[1] |
RAY D K, MUELLER N D, WEST P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6): e66428.
|
[2] |
MILLS G, SHARPS K, SIMPSON D, PLEIJEL H, FREI M, BURKEY K, EMBERSON L, UDDLING J, BROBERG M, FENG Z Z, KOBAYASHI K, AGRAWAL M. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24(10): 4869-4893.
doi: 10.1111/gcb.14381
pmid: 30084165
|
[3] |
VELÁSQUEZ A C, CASTROVERDE C D M, HE S Y. Plant- pathogen warfare under changing climate conditions. Current Biology, 2018, 28(10): R619-R634.
|
[4] |
PROJECT I R G S. The map-based sequence of the rice genome. Nature, 2005, 436(7052): 793-800.
|
[5] |
贺文闯, 许强, 钱前, 商连光. 水稻泛基因组学的发展与前景: 重要工具与应用. 生物技术通报, 2024, 40(10): 9-18.
doi: 10.13560/j.cnki.biotech.bull.1985.2024-0669
|
|
HE W C, XU Q, QIAN Q, SHANG L G. Development and prospects of rice pan-genomics: Important tools and applications. Biotechnology Bulletin, 2024, 40(10): 9-18. (in Chinese)
|
[6] |
BAYER P E, GOLICZ A A, SCHEBEN A, BATLEY J, EDWARDS D. Plant pan-genomes are the new reference. Nature Plants, 2020, 6(8): 914-920.
doi: 10.1038/s41477-020-0733-0
pmid: 32690893
|
[7] |
刘羽诚, 申妍婷, 田志喜. 大豆泛基因组研究进展. 遗传, 2024, 46(3): 183-198.
|
|
LIU Y C, SHEN Y T, TIAN Z X. Frontiers of soybean pan-genome studies. Hereditas (Beijing), 2024, 46(3): 183-198. (in Chinese)
|
[8] |
HENDERSON I R, BOMBLIES K. Evolution and plasticity of genome-wide meiotic recombination rates. Annual Review of Genetics, 2021, 55: 23-43.
doi: 10.1146/annurev-genet-021721-033821
pmid: 34310193
|
[9] |
SAM Y. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): E1743-E1751.
|
[10] |
郝晨路, 於晓芬, 曲明昊, 赖恩惠, 郭素敏, 高磊. 植物泛基因组研究进展与展望. 植物科学学报, 2022, 40(1): 124-132.
|
|
HAO C L, YU X F, QU M H, LAI E H, GUO S M, GAO L. Current status and prospects of pan-genome studies in plants. Plant Science Journal, 2022, 40(1): 124-132. (in Chinese)
|
[11] |
SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467.
|
[12] |
VISENDI P, BERKMAN P J, HAYASHI S, GOLICZ A A, BAYER P E, RUPERAO P, HURGOBIN B, MONTENEGRO J, CHAN C K, STAŇKOVÁ H, BATLEY J, ŠIMKOVÁ H, DOLEŽEL J, EDWARDS D. An efficient approach to BAC based assembly of complex genomes. Plant Methods, 2016, 12: 2.
doi: 10.1186/s13007-016-0107-9
pmid: 26793268
|
[13] |
PATERSON A H, BOWERS J E, BRUGGMANN R, DUBCHAK I, GRIMWOOD J, GUNDLACH H, HABERER G, HELLSTEN U, MITROS T, POLIAKOV A, et al. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229): 551-556.
|
[14] |
SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F S, PASTERNAK S, LIANG C Z, ZHANG J W, FULTON L, GRAVES T A, et al. The B73 maize genome: Complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115.
doi: 10.1126/science.1178534
pmid: 19965430
|
[15] |
LEVY S E, MYERS R M. Advancements in next-generation sequencing. Annual Review of Genomics and Human Genetics, 2016, 17: 95-115.
