 124.91 -0.185**
1 59.17 1.83 3.08 40.26 88.64 110.57
Glu-A3b 0 59.31 0.010 1.49 0.065 2.28 0.049 31.50 0.064 100.57 -0.004 118.55 0.029
1 59.44 1.67 2.59 34.94 100.15 121.77
Glu-A3c 0 59.11 0.058 1.70 -0.042 2.77 -0.086 36.90 -0.105 95.09 0.116* 115.77 0.126*
1 59.60 1.63 2.44 33.34 102.98 124.53
Glu-A3d 0 59.17 -0.062 1.54 0.117* 2.39 0.091 31.96 0.130* 98.29 -0.069 117.13 -0.032
1 59.01 1.77 2.66 35.92 98.49 120.54
Glu-A3e 0 59.41 0.036 1.65 -0.020 2.57 -0.073 34.70 -0.056 100.37 -0.045 121.73 -0.072
1 60.68 1.51 1.38 26.75 87.50 101.25
Glu-A3f 0 59.11 0.098 1.63 -0.048 2.52 -0.112 34.20 -0.115* 97.10 0.141* 117.75 0.129*
1 59.99 1.71 2.29 32.64 102.10 122.54
Glu-B3a 0 59.43 -0.003 1.69 -0.153** 2.64 -0.137* 35.51 -0.174** 100.14 0.005 122.27 -0.074
1 59.40 1.27 1.77 25.97 100.69 114.07
Glu-B3b 0 59.46 -0.025 1.59 0.204** 2.43 0.201** 33.67 0.166** 101.75 -0.141* 123.20 -0.152**
1 59.13 2.14 3.64 42.38 86.68 106.87
Glu-B3c 0 59.43 0.006 1.65 0.044 2.53 0.089 34.41 0.074 100.63 -0.087 121.83 -0.078
1 59.59 1.89 3.63 42.29 81.86 103.67
Glu-B3d 0 59.55 -0.071 1.66 -0.010 2.54 0.020 34.58 0.002 101.41 -0.087 123.27 -0.127*
1 58.76 1.63 2.64 34.66 93.65 111.77
Glu-B3e 0 59.48 -0.056 1.60 0.271** 2.46 0.225** 33.77 0.223** 101.33 -0.152** 122.48 -0.138*
1 58.44 2.62 4.39 50.33 78.67 101.14
Glu-B3g 0 58.14 0.136* 1.53 0.063 2.68 -0.028 34.71 -0.003 100.10 0.001 120.01 0.019
1 59.66 1.67 2.53 34.57 100.21 121.71
Glu-B3i 0 59.50 -0.043 1.69 -0.100 2.67 -0.141* 35.62 -0.152** 99.50 0.051 121.50 -0.003
1 59.01 1.45 1.93 28.76 104.13 121.20
Glu-B3j 0 59.33 0.043 1.70 -0.102 2.70 -0.130* 35.16 -0.060 97.01 0.169** 116.79 0.240**
1 59.73 1.51 2.14 32.92 109.59 135.05
ω-secalin 0 59.36 0.027 1.69 -0.080 2.65 -0.087 34.86 -0.027 97.02 0.165** 116.33 0.264**
1 59.62 1.54 2.28 33.85 109.23 136.39

Table 4

Correlation analysis of low molecular weight glutenin subunits with extensograph properties of flour"

