Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2045-2061.doi: 10.3864/j.issn.0578-1752.2025.11.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Research Progress and Prospects on Crop Pan-Genomics

WANG Hui1(), DING BaoPeng2(), LI YuXian2, REN QuanRu2, ZHOU Hai1, ZHAO JunLiang1,3(), HU HaiFei3()   

  1. 1 College of Life Sciences, South China Agricultural University, Guangzhou 510640
    2 Shanxi Datong University/Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong 037009, Shanxi
    3 Rice Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640
  • Received:2024-11-18 Accepted:2025-01-16 Online:2025-06-01 Published:2025-06-09
  • Contact: DING BaoPeng, ZHAO JunLiang, HU HaiFei

Abstract:

The global population continues to rise and climate change imposes severe challenges on food supply, the issue of food security has become increasingly prominent. To meet the growing demand for food, enhancing crop yield and improving environmental adaptability have become critical goals in agriculture. Under this situation, genomics is regarded as an essential method for accelerating crop breeding, as it enables the in-depth exploration and utilization of superior functional genes to not only boost crop productivity but also strengthen stress tolerance and adaptability, thereby providing robust support for ensuring global food security and achieving sustainable agricultural development. Nonetheless, the traditional single-reference genome often fails to capture the entire spectrum of genomic variations accumulated during crop domestication and improvement, which constrains our understanding of functional genes and their regulatory networks. With the continual advancement of high-throughput sequencing technologies, genomics research has now entered the pangenomics era. By integrating multiple high-quality genomes into a comprehensive catalog of genomic content, researchers can precisely identify a variety of genetic variations, including single nucleotide polymorphisms (SNPs) and structural variations (SVs), thereby capturing the extensive genetic diversity present across different cultivars, subspecies, and wild relatives. Pangenomics framework greatly facilitates the exploration of superior functional genes. Moreover, by combining pangenomic data with other multi-omics datasets (e.g., transcriptomics, proteomics, and epigenomics), researchers can accurately identify superior functional genes, enabling the provision of more targeted and accurate genetic loci for molecular breeding. With emerging gene-editing tools such as CRISPR-Cas9, researchers can further modify essential genetic loci in a directed manner to remove undesirable traits or reinforce resistance to environmental stressors. This will lay a foundation for cultivating the next generation of crops that exhibit higher yield, improved quality, and enhanced resilience. This review summarizes recent developments in major pangenome construction methods and formats, and systematically reviews the progress made in crop pangenomes as well as their applications in crop breeding improvement. It also discusses the challenges pangenomics faces in future crop breeding, offering insights into leveraging pangenome resources for crop genetic improvement, and ultimately provides new perspectives and strategies for future molecular breeding.

Key words: molecular breeding, pangenome, structural variations, new productivity, genetic diversity

Table 1

The development and application of genomic sequencing technologies"