doi: 10.1146/annurev-genom-083115-022413
pmid: 27362342
|
[16] |
PARITOSH K, YADAVA S K, SINGH P, BHAYANA L, MUKHOPADHYAY A, GUPTA V, BISHT N C, ZHANG J W, KUDRNA D A, COPETTI D, WING R A, LACHAGARI V B R, PRADHAN A K, PENTAL D. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal, 2021, 19(3): 602-614.
|
[17] |
REYES-CHIN-WO S, WANG Z W, YANG X H, KOZIK A, ARIKIT S, SONG C, XIA L F, FROENICKE L, LAVELLE D O, TRUCO M J, XIA R, ZHU S L, XU C Y, XU H Q, XU X, COX K, KORF I, MEYERS B C, MICHELMORE R W. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications, 2017, 8: 14953.
|
[18] |
CHALHOUB B, DENOEUD F, LIU S Y, PARKIN I A P, TANG H B, WANG X Y, CHIQUET J, BELCRAM H, TONG C B, SAMANS B, et al. Plant genetics. Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014, 345(6199): 950-953.
|
[19] |
KIM M Y, LEE S, VAN K, KIM T H, JEONG S C, CHOI I Y, KIM D S, LEE Y S, PARK D, MA J X, et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22032-22037.
|
[20] |
LV Q M, LI W G, SUN Z Z, OUYANG N, JING X, HE Q, WU J, ZHENG J K, ZHENG J T, TANG S Q, et al. Resequencing of 1, 143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11(1): 4778.
|
[21] |
HAO C Y, JIAO C Z, HOU J, LI T, LIU H X, WANG Y Q, ZHENG J, LIU H, BI Z H, XU F F, ZHAO J, MA L, WANG Y M, MAJEED U, LIU X, APPELS R, MACCAFERRI M, TUBEROSA R, LU H F, ZHANG X Y. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 2020, 13(12): 1733-1751.
doi: 10.1016/j.molp.2020.09.001
pmid: 32896642
|
[22] |
BAYER P E, VALLIYODAN B, HU H F, MARSH J I, YUAN Y X, VUONG T D, PATIL G, SONG Q J, BATLEY J, VARSHNEY R K, LAM H M, EDWARDS D, NGUYEN H T. Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. The Plant Genome, 2022, 15(1): e20109.
|
[23] |
VAN DIJK E L, JASZCZYSZYN Y, NAQUIN D, THERMES C. The third revolution in sequencing technology. Trends in Genetics, 2018, 34(9): 666-681.
doi: S0168-9525(18)30096-9
pmid: 29941292
|
[24] |
BELSER C, ISTACE B, DENIS E, DUBARRY M, BAURENS F C, FALENTIN C, GENETE M, BERRABAH W, CHÈVRE A M, DELOURME R, et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 2018, 4(11): 879-887.
doi: 10.1038/s41477-018-0289-4
pmid: 30390080
|
[25] |
JIAO Y P, PELUSO P, SHI J H, LIANG T, STITZER M C, WANG B, CAMPBELL M S, STEIN J C, WEI X H, CHIN C S, et al. Improved maize reference genome with single-molecule technologies. Nature, 2017, 546(7659): 524-527.
|
[26] |
CHENG H Y, CONCEPCION G T, FENG X W, ZHANG H W, LI H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 2021, 18(2): 170-175.
|
[27] |
ATHIYANNAN N, ABROUK M, BOSHOFF W H P, CAUET S, RODDE N, KUDRNA D, MOHAMMED N, BETTGENHAEUSER J, BOTHA K S, DERMAN S S, WING R A, PRINS R, KRATTINGER S G. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nature Genetics, 2022, 54(3): 227-231.
doi: 10.1038/s41588-022-01022-1
pmid: 35288708
|
[28] |
TANG D, JIA Y X, ZHANG J Z, LI H B, CHENG L, WANG P, BAO Z G, LIU Z H, FENG S S, ZHU X J, LI D W, ZHU G T, WANG H R, ZHOU Y, ZHOU Y F, BRYAN G J, ROBIN BUELL C, ZHANG C Z, HUANG S W. Genome evolution and diversity of wild and cultivated potatoes. Nature, 2022, 606(7914): 535-541.