亚基类型
Subunit types
是否携带
Existence
降落值
Falling number
(s)
湿面筋含量
Wet gluten
(%)
拉伸面积
Stretch area
(cm2)
拉伸阻力
Extension resistance number (E.U.)
延伸度
Extensibility
(mm)
拉伸比例
Stretch ratio
(%)
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
Glu-A3a 0 328.89 0.047 0.35 -0.115* 38.81 0.160** 128.35 0.171** 183.43 0.019 0.72 0.153**
1 336.25 0.34 48.30 154.97 184.98 0.86
Glu-A3b 0 320.25 0.052 0.37 -0.154** 36.60 0.059 119.38 0.077 195.79 -0.114 0.64 0.093
1 331.89 0.34 41.60 136.47 182.46 0.76
Glu-A3c 0 331.21 -0.006 0.35 0.018 43.77 -0.077 141.59 -0.075 186.56 -0.057 0.78 -0.053
1 330.42 0.35 39.67 131.09 182.33 0.73
Glu-A3d 0 320.86 0.139* 0.37 -0.201** 39.02 0.056 123.25 0.091 195.51 -0.139* 0.65 0.111
1 340.67 0.34 41.90 141.41 175.15 0.81
Glu-A3e 0 331.24 -0.069 0.35 0.080 41.29 -0.065 135.42 -0.084 183.29 0.122* 0.76 -0.098
1 291.25 0.39 27.25 87.50 220.00 0.41
Glu-A3f 0 332.71 -0.047 0.35 0.051 41.21 -0.148* 133.27 -0.165** 188.30 -0.027 0.73 -0.134*
1 320.57 0.36 34.91 113.60 185.31 0.63
Glu-B3a 0 333.43 -0.128* 0.34 0.333** 42.51 -0.177** 139.23 -0.213** 182.17 0.147* 0.78 -0.227**
1 303.74 0.40 26.87 89.79 200.21 0.46
Glu-B3b 0 330.50 0.009 0.35 0.021 38.92 0.247** 129.53 0.225** 183.06 0.061 0.73 0.170**
1 332.45 0.35 59.10 177.81 189.94 0.95
Glu-B3c 0 330.14 0.053 0.35 0.064 40.82 0.073 133.53 0.125* 183.81 -0.001 0.74 0.137*
1 353.64 0.37 53.83 191.83 183.58 1.13
Glu-B3d 0 333.27 -0.088 0.35 0.036 39.83 0.114 133.50 0.043 180.61 0.208** 0.76 -0.035
1 316.89 0.35 47.72 141.29 200.52 0.72
Glu-B3e 0 330.09 0.041 0.35 -0.091 39.48 0.271** 130.45 0.275** 184.15 -0.042 0.73 0.264**
1 342.89 0.33 70.40 212.67 177.57 1.21
Glu-B3g 0 337.88 -0.044 0.34 0.080 39.80 0.022 134.91 -0.001 174.70 0.112 0.79 -0.042
1 329.46 0.35 41.34 134.72 185.50 0.74
Glu-B3i 0 329.45 0.044 0.35 -0.056 42.07 -0.090 137.43 -0.095 182.35 0.097 0.77 -0.110
1 337.78 0.34 35.73 119.92 191.82 0.64
Glu-B3j 0 327.77 0.073 0.35 -0.185** 45.50 -0.299** 142.92 -0.212** 191.84 -0.395** 0.77 -0.062
1 339.05 0.33 27.96 110.35 159.81 0.71
ω-secalin 0 326.21 0.111 0.35 -0.187** 44.46 -0.225** 140.23 -0.140* 191.55 -0.373** 0.75 -0.001
1 343.06 0.33 31.42 118.96 161.51 0.75

Table 5

Correlation analysis of low molecular weight glutenin subunits and dough viscosity characteristics"