技术类型
Technology type
技术名称
Technology name
时间
Time
优势与劣势
Advantage and disadvantage
应用实例
Application example
第一代测序及组装
First generation sequencing and assembly
Sanger测序
Sanger sequencing
1977
[11]
优势:具备高准确性,低错误率,测序结果易于分析和解释。
劣势:测序通量低导致测序效率低,难以满足大规模基因组测序的需求。
Advantages: It possesses high accuracy with a low error rate, making the sequencing results easy to analyze and interpret.
Disadvantages: The low sequencing throughput results in inefficient sequencing, making it difficult to meet the demands of large-scale genomic sequencing.
水稻基因组[4]、高粱基因组[13]、玉米基因组[14]
Rice genome, Sorghum genome, Maize genome
BACs克隆测序
BACs cloning and
sequencing
1992
[38]
优势:高分辨率,低嵌合率,高遗传稳定性,可容纳300 kb DNA片段,有助于获得高质量的基因组序列。
劣势:文库的构建和筛选过程相对复杂,BAC克隆的测序和组装成本较高。
Advantages: High resolution, low chimeric rate, good genetic stability, and the ability to accommodate up to 300 kb DNA fragments, contributing to the generation of high-quality genomic sequences.
Disadvantages: The processes of library construction and screening are relatively complex, and the sequencing and assembly costs of BAC clones are high.
第二代测序及组装
Next-generation sequencing and assembly
Illumina短读长NGS
Illumina Short Read
NGS
2008
[39]
优势:低成本、高通量,高准确性。
劣势:读长较短,在复杂基因组及重复序列的组装时面临较大困难。
Advantages: Low cost, high throughput, and high accuracy.
Disadvantages: Shorter read lengths pose challenges for the assembly of complex genomes and repetitive sequences.
芥菜基因组[16]、生菜基因组[17]、油菜基因组[18]、大豆基因组[19]
Mustard genome, Lettuce genome, Rapeseed genome, Soybean genome
第三代测序及组装
Third generation sequencing and assembly
PacBio测序
PacBio sequencing
2023
[40]
优势:PacBio HiFi读长高达15—20 kb,具有高分辨率和精准性,从而提高基因组组装的连续性和完整性。
劣势:测序成本较高,在大规模项目中的应用可能受到限制。
Advantages: PacBio HiFi offers read lengths of up to 15-20 kb, high resolution, and accuracy, thereby enhancing the continuity and completeness of genome assembly.
Disadvantages: The sequencing cost is relatively high, which may limit its application in large-scale sequencing projects.
面包小麦基因组[27]、马铃薯基因组[28]
Bread wheat genome, Potato genome
Nanopore测序
Nanopore sequencing
2021
[29]
优势:Ultra-long超长读长,最长读长可达1 Mb。适用于从头组装基因组和解析复杂的结构变异。
劣势:测序错误率相对较高,测序成本高。
Advantages: Ultra-long read lengths, with the longest reads reaching up to 1 Mb, making it suitable for de novo genome assembly and resolving complex structural variations.
Disadvantages: Relatively high sequencing error rates and high sequencing costs.
水稻基因组[33]、珍珠粟基因组[34]
Rice genome, Pearl millet genome
混合组装
策略
Hybrid assembly strategy
二代测序+三代测序混合组装
Hybrid assembly using second-generation and third-generation sequencing
2012
[41]
优势:三代测序的长读长优势可以弥补二代测序在重复序列组装上的不足,生成更完整、更连续的基因组序列。二代测序可用于校正三代测序,从而提高测序准确性。
劣势:二代和三代测序数据在读长、错误模式和覆盖度等方面存在差异,整合这些数据进行组装需要复杂的算法和计算资源。
Advantages: The long read lengths of third-generation sequencing can compensate for the shortcomings of second-generation sequencing in assembling repetitive sequences, generating more complete and contiguous genome sequences. Second-generation sequencing can be used to correct third-generation sequencing, thereby improving its accuracy.
Disadvantages: There are differences between second- and third- generation sequencing data in terms of read length, error patterns, and coverage. Integrating these data for assembly requires complex algorithms and computational resources.
拟南芥基因组[42]、马铃薯基因组[43]
Arabidopsis genome, Potato genome
PacBio HiFi测序技术+Nanopore超长读长测序技术+HiC染色质构象捕获技术
PacBio HiFi+Nanopore Ultra-long+HiC
2022
[35]
优势:综合了长读长、高准确性和三维基因组结构信息,可实现无间隙基因组组装。
劣势:成本较高,分析技术复杂性较高,需要较多的计算资源及相应的生物信息分析工具。
Advantages: Combining long read lengths, high accuracy, and three- dimensional genome structure information enables gapless genome assembly.
Disadvantages: It is costly, involves complex analytical algorithm, and requires substantial computational resources as well as specialized bioinformatics analysis tools.
玉米T2T(端粒到端粒)基因组[36]和高粱T2T基因组[37]
Maize T2T (telomere-to- telomere) genome, Sorghum T2T genome

Table 2

Overview of current pan-genomic studies in plants and crops"