|
[29] |
KARST S M, ZIELS R M, KIRKEGAARD R H, SØRENSEN E A, MCDONALD D, ZHU Q Y, KNIGHT R, ALBERTSEN M. High- accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nature Methods, 2021, 18(2): 165-169.
|
[30] |
KOREN S, WALENZ B P, BERLIN K, MILLER J R, BERGMAN N H, PHILLIPPY A M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 2017, 27(5): 722-736.
|
[31] |
FREIRE B, LADRA S, PARAMA J R. Memory-efficient assembly using flye. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(6): 3564-3577.
|
[32] |
HU J, WANG Z, SUN Z Y, HU B X, AYOOLA A O, LIANG F, LI J J, SANDOVAL J R, COOPER D N, YE K, RUAN J, XIAO C L, WANG D P, WU D D, WANG S. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biology, 2024, 25(1): 107.
doi: 10.1186/s13059-024-03252-4
pmid: 38671502
|
[33] |
CHOI J Y, LYE Z N, GROEN S C, DAI X G, RUGHANI P, ZAAIJER S, HARRINGTON E D, JUUL S, PURUGGANAN M D. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biology, 2020, 21(1): 21.
doi: 10.1186/s13059-020-1938-2
pmid: 32019604
|
[34] |
SALSON M, ORJUELA J, MARIAC C, ZEKRAOUÏ L, COUDERC M, ARRIBAT S, RODDE N, FAYE A, KANE N A, TRANCHANT- DUBREUIL C, VIGOUROUX Y, BERTHOULY-SALAZAR C. An improved assembly of the pearl millet reference genome using Oxford Nanopore long reads and optical mapping. G3, 2023, 13(5): jkad051.
|
[35] |
NURK S, KOREN S, RHIE A, RAUTIAINEN M, BZIKADZE A V, MIKHEENKO A, VOLLGER M R, ALTEMOSE N, URALSKY L, GERSHMAN A, et al. The complete sequence of a human genome. Science, 2022, 376(6588): 44-53.
doi: 10.1126/science.abj6987
pmid: 35357919
|
[36] |
CHEN J, WANG Z J, TAN K W, HUANG W, SHI J P, LI T, HU J, WANG K, WANG C, XIN B B, ZHAO H M, SONG W B, HUFFORD M B, SCHNABLE J C, JIN W W, LAI J S. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics, 2023, 55(7): 1221-1231.
doi: 10.1038/s41588-023-01419-6
pmid: 37322109
|
[37] |
BAO J D, ZHANG H, WANG F L, LI L, ZHU X M, XU J F, WANG Y, LIU Z J, ZHAI G W, XU H, LIN F C, ZHU Y. Telomere-to- telomere genome assemblies of two Chinese Baijiu-brewing Sorghum landraces. Plant Communications, 2024, 5(6): 100933.
|
[38] |
SHIZUYA H, BIRREN B, KIM U J, MANCINO V, SLEPAK T, TACHIIRI Y, SIMON M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(18): 8794-8797.
|
[39] |
MARDIS E R. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 2008, 9: 387-402.
doi: 10.1146/annurev.genom.9.081307.164359
pmid: 18576944
|
[40] |
MARX V. Method of the year: Long-read sequencing. Nature Methods, 2023, 20(1): 6-11.
doi: 10.1038/s41592-022-01730-w
pmid: 36635542
|
[41] |
KOREN S, SCHATZ M C, WALENZ B P, MARTIN J, HOWARD J T, GANAPATHY G, WANG Z, RASKO D A, RICHARD MCCOMBIE W, JARVIS E D, PHILLIPPY A M. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology, 2012, 30(7): 693-700.
|
[42] |
ZAPATA L, DING J, WILLING E M, HARTWIG B, BEZDAN D, JIAO W B, PATEL V, VELIKKAKAM JAMES G, KOORNNEEF M, OSSOWSKI S, SCHNEEBERGER K. Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): E4052-E4060.