亚基类型
Subunit types
是否携带
Existence
面团黏度Dough viscosity (RVA)
峰值黏度
Peak value (cp)
最低黏度
Low viscosity (cp)
衰减值
Pad abort value (cp)
最终黏度
Final viscosity (cp)
回升值
Setback value (cp)
峰值时间
Peak time (min)
糊化温度
Gelatinization temperature (℃)
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
均值
Mean
r
r value
Glu-A3a 0 1822.67 0.132* 996.87 0.101 825.81 0.155** 1992.85 0.106 995.98 0.109 5.68 0.080 77.61 -0.064
1 2005.86 1112.26 893.60 2210.92 1098.65 5.78 76.22
Glu-A3d 0 1746.42 0.238** 941.04 0.217** 805.38 0.191** 1889.96 0.205** 948.92 0.186** 5.62 0.142* 76.20 -0.042
1 2080.73 1196.15 884.58 2332.58 1136.42 5.82 75.79
Glu-A3e 0 1864.68 0.043 1021.96 0.057 842.72 -0.012 2039.69 0.065 1017.73 0.073 5.70 0.061 77.39 -0.115*
1 2085.00 1261.25 823.75 2533.75 1272.50 5.98 68.15
Glu-B3e 0 1854.55 0.098 1012.54 0.116* 842.01 0.011 2024.13 0.113 1011.59 0.106 5.69 0.073 77.14 0.063
1 2129.57 1278.07 851.50 2490.93 1212.86 5.88 79.86
Glu-B3h 0 1860.83 0.038 1020.45 0.033 840.38 0.037 2042.52 0.015 1022.08 -0.007 5.71 -0.014 76.93 0.121*
1 1944.58 1078.79 865.79 2090.29 1011.50 5.68 81.03
[1]
张勇, 郝元峰, 张艳, 何心尧, 夏先春, 何中虎. 小麦营养和健康品质研究进展. 中国农业科学, 2016, 49(22): 4284-4298. doi: 10.3864/j.issn.0578-1752.2016.22.003.
ZHANG Y, HAO Y F, ZHANG Y, HE X Y, XIA X C, HE Z H. Progress in research on genetic improvement of nutrition and health qualities in wheat. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298. doi: 10.3864/j.issn.0578-1752.2016.22.003. (in Chinese)
[2]
ZHEN S M, HAN C X, MA C Y, GU A Q, ZHANG M, SHEN X X, LI X H, YAN Y M. Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality. BMC Plant Biology, 2014, 14: 367.

doi: 10.1186/s12870-014-0367-3
[3]
DANGI P, CHAUDHARY N, KHATKAR B S. Rheological and microstructural characteristics of low molecular weight glutenin subunits of commercial wheats. Food Chemistry, 2019, 297: 124989.

doi: 10.1016/j.foodchem.2019.124989
[4]
SREERAMULU G, SINGH N K. Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.). Genome, 1997, 40(1): 41-48.

doi: 10.1139/g97-006
[5]
MASCI S, ROVELLI L, KASARDA D D, VENSEL W H, LAFIANDRA D. Characterisation and chromosomal localisation of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theoretical and Applied Genetics, 2002, 104(2/3): 422-428.

doi: 10.1007/s001220100761
[6]
张肖飞. 小麦低分子量麦谷蛋白基因的鉴定和功能分析[D]. 北京: 中国农业科学院, 2012.
ZHANG X F. Identification and functional analysis of low molecular weight glutenin gene in wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[7]
PAYNE P I, CORFIELD K G. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta, 1979, 145(1): 83-88.

doi: 10.1007/BF00379931 pmid: 24317568
[8]
MUCCILLI V, CUNSOLO V, SALETTI R, FOTI S, MASCI S, LAFIANDRA D. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Proteomics, 2005, 5(3): 719-728.

pmid: 15682464
[9]
SØRENSEN H A, PETERSEN M K, JACOBSEN S, SØNDERGAARD I. Mass spectrometry and partial least-squares regression: A tool for identification of wheat variety and end-use quality. Journal of Mass Spectrometry, 2004, 39(6): 607-612.

pmid: 15236298
[10]
JACKSON E A, HOLT L M, PAYNE P I. Characterisation of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localisation of their controlling genes. Theoretical and Applied Genetics, 1983, 66(1): 29-37.

doi: 10.1007/BF00281844 pmid: 24263628
[11]
HE Z H, LIU L, XIA X C, LIU J J, PEÑA R J. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chemistry, 2005, 82(4): 345-350.

doi: 10.1094/CC-82-0345
[12]
LIU L, IKEDA T M, BRANLARD G, PEÑA R J, ROGERS W J, LERNER S E, KOLMAN M A, XIA X C, WANG L H, MA W J, et al. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biology, 2010, 10: 124.

doi: 10.1186/1471-2229-10-124 pmid: 20573275
[13]
VAN CAMPENHOUT S, VANDER STAPPEN J, SAGI L, VOLCKAERT G. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theoretical and Applied Genetics, 1995, 91(2): 313-319.

doi: 10.1007/BF00220893 pmid: 24169779
[14]
ZHANG X F, LIU D C, JIANG W, GUO X L, YANG W L, SUN J Z, LING H Q, ZHANG A M. PCR-based isolation and identification of full-length low-molecular-weight glutenin subunit genes in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123(8): 1293-1305.