泛基因组构建方法
Method for pangenome construction
物种名
Species names
品种个数
Number of varieties
测序方法
Sequencing methods
参考文献
References
棉花Gossypium hirsutum 344 Illumina HiSeq
PacBio
[56]
从头组装、比较基因
De novo assembly, Comparative genomics
西瓜Citrullus lanatus 547 Illumina
PacBio
[48]
西瓜Citrullus lanatus 27 Illumina HiSeq
PacBio HiFi
[49]
西瓜Citrullus lanatus 400 Illumina [50]
大麦Hordeum vulgare 20 Illumina HiSeq
PacBio
[55]
大麦Hordeum vulgare 76 Illumina NovaSeq
PacBio HiFi
[78]
Lagenaria siceraria 197 Illumina NextSeq [57]
珍珠粟Pennisetum glaucum 10 Illumina
Pacbio HiFi
[61]
地钱Marchantia polymorpha 133 Illumina HiSeq
PacBio HiFi
[65]
亚洲栽培稻和普通野生稻
Oryza sativa and Oryza rufipogon
111 PacBio [47]
杨树Populus przewalskii Maxim 19 Illumina HiSeq
Nanopore
[63]
Pyrus spp. 7 Illumina HiSeq
PacBio HiFi
[58]
土豆Solanum tuberosum 296 Illumina HiSeq [51]
土豆Solanum tuberosum 42 PacBio HiFi [28]
玉米Zea mays 14 Illumina HiSeq
PacBio
[79]
玉米Zea mays 26 PacBio [53]
甘蓝型油菜Brassica napus 8 Illumina HiSeq
PacBio
[54]
从头组装、图形化泛基因组
De novo assembly, Graph-based pangenome

甘蓝Brassica oleracea 11 PacBio HiFi [67]
栽培和野生大豆
Glycine max and Glycine soja
26 Illumina HiSeq
PacBio
[80]
谷子Setaria italica 110 Illumina NovaSeq
Pacbio
[81]
番茄Solanum lycopersicum 11 Illumina
PacBio
[77]
黄瓜Cucumis sativus 11 PacBio [64]
番茄Solanum lycopersicum 31 PacBio HiFi [52]
亚洲栽培稻和非洲栽培稻
Oryza sativa and Oryza glaberrima
33 PacBio [44]
亚洲栽培稻、非洲栽培稻、普通野生稻和短舌野生稻
Oryza sativa, Oryza glaberrima, Oryza rufipogon and Oryza barthii
251 Nanopore [46]
柑橘Citrus reticulata 12 Illumina HiSeq
PacBio
[62]
鹰嘴豆Cicer arietinum 8 Illumina
HiSeq
[60]
葡萄Vitis vinifera 9 Illumina HiSeq
PacBio
[59]
迭代组装
Iterative assembly
无油樟Amborella trichopoda 11 Illumina HiSeq [66]
栽培和野生大豆
Glycine max and Glycine soja
1110 Illumina HiSeq [22]

Fig. 1

A timeline illustrating the advancements in pan-genomic construction methods In 2014, the first plant pangenome (soybean)[68] was constructed using a de novo assembly approach. This method involves independently assembling each genome and subsequently comparing all genome sequences to identify the core and non-core genomes. The iterative assembly method aligns reads to a reference genome (genome A), detects and assembles the unaligned reads, and finally incorporates newly annotated contigs into the reference pangenome. This approach was first applied in 2016 to construct the pangenome of Brassica[69] and has since been widely used in pangenome studies involving large populations. The graphical pangenome, first developed in 2020, integrates pangenome sequences and variation information. Although still in its early development stages, it has already been applied to many crops, including wheat[70]"

Fig. 2

Strategies for pangenome-assisted crop genetic improvement After the collection and sequencing of target germplasm resources, the pangenome can serve as a novel framework for genomic analysis. By integrating multi-omics data (e.g., genomics, transcriptomics, and proteomics etc.) and employing approaches such as structural variation analysis and genetic variation association studies, it enables the comprehensive identification of genetic variations and superior functional genes. Furthermore, precise improvement of breeding materials can be achieved through gene editing technologies, ultimately facilitating the development of ideal elite varieties"

[1]
RAY D K, MUELLER N D, WEST P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6): e66428.
[2]
MILLS G, SHARPS K, SIMPSON D, PLEIJEL H, FREI M, BURKEY K, EMBERSON L, UDDLING J, BROBERG M, FENG Z Z, KOBAYASHI K, AGRAWAL M. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24(10): 4869-4893.