|
[43] |
ZHOU Q, TANG D, HUANG W, YANG Z M, ZHANG Y, HAMILTON J P, VISSER R G F, BACHEM C W B, ROBIN BUELL C, ZHANG Z H, ZHANG C Z, HUANG S W. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 2020, 52(10): 1018-1023.
doi: 10.1038/s41588-020-0699-x
pmid: 32989320
|
[44] |
QIN P, LU H W, DU H L, WANG H, CHEN W L, CHEN Z, HE Q, OU S J, ZHANG H Y, LI X Z, HE M, YIN J J, LI T, JIANG N, CHEN X W, LIANG C Z, LI S G. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 2021, 184(13): 3542-3558.e16.
doi: 10.1016/j.cell.2021.04.046
pmid: 34051138
|
[45] |
SCHATZ M C, MARON L G, STEIN J C, HERNANDEZ WENCES A, GURTOWSKI J, BIGGERS E, LEE H Y, KRAMER M, ANTONIOU E, GHIBAN E, WRIGHT M H, CHIA J M, WARE D, MCCOUCH S R, MCCOMBIE W R. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology, 2014, 15(11): 506.
|
[46] |
SHANG L G, LI X X, HE H Y, YUAN Q L, SONG Y N, WEI Z R, LIN H, HU M, ZHAO F L, ZHANG C, et al. A super pan-genomic landscape of rice. Cell Research, 2022, 32(10): 878-896.
doi: 10.1038/s41422-022-00685-z
pmid: 35821092
|
[47] |
ZHANG F, XUE H Z, DONG X R, LI M, ZHENG X M, LI Z K, XU J L, WANG W S, WEI C C. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. Genome Research, 2022, 32(5): 853-863.
doi: 10.1101/gr.276015.121
pmid: 35396275
|
[48] |
WU S, SUN H H, GAO L, BRANHAM S, MCGREGOR C, RENNER S S, XU Y, KOUSIK C, WECHTER W P, LEVI A, FEI Z J. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnology Journal, 2023, 21(10): 1926-1928.
|
[49] |
ZHANG Y L, ZHAO M X, TAN J S, HUANG M H, CHU X, LI Y, HAN X, FANG T H, TIAN Y, JARRET R, LU D D, CHEN Y J, XUE L F, LI X N, QIN G C, LI B S, SUN Y D, DENG X W, DENG Y, ZHANG X P, HE H. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nature Genetics, 2024, 56(8): 1750-1761.
|
[50] |
SUN Y, KOU D R, LI Y, NI J P, WANG J, ZHANG Y M, WANG Q N, JIANG B, WANG X, SUN Y X, XU X T, TAN X J, ZHANG Y J, KONG X D. Pan-genome of Citrullus genus highlights the extent of presence/absence variation during domestication and selection. BMC Genomics, 2023, 24(1): 332.
|
[51] |
BOZAN I, ACHAKKAGARI S R, ANGLIN N L, ELLIS D, TAI H H, STRÖMVIK M V. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(31): e2211117120.
|
[52] |
ZHOU Y, ZHANG Z Y, BAO Z G, LI H B, LYU Y Q, ZAN Y J, WU Y Y, CHENG L, FANG Y H, WU K, ZHANG J Z, LYU H J, LIN T, GAO Q, SAHA S, MUELLER L, FEI Z J, STÄDLER T, XU S Z, ZHANG Z W, SPEED D, HUANG S W. Graph pangenome captures missing heritability and empowers tomato breeding. Nature, 2022, 606(7914): 527-534.
|
[53] |
HUFFORD M B, SEETHARAM A S, WOODHOUSE M R, CHOUGULE K M, OU S J, LIU J N, RICCI W A, GUO T T, OLSON A, QIU Y J, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373(6555): 655-662.
|
[54] |
SONG J M, GUAN Z L, HU J L, GUO C C, YANG Z Q, WANG S, LIU D X, WANG B, LU S P, ZHOU R, XIE W Z, CHENG Y F, ZHANG Y T, LIU K D, YANG Q Y, CHEN L L, GUO L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6(1): 34-45.