doi: 10.1007/s00122-011-1667-8
[15]
SHEN L S, LUO G B, SONG Y H, SONG S Y, LI Y W, YANG W L, LI X, SUN J Z, LIU D C, ZHANG A M. Low molecular weight glutenin subunit gene composition at Glu-D3 loci of Aegilops tauschii and common wheat and a further view of wheat evolution. Theoretical and Applied Genetics, 2018, 131(12): 2745-2763.

doi: 10.1007/s00122-018-3188-1
[16]
ZHANG X F, LIU D C, YANG W L, LIU K F, SUN J Z, GUO X L, LI Y W, WANG D W, LING H Q, ZHANG A M. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122(8): 1503-1516.

doi: 10.1007/s00122-011-1550-7
[17]
刘丽, 周阳, 刘建军, 何中虎, 杨金. Glu-1Glu-3等位变异及1BL/1RS易位与面包和面条品质关系的研究. 中国农业科学, 2004, 37(9): 1265-1273. doi: 10.3864/j.issn.0578-1752.040903.
LIU L, ZHOU Y, LIU J J, HE Z H, YANG J. Effect of allelic variation at the Glu-1 and Glu-3 loci and presence of 1BL/1RS translocation on pan bread and dry white Chinese noodle quality. Scientia Agricultura Sinica, 2004, 37(9): 1265-1273. doi: 10.3864/j.issn.0578-1752.040903. (in Chinese)
[18]
陈东升, 刘丽, 董建力, 何中虎, 张艳, 刘建军, 王德森. HMW-GS和LMW-GS组成及1BL/1RS易位对春小麦品质性状的影响. 作物学报, 2005, 31(4): 414-419.
CHEN D S, LIU L, DONG J L, HE Z H, ZHANG Y, LIU J J, WANG D S. Effect of HMW and LMW glutenin subunits and presence of 1BL/1RS translocation on quality traits in spring wheat. Acta Agronomica Sinica, 2005, 31(4): 414-419. (in Chinese)
[19]
刘丽, 周阳, 何中虎, 阎俊, 张艳, PEA R J. Glu-1Glu-3等位变异对小麦加工品质的影响. 作物学报, 2004, 30(10): 959-968.
LIU L, ZHOU Y, HE Z H, YAN J, ZHANG Y, PEA R J. Effect of allelic variation at Glu-1 and Glu-3 loci on processing quality in common wheat. Acta Agronomica Sinica, 2004, 30(10): 959-968. (in Chinese)
[20]
徐兆飞. 山西小麦. 北京: 中国农业出版社, 2006.
XU Z F. Shanxi Wheat. Beijing: China Agriculture Press, 2006. (in Chinese)
[21]
卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 等. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57(5): 831-845. doi: 10.3864/j.issn.0578-1752.2024.05.001.
WEI N C, TAO J B, YUAN M Y, ZHANG Y, KAI M X, QIAO L, WU B B, HAO Y Q, ZHENG X W, WANG J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Scientia Agricultura Sinica, 2024, 57(5): 831-845. doi: 10.3864/j.issn.0578-1752.2024.05.001. (in Chinese)
[22]
LIU Y X, LIN Y, GAO S, LI Z Y, MA J, DENG M, CHEN G Y, WEI Y M, ZHENG Y L. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal, 2017, 91(5): 861-873.

doi: 10.1111/tpj.13614 pmid: 28628238
[23]
王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究. 作物学报, 2025, 51(7): 1784-1800.

doi: 10.3724/SP.J.1006.2025.41082
WANG T Y, YANG X J, ZHAO J J, HAO Y Q, ZHENG X W, WU B B, LI X H, HAO S Y, ZHENG J. Gliadin diversity and its effects on flour quality in wheat from Shanxi Province, China. Acta Agronomica Sinica, 2025, 51(7): 1784-1800. (in Chinese)
[24]
FRANCIS H A, LEITCH A R, KOEBNER R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theoretical and Applied Genetics, 1995, 90(5): 636-642.