doi: 10.1111/gcb.14381 pmid: 30084165
[3]
VELÁSQUEZ A C, CASTROVERDE C D M, HE S Y. Plant- pathogen warfare under changing climate conditions. Current Biology, 2018, 28(10): R619-R634.
[4]
PROJECT I R G S. The map-based sequence of the rice genome. Nature, 2005, 436(7052): 793-800.
[5]
贺文闯, 许强, 钱前, 商连光. 水稻泛基因组学的发展与前景: 重要工具与应用. 生物技术通报, 2024, 40(10): 9-18.

doi: 10.13560/j.cnki.biotech.bull.1985.2024-0669
HE W C, XU Q, QIAN Q, SHANG L G. Development and prospects of rice pan-genomics: Important tools and applications. Biotechnology Bulletin, 2024, 40(10): 9-18. (in Chinese)
[6]
BAYER P E, GOLICZ A A, SCHEBEN A, BATLEY J, EDWARDS D. Plant pan-genomes are the new reference. Nature Plants, 2020, 6(8): 914-920.

doi: 10.1038/s41477-020-0733-0 pmid: 32690893
[7]
刘羽诚, 申妍婷, 田志喜. 大豆泛基因组研究进展. 遗传, 2024, 46(3): 183-198.
LIU Y C, SHEN Y T, TIAN Z X. Frontiers of soybean pan-genome studies. Hereditas (Beijing), 2024, 46(3): 183-198. (in Chinese)
[8]
HENDERSON I R, BOMBLIES K. Evolution and plasticity of genome-wide meiotic recombination rates. Annual Review of Genetics, 2021, 55: 23-43.

doi: 10.1146/annurev-genet-021721-033821 pmid: 34310193
[9]
SAM Y. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): E1743-E1751.
[10]
郝晨路, 於晓芬, 曲明昊, 赖恩惠, 郭素敏, 高磊. 植物泛基因组研究进展与展望. 植物科学学报, 2022, 40(1): 124-132.
HAO C L, YU X F, QU M H, LAI E H, GUO S M, GAO L. Current status and prospects of pan-genome studies in plants. Plant Science Journal, 2022, 40(1): 124-132. (in Chinese)
[11]
SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467.
[12]
VISENDI P, BERKMAN P J, HAYASHI S, GOLICZ A A, BAYER P E, RUPERAO P, HURGOBIN B, MONTENEGRO J, CHAN C K, STAŇKOVÁ H, BATLEY J, ŠIMKOVÁ H, DOLEŽEL J, EDWARDS D. An efficient approach to BAC based assembly of complex genomes. Plant Methods, 2016, 12: 2.

doi: 10.1186/s13007-016-0107-9 pmid: 26793268
[13]
PATERSON A H, BOWERS J E, BRUGGMANN R, DUBCHAK I, GRIMWOOD J, GUNDLACH H, HABERER G, HELLSTEN U, MITROS T, POLIAKOV A, et al. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229): 551-556.
[14]
SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F S, PASTERNAK S, LIANG C Z, ZHANG J W, FULTON L, GRAVES T A, et al. The B73 maize genome: Complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115.

doi: 10.1126/science.1178534 pmid: 19965430
[15]
LEVY S E, MYERS R M. Advancements in next-generation sequencing. Annual Review of Genomics and Human Genetics, 2016, 17: 95-115.