|
[55] |
JAYAKODI M, PADMARASU S, HABERER G, BONTHALA V S, GUNDLACH H, MONAT C, LUX T, KAMAL N, LANG D, HIMMELBACH A, et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588(7837): 284-289.
|
[56] |
HE X, QI Z Y, LIU Z P, CHANG X, ZHANG X L, LI J Y, WANG M J. Pangenome analysis reveals transposon-driven genome evolution in cotton. BMC Biology, 2024, 22(1): 92.
doi: 10.1186/s12915-024-01893-2
pmid: 38654264
|
[57] |
ZHAO X B, YU J Y, CHANDA B, ZHAO J T, WU S, ZHENG Y, SUN H H, LEVI A, LING K S, FEI Z J. Genomic and pangenomic analyses provide insights into the population history and genomic diversification of bottle gourd. New Phytologist, 2024, 242(5): 2285-2300.
|
[58] |
DING B P, HU H F, CAO Y P, XU R R, LIN Y J, MUHAMMAD T U Q, SONG Y Q, HE G Q, HAN Y Z, GUO H P, QIAO J, ZHAO J G, FENG X X, YANG S, GUO X H, VARSHNEY R K, LI L L. Pear genomes display significant genetic diversity and provide novel insights into the fruit quality traits differentiation. Horticultural Plant Journal, 2024, 10(6): 1274-1290.
|
[59] |
COCHETEL N, MINIO A, GUARRACINO A, GARCIA J F, FIGUEROA-BALDERAS R, MASSONNET M, KASUGA T, LONDO J P, GARRISON E, GAUT B S, CANTU D. A super- pangenome of the North American wild grape species. Genome Biology, 2023, 24(1): 290.
|
[60] |
KHAN A W, GARG V, SUN S, GUPTA S, DUDCHENKO O, ROORKIWAL M, CHITIKINENI A, BAYER P E, SHI C C, UPADHYAYA H D, et al. Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea. Nature Genetics, 2024, 56(6): 1225-1234.
|
[61] |
YAN H D, SUN M, ZHANG Z R, JIN Y R, ZHANG A L, LIN C, WU B C, HE M, XU B, WANG J, et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics, 2023, 55(3): 507-518.
doi: 10.1038/s41588-023-01302-4
pmid: 36864101
|
[62] |
HUANG Y, HE J X, XU Y T, ZHENG W K, WANG S H, CHEN P, ZENG B, YANG S Z, JIANG X L, LIU Z S, et al. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in Citrus fruits. Nature Genetics, 2023, 55(11): 1964-1975.
|
[63] |
SHI T T, ZHANG X X, HOU Y K, JIA C F, DAN X M, ZHANG Y L, JIANG Y Z, LAI Q, FENG J J, FENG J J, et al. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. Molecular Plant, 2024, 17(5): 725-746.
|
[64] |
LI H B, WANG S H, CHAI S, YANG Z Q, ZHANG Q Q, XIN H J, XU Y C, LIN S N, CHEN X X, YAO Z W, YANG Q Y, FEI Z J, HUANG S W, ZHANG Z H. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 2022, 13(1): 682.
doi: 10.1038/s41467-022-28362-0
pmid: 35115520
|
[65] |
BEAULIEU C, LIBOUREL C, ZAMAR D L M, EL MAHBOUBI K, HOEY D J, KELLER J, GIROU C, CLEMENTE H S, DIOP I, AMBLARD E, et al. The Marchantia pangenome reveals ancient mechanisms of plant adaptation to the environment. bioRxiv, 2023.
|
[66] |
HU H F, SCHEBEN A, VERPAALEN B, TIRNAZ S, BAYER P E, HODEL R G J, BATLEY J, SOLTIS D E, SOLTIS P S, EDWARDS D. Amborella gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. New Phytologist, 2022, 233(4): 1548-1555.
|
[67] |
GUO N, WANG S Y, WANG T Y, DUAN M M, ZONG M, MIAO L M, HAN S, WANG G X, LIU X, ZHANG D S, JIAO C Z, XU H W, CHEN L Y, FEI Z J, LI J B, LIU F. A graph-based pan-genome of Brassica oleracea provides new insights into its domestication and morphotype diversification. Plant Communications, 2024, 5(2): 100791.