doi: 10.1007/BF00222127 pmid: 24174021
[25]
WANG L H, LI G Y, PEÑA R J, XIA X C, HE Z H. Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). Journal of Cereal Science, 2010, 51(3): 305-312.

doi: 10.1016/j.jcs.2010.01.005
[26]
WANG L H, ZHAO X L, HE Z H, MA W, APPELS R, PEÑA R J, XIA X C. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2009, 118(3): 525-539.

doi: 10.1007/s00122-008-0918-9
[27]
CHAI J F, ZHOU R H, JIA J Z, LIU X. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations. Plant Breeding, 2006, 125(3): 302-304.

doi: 10.1111/pbr.2006.125.issue-3
[28]
NEI M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(12): 3321-3323.
[29]
GUPTA R B, SHEPHERD K W. Two-step one-dimensional SDS- PAGE analysis of LMW subunits of glutelin. Theoretical and Applied Genetics, 1990, 80(1): 65-74.

doi: 10.1007/BF00224017
[30]
IKEDA T M, ARAKI E, FUJITA Y, YANO H. Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats. Theoretical and Applied Genetics, 2006, 112(2): 327-334.

pmid: 16283233
[31]
LEE J Y, BEOM H R, ALTENBACH S B, LIM S H, KIM Y T, KANG C S, YOON U H, GUPTA R, KIM S T, AHN S N, et al. Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Functional & Integrative Genomics, 2016, 16(3): 269-279.
[32]
LEE J Y, JANG Y R, BEOM H R, ALTENBACH S B, LIM S H, LEE C K. Allelic analysis of low molecular weight glutenin subunits using 2-DGE in Korean wheat cultivars. Breeding Science, 2017, 67(4): 398-407.

doi: 10.1270/jsbbs.16106
[33]
FRANASZEK S, SALMANOWICZ B. Composition of low-molecular- weight glutenin subunits in common wheat (Triticum aestivum L.) and their effects on the rheological properties of dough. Open Life Sciences, 2021, 16(1): 641-652.

doi: 10.1515/biol-2021-0059
[34]
DREISIGACKER S, XIAO Y G, SEHGAL D, GUZMAN C, HE Z H, XIA X C, PEÑA R J. SNP markers for low molecular glutenin subunits (LMW-GSs) at the Glu-A3 and Glu-B3 loci in bread wheat. PLoS ONE, 2020, 15(5): e0233056.

doi: 10.1371/journal.pone.0233056
[35]
张江花. 我国普通小麦低分子量麦谷蛋白亚基基因组成分析[D]. 郑州: 河南农业大学, 2013.
ZHANG J H. The composition of low molecular glutenin subunit genes in common wheat[D]. Zhengzhou: Henan Agricultural University, 2013. (in Chinese)
[36]
程西永, 吴少辉, 李海霞, 董中东, 任妍, 詹克慧, 许海霞. 小麦高、低分子量麦谷蛋白亚基对品质性状的影响. 麦类作物学报, 2014, 34(4): 482-488.
CHENG X Y, WU S H, LI H X, DONG Z D, REN Y, ZHAN K H, XU H X. Effects of HMW and LMW glutenin subunits on wheat quality traits. Journal of Triticeae Crops, 2014, 34(4): 482-488. (in Chinese)
[37]
孙学永, 马传喜, 司红起, 张琪琪, 乔玉强. 中国小麦微核心种质低分子量麦谷蛋白Glu-A3位点等位基因的PCR检测. 分子植物育种, 2006, 4(4): 477-482.
SUN X Y, MA C X, SI H Q, ZHANG Q Q, QIAO Y Q. Screening Glu-A3 alleles of LMW-GS genes from mini-core collections of Chinese wheat varieties using alleles-specific PCR markers. Molecular Plant Breeding, 2006, 4(4): 477-482. (in Chinese)
[38]
PENG Y C, YU Z T, ISLAM S, ZHANG Y J, WANG X L, LEI Z S, YU K, SUN D F, MA W J. Allelic variation of LMW-GS composition in Chinese wheat landraces of the Yangtze-River region detected by MALDI-TOF-MS. Breeding Science, 2016, 66(4): 646-652.