doi: 10.1146/annurev-genom-083115-022413 pmid: 27362342
[16]
PARITOSH K, YADAVA S K, SINGH P, BHAYANA L, MUKHOPADHYAY A, GUPTA V, BISHT N C, ZHANG J W, KUDRNA D A, COPETTI D, WING R A, LACHAGARI V B R, PRADHAN A K, PENTAL D. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal, 2021, 19(3): 602-614.
[17]
REYES-CHIN-WO S, WANG Z W, YANG X H, KOZIK A, ARIKIT S, SONG C, XIA L F, FROENICKE L, LAVELLE D O, TRUCO M J, XIA R, ZHU S L, XU C Y, XU H Q, XU X, COX K, KORF I, MEYERS B C, MICHELMORE R W. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications, 2017, 8: 14953.
[18]
CHALHOUB B, DENOEUD F, LIU S Y, PARKIN I A P, TANG H B, WANG X Y, CHIQUET J, BELCRAM H, TONG C B, SAMANS B, et al. Plant genetics. Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014, 345(6199): 950-953.
[19]
KIM M Y, LEE S, VAN K, KIM T H, JEONG S C, CHOI I Y, KIM D S, LEE Y S, PARK D, MA J X, et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22032-22037.
[20]
LV Q M, LI W G, SUN Z Z, OUYANG N, JING X, HE Q, WU J, ZHENG J K, ZHENG J T, TANG S Q, et al. Resequencing of 1, 143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11(1): 4778.
[21]
HAO C Y, JIAO C Z, HOU J, LI T, LIU H X, WANG Y Q, ZHENG J, LIU H, BI Z H, XU F F, ZHAO J, MA L, WANG Y M, MAJEED U, LIU X, APPELS R, MACCAFERRI M, TUBEROSA R, LU H F, ZHANG X Y. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 2020, 13(12): 1733-1751.

doi: 10.1016/j.molp.2020.09.001 pmid: 32896642
[22]
BAYER P E, VALLIYODAN B, HU H F, MARSH J I, YUAN Y X, VUONG T D, PATIL G, SONG Q J, BATLEY J, VARSHNEY R K, LAM H M, EDWARDS D, NGUYEN H T. Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. The Plant Genome, 2022, 15(1): e20109.
[23]
VAN DIJK E L, JASZCZYSZYN Y, NAQUIN D, THERMES C. The third revolution in sequencing technology. Trends in Genetics, 2018, 34(9): 666-681.

doi: S0168-9525(18)30096-9 pmid: 29941292
[24]
BELSER C, ISTACE B, DENIS E, DUBARRY M, BAURENS F C, FALENTIN C, GENETE M, BERRABAH W, CHÈVRE A M, DELOURME R, et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 2018, 4(11): 879-887.

doi: 10.1038/s41477-018-0289-4 pmid: 30390080
[25]
JIAO Y P, PELUSO P, SHI J H, LIANG T, STITZER M C, WANG B, CAMPBELL M S, STEIN J C, WEI X H, CHIN C S, et al. Improved maize reference genome with single-molecule technologies. Nature, 2017, 546(7659): 524-527.
[26]
CHENG H Y, CONCEPCION G T, FENG X W, ZHANG H W, LI H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 2021, 18(2): 170-175.
[27]
ATHIYANNAN N, ABROUK M, BOSHOFF W H P, CAUET S, RODDE N, KUDRNA D, MOHAMMED N, BETTGENHAEUSER J, BOTHA K S, DERMAN S S, WING R A, PRINS R, KRATTINGER S G. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nature Genetics, 2022, 54(3): 227-231.

doi: 10.1038/s41588-022-01022-1 pmid: 35288708
[28]
TANG D, JIA Y X, ZHANG J Z, LI H B, CHENG L, WANG P, BAO Z G, LIU Z H, FENG S S, ZHU X J, LI D W, ZHU G T, WANG H R, ZHOU Y, ZHOU Y F, BRYAN G J, ROBIN BUELL C, ZHANG C Z, HUANG S W. Genome evolution and diversity of wild and cultivated potatoes. Nature, 2022, 606(7914): 535-541.
[29]
KARST S M, ZIELS R M, KIRKEGAARD R H, SØRENSEN E A, MCDONALD D, ZHU Q Y, KNIGHT R, ALBERTSEN M. High- accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nature Methods, 2021, 18(2): 165-169.
[30]
KOREN S, WALENZ B P, BERLIN K, MILLER J R, BERGMAN N H, PHILLIPPY A M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 2017, 27(5): 722-736.
[31]
FREIRE B, LADRA S, PARAMA J R. Memory-efficient assembly using flye. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(6): 3564-3577.
[32]
HU J, WANG Z, SUN Z Y, HU B X, AYOOLA A O, LIANG F, LI J J, SANDOVAL J R, COOPER D N, YE K, RUAN J, XIAO C L, WANG D P, WU D D, WANG S. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biology, 2024, 25(1): 107.