|
[68] |
LI Y H, ZHOU G Y, MA J X, JIANG W K, JIN L G, ZHANG Z H, GUO Y, ZHANG J B, SUI Y, ZHENG L T, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32(10): 1045-1052.
|
[69] |
YANG J H, LIU D Y, WANG X W, JI C M, CHENG F, LIU B N, HU Z Y, CHEN S, PENTAL D, JU Y H, et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics, 2016, 48(10): 1225-1232.
|
[70] |
JIAO C Z, XIE X M, HAO C Y, CHEN L Y, XIE Y X, GARG V, ZHAO L, WANG Z H, ZHANG Y Q, LI T, et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature, 2025, 637: 384-393.
|
[71] |
SHEPARD S S, MENO S, BAHL J, WILSON M M, BARNES J, NEUHAUS E. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genomics, 2016, 17(1): 708.
|
[72] |
WANG W S, MAULEON R, HU Z Q, CHEBOTAROV D, TAI S S, WU Z C, LI M, ZHENG T Q, FUENTES R R, ZHANG F, et al. Genomic variation in 3, 010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43-49.
|
[73] |
GAO L, GONDA I, SUN H H, MA Q Y, BAO K, TIEMAN D M, BURZYNSKI-CHANG E A, FISH T L, STROMBERG K A, SACKS G L, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51(6): 1044-1051.
doi: 10.1038/s41588-019-0410-2
pmid: 31086351
|
[74] |
LYU X L, XIA Y L, WANG C H, ZHANG K J, DENG G C, SHEN Q H, GAO W, ZHANG M Y, LIAO N Q, LING J, BO Y M, HU Z Y, YANG J H, ZHANG M F. Pan-genome analysis sheds light on structural variation-based dissection of agronomic traits in melon crops. Plant Physiology, 2023, 193(2): 1330-1348.
doi: 10.1093/plphys/kiad405
pmid: 37477947
|
[75] |
GUI S T, WEI W J, JIANG C L, LUO J Y, CHEN L, WU S S, LI W Q, WANG Y B, LI S Y, YANG N, LI Q, FERNIE A R, YAN J B. A pan-Zea genome map for enhancing maize improvement. Genome Biology, 2022, 23(1): 178.
|
[76] |
EDWARDS D, BATLEY J. Graph pangenomes find missing heritability. Nature Genetics, 2022, 54(7): 919-920.
|
[77] |
LI N, HE Q, WANG J, WANG B K, ZHAO J T, HUANG S Y, YANG T, TANG Y P, YANG S B, AISIMUTUOLA P, et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics, 2023, 55(5): 852-860.
doi: 10.1038/s41588-023-01340-y
pmid: 37024581
|
[78] |
JAYAKODI M, LU Q X, PIDON H, TIMOTHY RABANUS-WALLACE M, BAYER M, LUX T, GUO Y, JAEGLE B, BADEA A, BEKELE W, et al. Structural variation in the pangenome of wild and domesticated barley. Nature, 2024, 636(8043): 654-662.
|
[79] |
WANG B B, HOU M, SHI J P, KU L X, SONG W, LI C H, NING Q, LI X, LI C Y, ZHAO B B, et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 2023, 55(2): 312-323.
|
[80] |
LIU Y C, DU H L, LI P C, SHEN Y T, PENG H, LIU S L, ZHOU G A, ZHANG H K, LIU Z, SHI M, HUANG X H, LI Y, ZHANG M, WANG Z, ZHU B G, HAN B, LIANG C Z, TIAN Z X. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182(1): 162-176.e13.
doi: S0092-8674(20)30618-8
pmid: 32553274
|
[81] |
HE Q, TANG S, ZHI H, CHEN J F, ZHANG J, LIANG H K, ALAM O, LI H B, ZHANG H, XING L H, et al. A graph-based genome and pan-genome variation of the model plant Setaria. Nature Genetics, 2023, 55(7): 1232-1242.