pmid: 27795690
[39]
周国雁, 陈丹, 伍少云, 隆文杰, 武晓阳, 蔡青. 177份小麦种质资源低分子量麦谷蛋白基因型分析. 种子, 2022, 41(2): 1-11.
ZHOU G Y, CHEN D, WU S Y, LONG W J, WU X Y, CAI Q. Genotypes analysis of glutenin with low molecular weight in 177 wheat germplasm resources. Seed, 2022, 41(2): 1-11. (in Chinese)
[40]
HU X K, DAI S F, YAN Y L, LIU Y X, ZHANG J B, LU Z F, WEI Y M, ZHENG Y L, CONG H, YAN Z H. The genetic diversity of group-1 homoeologs and characterization of novel LMW-GS genes from Chinese Xinjiang winter wheat landraces (Triticum aestivum L.). Journal of Applied Genetics, 2020, 61(3): 379-389.

doi: 10.1007/s13353-020-00564-6
[41]
李式昭, 郑建敏, 伍玲, 李俊, 蒲宗君, 朱华忠. 四川小麦品种高、低分子量麦谷蛋白基因和1B/1R易位的分子标记鉴定. 麦类作物学报, 2014, 34(12): 1619-1626.
LI S Z, ZHENG J M, WU L, LI J, PU Z J, ZHU H Z. Identification of high and low molecular weight glutenin genes and 1B/1R translocation in Sichuan wheat cultivars with molecular markers. Journal of Triticeae Crops, 2014, 34(12): 1619-1626. (in Chinese)
[42]
兰秋霞, 冯波, 冬梅, 徐智斌, 赵国君, 王涛. 4个西藏小麦地方品种低分子量麦谷蛋白亚基基因的克隆及分析. 西南农业学报, 2012, 25(5): 1553-1557.
LAN Q X, FENG B, DONG M, XU Z B, ZHAO G J, WANG T. Cloning and analysis of low molecular weight glutenin subunit genes from four Tibet wheat landraces (Triticum aestivum L.). Southwest China Journal of Agricultural Sciences, 2012, 25(5): 1553-1557. (in Chinese)
[43]
梁伟光, 刘兴舟, 郭凤芝, 樊庆琦, 黄承彦, 康志钰, 李根英. 编码Glu-A3位点低分子量麦谷蛋白亚基的基因在山东小麦中的分布. 山东农业科学, 2009, 41(9): 1-4.
LIANG W G, LIU X Z, GUO F Z, FAN Q Q, HUANG C Y, KANG Z Y, LI G Y. Allelic distribution of genes encoding low-molecular- weight glutenin subunits at Glu-A3 locus in Shandong wheat. Shandong Agricultural Sciences, 2009, 41(9): 1-4. (in Chinese)
[44]
孟宪刚, 尚勋武, 张改生, 路建龙, 尚立平. 小麦低分子量麦谷蛋白亚基与面团流变学特性关系的研究. 西北植物学报, 2004, 24(6): 959-965.
MENG X G, SHANG X W, ZHANG G S, LU J L, SHANG L P. Effect of low molecular gluten subunits (LMW-GS) on dough rheological properties. Acta Botanica Boreali-occidentalia Sinica, 2004, 24(6): 959-965. (in Chinese)
[45]
高雅. 小麦低分子量麦谷蛋白亚基Glu-A3Glu-B3位点等位变异分析[D]. 合肥: 安徽农业大学, 2012.
GAO Y. The analysis of allelic variation at low molecular weight glutenin subunit Glu-A3 and Glu-B3 loci[D]. Hefei: Anhui Agricultural University, 2012. (in Chinese)
[46]
ZHAO Y Y, ZHAO X L, XIANG Z G, ZHANG D, YANG H S. Comparison and classification of LMW-GS genes at Glu-3 loci of common wheat. Genes, 2025, 16(1): 90.

doi: 10.3390/genes16010090
[47]
ZHANG X F, JIN H, ZHANG Y, LIU D C, LI G Y, XIA X C, HE Z H, ZHANG A M. Composition and functional analysis of low- molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biology, 2012, 12: 243.