doi: 10.1186/s13059-024-03252-4 pmid: 38671502
[33]
CHOI J Y, LYE Z N, GROEN S C, DAI X G, RUGHANI P, ZAAIJER S, HARRINGTON E D, JUUL S, PURUGGANAN M D. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biology, 2020, 21(1): 21.

doi: 10.1186/s13059-020-1938-2 pmid: 32019604
[34]
SALSON M, ORJUELA J, MARIAC C, ZEKRAOUÏ L, COUDERC M, ARRIBAT S, RODDE N, FAYE A, KANE N A, TRANCHANT- DUBREUIL C, VIGOUROUX Y, BERTHOULY-SALAZAR C. An improved assembly of the pearl millet reference genome using Oxford Nanopore long reads and optical mapping. G3, 2023, 13(5): jkad051.
[35]
NURK S, KOREN S, RHIE A, RAUTIAINEN M, BZIKADZE A V, MIKHEENKO A, VOLLGER M R, ALTEMOSE N, URALSKY L, GERSHMAN A, et al. The complete sequence of a human genome. Science, 2022, 376(6588): 44-53.

doi: 10.1126/science.abj6987 pmid: 35357919
[36]
CHEN J, WANG Z J, TAN K W, HUANG W, SHI J P, LI T, HU J, WANG K, WANG C, XIN B B, ZHAO H M, SONG W B, HUFFORD M B, SCHNABLE J C, JIN W W, LAI J S. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics, 2023, 55(7): 1221-1231.

doi: 10.1038/s41588-023-01419-6 pmid: 37322109
[37]
BAO J D, ZHANG H, WANG F L, LI L, ZHU X M, XU J F, WANG Y, LIU Z J, ZHAI G W, XU H, LIN F C, ZHU Y. Telomere-to- telomere genome assemblies of two Chinese Baijiu-brewing Sorghum landraces. Plant Communications, 2024, 5(6): 100933.
[38]
SHIZUYA H, BIRREN B, KIM U J, MANCINO V, SLEPAK T, TACHIIRI Y, SIMON M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(18): 8794-8797.
[39]
MARDIS E R. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 2008, 9: 387-402.

doi: 10.1146/annurev.genom.9.081307.164359 pmid: 18576944
[40]
MARX V. Method of the year: Long-read sequencing. Nature Methods, 2023, 20(1): 6-11.

doi: 10.1038/s41592-022-01730-w pmid: 36635542
[41]
KOREN S, SCHATZ M C, WALENZ B P, MARTIN J, HOWARD J T, GANAPATHY G, WANG Z, RASKO D A, RICHARD MCCOMBIE W, JARVIS E D, PHILLIPPY A M. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology, 2012, 30(7): 693-700.
[42]
ZAPATA L, DING J, WILLING E M, HARTWIG B, BEZDAN D, JIAO W B, PATEL V, VELIKKAKAM JAMES G, KOORNNEEF M, OSSOWSKI S, SCHNEEBERGER K. Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): E4052-E4060.
[43]
ZHOU Q, TANG D, HUANG W, YANG Z M, ZHANG Y, HAMILTON J P, VISSER R G F, BACHEM C W B, ROBIN BUELL C, ZHANG Z H, ZHANG C Z, HUANG S W. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 2020, 52(10): 1018-1023.

doi: 10.1038/s41588-020-0699-x pmid: 32989320
[44]
QIN P, LU H W, DU H L, WANG H, CHEN W L, CHEN Z, HE Q, OU S J, ZHANG H Y, LI X Z, HE M, YIN J J, LI T, JIANG N, CHEN X W, LIANG C Z, LI S G. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 2021, 184(13): 3542-3558.e16.