|
[82] |
HU H F, LI R S, ZHAO J L, BATLEY J, EDWARDS D. Technological development and advances for constructing and analyzing plant pangenomes. Genome Biology and Evolution, 2024, 16(4): evae081.
|
[83] |
GARRISON E, SIRÉN J, NOVAK A M, HICKEY G, EIZENGA J M, DAWSON E T, JONES W, GARG S, MARKELLO C, LIN M F, PATEN B, DURBIN R. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature Biotechnology, 2018, 36(9): 875-879.
doi: 10.1038/nbt.4227
pmid: 30125266
|
[84] |
LI H, FENG X W, CHU C. The design and construction of reference pangenome graphs with minigraph. Genome Biology, 2020, 21(1): 265.
doi: 10.1186/s13059-020-02168-z
pmid: 33066802
|
[85] |
HICKEY G, MONLONG J, EBLER J, NOVAK A M, EIZENGA J M, GAO Y, CONSORTIUM H P R, MARSCHALL T, LI H, PATEN B. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nature Biotechnology, 2024, 42(4): 663-673.
|
[86] |
GARRISON E, GUARRACINO A, HEUMOS S, VILLANI F, BAO Z, TATTINI L, HAGMANN J, VORBRUGG S, MARCO-SOLA S, KUBICA C, et al. Building pangenome graphs. Nature Methods, 2024, 21(11): 2008-2012.
doi: 10.1038/s41592-024-02430-3
pmid: 39433878
|
[87] |
王英豪, 余嘉鑫, 唐海宝, 张兴坦. 植物复杂基因组与泛基因组研究现状与展望. 中国科学: 生命科学, 2024, 54(2): 233-246.
|
|
WANG Y H, YU J X, TANG H B, ZHANG X T. Research status and prospect of plant complex genomes and pan-genomes. Scientia Sinica (Vitae), 2024, 54(2): 233-246. (in Chinese)
|
[88] |
ZHANG H Y, MITTAL N, LEAMY L J, BARAZANI O, SONG B H. Back into the wild: Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 2017, 10(1): 5-24.
|
[89] |
MOHD SAAD N S, NEIK T X, THOMAS W J W, AMAS J C, CANTILA A Y, CRAIG R J, EDWARDS D, BATLEY J. Advancing designer crops for climate resilience through an integrated genomics approach. Current Opinion in Plant Biology, 2022, 67: 102220.
|
[90] |
HU H F, ZHAO J L, THOMAS W J W, BATLEY J, EDWARDS D. The role of pangenomics in orphan crop improvement. Nature Communications, 2025, 16(1): 118.
|
[91] |
DELLA COLETTA R, QIU Y J, OU S J, HUFFORD M B, HIRSCH C N. How the pan-genome is changing crop genomics and improvement. Genome Biology, 2021, 22(1): 3.
doi: 10.1186/s13059-020-02224-8
pmid: 33397434
|
[92] |
ALONGE M, WANG X G, BENOIT M, SOYK S, PEREIRA L, ZHANG L, SURESH H, RAMAKRISHNAN S, MAUMUS F, CIREN D, et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145-161.e23.
doi: S0092-8674(20)30616-4
pmid: 32553272
|
[93] |
LI Q, FENG Q, SNOUFFER A, ZHANG B Y, RODRÍGUEZ G R, VAN DER KNAAP E. Increasing fruit weight by editing a Cis- regulatory element in tomato KLUH promoter using CRISPR/Cas9. Frontiers in Plant Science, 2022, 13: 879642.
|
[94] |
YU H, LIN T, MENG X B, DU H L, ZHANG J K, LIU G F, CHEN M J, JING Y H, KOU L Q, LI X X, et al. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.e14.
|
[95] |
TAY FERNANDEZ C G, NESTOR B J, DANILEVICZ M F, MARSH J I, PETEREIT J, BAYER P E, BATLEY J, EDWARDS D. Expanding gene-editing potential in crop improvement with pangenomes. International Journal of Molecular Sciences, 2022, 23(4): 2276.