doi: 10.1186/1471-2229-12-243
[48]
LIU L, HE Z H, YAN J, ZHANG Y, XIA X C, PEÑA R J. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B·1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142(3): 197-204.

doi: 10.1007/s10681-005-1682-4
[49]
LANGNER M, KRYSTKOWIAK K, SALMANOWICZ B P, ADAMSKI T, KRAJEWSKI P, KACZMAREK Z, SURMA M. The influence of Glu-1 and Glu-3 loci on dough rheology and bread-making properties in wheat (Triticum aestivum L.) doubled haploid lines. Journal of the Science of Food and Agriculture, 2017, 97(15): 5083-5091.

doi: 10.1002/jsfa.2017.97.issue-15
[50]
CHEN X H, ZHOU H W, ZOU Y F, BAN J F, ZHANG H Z, ZHANG X K, GUO B L, ZHANG Y Q. Effects of LMW-GS allelic variations at the Glu-A3 locus on fresh wet noodle and frozen cooked noodle quality. Foods, 2025, 14(9): 1546.

doi: 10.3390/foods14091546
[51]
ZHOU H W, ZHANG Y Q, YANG Y N, ZHANG Y Y, BAN J F, ZHAO B, ZHANG L, ZHANG X K, GUO B L. Effects of low-molecular-weight glutenin subunit encoded by Glu-A3 on gluten and Chinese fresh noodle quality. Foods, 2023, 12(16): 3124.

doi: 10.3390/foods12163124
[1] CHEN CaiJin, MA Lin, JIANG QingXue, LIU JinHui, MIAO Tong, ZHANG ZhiPeng, MENG Xiang, MA XiaoRan, ZHOU XinYue, ZHANG Jian, LIU WenHui, WANG XueMin. Genetic Diversity Analysis of Phenotypic Traits of 244 Forage Oat Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(23): 4825-4836.
[2] WEI YiMin, ZHOU MeiLiang, TANG Yu. Origin, Evolution and Spread of Crop Buckwheat [J]. Scientia Agricultura Sinica, 2025, 58(21): 4305-4316.
[3] LIU XiaoXu, ZHONG ZeXin, QIU JiaRen, YANG ChunXiao, ZHANG YongJun, XIE Wen, ZHANG YouJun, PAN HuiPeng. GENETIC DIVERSITY OF MTCO1 IN DIFFERENT GEOGRAPHICAL POPULATIONS OF MEGALUROTHRIPS USITATUS [J]. Scientia Agricultura Sinica, 2025, 58(21): 4361-4371.
[4] GUO MengZe, ZHANG Lei, SUN PingPing, JIANG Biao, YAN JinQiang, LI ZhengNan. Molecular Characterization and Evolutionary Dynamics of Tomato Leaf Curl New Delhi Virus Isolate from Wax Gourd (Benincasa hispida) in Guangdong [J]. Scientia Agricultura Sinica, 2025, 58(19): 3890-3904.
[5] XIANG AiHui, BAI RongJi, HAO YuQiong, ZHAO JiaJia, WU BangBang, LI XiaoHua, ZHENG XingWei, GUAN PanFeng, ZHENG Jun. Identification of Dwarf Genes and Mining of Plant Height Genetic Loci in Shanxi Wheat [J]. Scientia Agricultura Sinica, 2025, 58(17): 3372-3388.
[6] LIU PengPeng, LI JiangBo, XU HongJun, NIE YingBin, HAN XinNian, KONG DeZhen, SANG Wei. Genetic Diversity Analysis of Protein Fractions and Quality in Xinjiang Winter Wheat Cultivar Resources [J]. Scientia Agricultura Sinica, 2025, 58(15): 2948-2959.
[7] WANG Hui, DING BaoPeng, LI YuXian, REN QuanRu, ZHOU Hai, ZHAO JunLiang, HU HaiFei. Research Progress and Prospects on Crop Pan-Genomics [J]. Scientia Agricultura Sinica, 2025, 58(11): 2045-2061.
[8] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[9] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[10] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[11] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[12] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[13] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[14] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[15] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!