doi: 10.1016/j.cell.2021.04.046 pmid: 34051138
[45]
SCHATZ M C, MARON L G, STEIN J C, HERNANDEZ WENCES A, GURTOWSKI J, BIGGERS E, LEE H Y, KRAMER M, ANTONIOU E, GHIBAN E, WRIGHT M H, CHIA J M, WARE D, MCCOUCH S R, MCCOMBIE W R. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology, 2014, 15(11): 506.
[46]
SHANG L G, LI X X, HE H Y, YUAN Q L, SONG Y N, WEI Z R, LIN H, HU M, ZHAO F L, ZHANG C, et al. A super pan-genomic landscape of rice. Cell Research, 2022, 32(10): 878-896.

doi: 10.1038/s41422-022-00685-z pmid: 35821092
[47]
ZHANG F, XUE H Z, DONG X R, LI M, ZHENG X M, LI Z K, XU J L, WANG W S, WEI C C. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. Genome Research, 2022, 32(5): 853-863.

doi: 10.1101/gr.276015.121 pmid: 35396275
[48]
WU S, SUN H H, GAO L, BRANHAM S, MCGREGOR C, RENNER S S, XU Y, KOUSIK C, WECHTER W P, LEVI A, FEI Z J. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnology Journal, 2023, 21(10): 1926-1928.
[49]
ZHANG Y L, ZHAO M X, TAN J S, HUANG M H, CHU X, LI Y, HAN X, FANG T H, TIAN Y, JARRET R, LU D D, CHEN Y J, XUE L F, LI X N, QIN G C, LI B S, SUN Y D, DENG X W, DENG Y, ZHANG X P, HE H. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nature Genetics, 2024, 56(8): 1750-1761.
[50]
SUN Y, KOU D R, LI Y, NI J P, WANG J, ZHANG Y M, WANG Q N, JIANG B, WANG X, SUN Y X, XU X T, TAN X J, ZHANG Y J, KONG X D. Pan-genome of Citrullus genus highlights the extent of presence/absence variation during domestication and selection. BMC Genomics, 2023, 24(1): 332.
[51]
BOZAN I, ACHAKKAGARI S R, ANGLIN N L, ELLIS D, TAI H H, STRÖMVIK M V. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(31): e2211117120.
[52]
ZHOU Y, ZHANG Z Y, BAO Z G, LI H B, LYU Y Q, ZAN Y J, WU Y Y, CHENG L, FANG Y H, WU K, ZHANG J Z, LYU H J, LIN T, GAO Q, SAHA S, MUELLER L, FEI Z J, STÄDLER T, XU S Z, ZHANG Z W, SPEED D, HUANG S W. Graph pangenome captures missing heritability and empowers tomato breeding. Nature, 2022, 606(7914): 527-534.
[53]
HUFFORD M B, SEETHARAM A S, WOODHOUSE M R, CHOUGULE K M, OU S J, LIU J N, RICCI W A, GUO T T, OLSON A, QIU Y J, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373(6555): 655-662.
[54]
SONG J M, GUAN Z L, HU J L, GUO C C, YANG Z Q, WANG S, LIU D X, WANG B, LU S P, ZHOU R, XIE W Z, CHENG Y F, ZHANG Y T, LIU K D, YANG Q Y, CHEN L L, GUO L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6(1): 34-45.
[55]
JAYAKODI M, PADMARASU S, HABERER G, BONTHALA V S, GUNDLACH H, MONAT C, LUX T, KAMAL N, LANG D, HIMMELBACH A, et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588(7837): 284-289.
[56]
HE X, QI Z Y, LIU Z P, CHANG X, ZHANG X L, LI J Y, WANG M J. Pangenome analysis reveals transposon-driven genome evolution in cotton. BMC Biology, 2024, 22(1): 92.