|
[96] |
HU H F, SCHEBEN A, WANG J, LI F P, LI C D, EDWARDS D, ZHAO J L. Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding. Plant Biotechnology Journal, 2024, 22(3): 544-554.
|
[97] |
GAGE J L, VAILLANCOURT B, HAMILTON J P, MANRIQUE-CARPINTERO N C, GUSTAFSON T J, BARRY K, LIPZEN A, TRACY W F, MIKEL M A, KAEPPLER S M, BUELL C R, DE LEON N. Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel. The Plant Genome, 2019, 12(2): 180069.
|
[98] |
DAWARE A, MALIK A, SRIVASTAVA R, DAS D, ELLUR R K, SINGH A K, TYAGI A K, PARIDA S K. Rice Pangenome Genotyping Array: An efficient genotyping solution for pangenome-based accelerated genetic improvement in rice. The Plant Journal, 2023, 113(1): 26-46.
|
[99] |
RUPERAO P, THIRUNAVUKKARASU N, GANDHAM P, SELVANAYAGAM S, GOVINDARAJ M, NEBIE B, MANYASA E, GUPTA R, DAS R R, ODENY D A, GANDHI H, EDWARDS D, DESHPANDE S P, RATHORE A. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Frontiers in Plant Science, 2021, 12: 666342.
|
[100] |
WANG J, YANG W, ZHANG S H, HU H F, YUAN Y X, DONG J F, CHEN L, MA Y M, YANG T F, ZHOU L, CHEN J S, LIU B, LI C D, EDWARDS D, ZHAO J L. A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biology, 2023, 24(1): 19.
doi: 10.1186/s13059-023-02861-9
pmid: 36703158
|
[101] |
SIBBESEN J A, EIZENGA J M, NOVAK A M, SIRÉN J, CHANG X, GARRISON E, PATEN B. Haplotype-aware pantranscriptome analyses using spliced pangenome graphs. Nature Methods, 2023, 20(2): 239-247.
doi: 10.1038/s41592-022-01731-9
pmid: 36646895
|
[102] |
ZHANG H, CHEN W, ZHU D, ZHANG B T, XU Q, SHI C L, HE H Y, DAI X F, LI Y L, HE W C, et al. Population-level exploration of alternative splicing and its unique role in controlling agronomic traits of rice. The Plant Cell, 2024, 36(10): 4372-4387.
|
[103] |
ZHONG Y Y, LUO Y H, SUN J L, QIN X M, GAN P, ZHOU Z W, QIAN Y Q, ZHAO R P, ZHAO Z Y, CAI W G, LUO J J, CHEN L L, SONG J M. Pan-transcriptomic analysis reveals alternative splicing control of cold tolerance in rice. The Plant Cell, 2024, 36(6): 2117-2139.
doi: 10.1093/plcell/koae039
pmid: 38345423
|
[104] |
HSIEH C H, CHANG Y S, YEN M R, HSIEH J A, CHEN P Y. Predicting protein synergistic effect in Arabidopsis using epigenome profiling. Nature Communications, 2024, 15(1): 9160.
|
[105] |
DONG X M, ZHANG M, CHEN J, PENG L Z, ZHANG N, WANG X, LAI J S. Dynamic and antagonistic allele-specific epigenetic modifications controlling the expression of imprinted genes in maize endosperm. Molecular Plant, 2017, 10(3): 442-455.
doi: S1674-2052(16)30232-5
pmid: 27793787
|
[106] |
WANG P, WU X, SHI Z B, TAO S T, LIU Z, QI K J, XIE Z H, QIAO X, GU C, YIN H, CHENG M Y, GU X Y, LIU X Y, TANG C, CAO P, XU S H, ZHOU B J, GU T T, BIAN Y Y, WU J Y, ZHANG S L. A large-scale proteogenomic atlas of pear. Molecular Plant, 2023, 16(3): 599-615.
doi: 10.1016/j.molp.2023.01.011
pmid: 36733253
|