doi: 10.1186/s12915-024-01893-2 pmid: 38654264
[57]
ZHAO X B, YU J Y, CHANDA B, ZHAO J T, WU S, ZHENG Y, SUN H H, LEVI A, LING K S, FEI Z J. Genomic and pangenomic analyses provide insights into the population history and genomic diversification of bottle gourd. New Phytologist, 2024, 242(5): 2285-2300.
[58]
DING B P, HU H F, CAO Y P, XU R R, LIN Y J, MUHAMMAD T U Q, SONG Y Q, HE G Q, HAN Y Z, GUO H P, QIAO J, ZHAO J G, FENG X X, YANG S, GUO X H, VARSHNEY R K, LI L L. Pear genomes display significant genetic diversity and provide novel insights into the fruit quality traits differentiation. Horticultural Plant Journal, 2024, 10(6): 1274-1290.
[59]
COCHETEL N, MINIO A, GUARRACINO A, GARCIA J F, FIGUEROA-BALDERAS R, MASSONNET M, KASUGA T, LONDO J P, GARRISON E, GAUT B S, CANTU D. A super- pangenome of the North American wild grape species. Genome Biology, 2023, 24(1): 290.
[60]
KHAN A W, GARG V, SUN S, GUPTA S, DUDCHENKO O, ROORKIWAL M, CHITIKINENI A, BAYER P E, SHI C C, UPADHYAYA H D, et al. Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea. Nature Genetics, 2024, 56(6): 1225-1234.
[61]
YAN H D, SUN M, ZHANG Z R, JIN Y R, ZHANG A L, LIN C, WU B C, HE M, XU B, WANG J, et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics, 2023, 55(3): 507-518.

doi: 10.1038/s41588-023-01302-4 pmid: 36864101
[62]
HUANG Y, HE J X, XU Y T, ZHENG W K, WANG S H, CHEN P, ZENG B, YANG S Z, JIANG X L, LIU Z S, et al. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in Citrus fruits. Nature Genetics, 2023, 55(11): 1964-1975.
[63]
SHI T T, ZHANG X X, HOU Y K, JIA C F, DAN X M, ZHANG Y L, JIANG Y Z, LAI Q, FENG J J, FENG J J, et al. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. Molecular Plant, 2024, 17(5): 725-746.
[64]
LI H B, WANG S H, CHAI S, YANG Z Q, ZHANG Q Q, XIN H J, XU Y C, LIN S N, CHEN X X, YAO Z W, YANG Q Y, FEI Z J, HUANG S W, ZHANG Z H. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 2022, 13(1): 682.

doi: 10.1038/s41467-022-28362-0 pmid: 35115520
[65]
BEAULIEU C, LIBOUREL C, ZAMAR D L M, EL MAHBOUBI K, HOEY D J, KELLER J, GIROU C, CLEMENTE H S, DIOP I, AMBLARD E, et al. The Marchantia pangenome reveals ancient mechanisms of plant adaptation to the environment. bioRxiv, 2023.
[66]
HU H F, SCHEBEN A, VERPAALEN B, TIRNAZ S, BAYER P E, HODEL R G J, BATLEY J, SOLTIS D E, SOLTIS P S, EDWARDS D. Amborella gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. New Phytologist, 2022, 233(4): 1548-1555.
[67]
GUO N, WANG S Y, WANG T Y, DUAN M M, ZONG M, MIAO L M, HAN S, WANG G X, LIU X, ZHANG D S, JIAO C Z, XU H W, CHEN L Y, FEI Z J, LI J B, LIU F. A graph-based pan-genome of Brassica oleracea provides new insights into its domestication and morphotype diversification. Plant Communications, 2024, 5(2): 100791.
[68]
LI Y H, ZHOU G Y, MA J X, JIANG W K, JIN L G, ZHANG Z H, GUO Y, ZHANG J B, SUI Y, ZHENG L T, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32(10): 1045-1052.
[69]
YANG J H, LIU D Y, WANG X W, JI C M, CHENG F, LIU B N, HU Z Y, CHEN S, PENTAL D, JU Y H, et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics, 2016, 48(10): 1225-1232.
[70]
JIAO C Z, XIE X M, HAO C Y, CHEN L Y, XIE Y X, GARG V, ZHAO L, WANG Z H, ZHANG Y Q, LI T, et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature, 2025, 637: 384-393.
[71]
SHEPARD S S, MENO S, BAHL J, WILSON M M, BARNES J, NEUHAUS E. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genomics, 2016, 17(1): 708.
[72]
WANG W S, MAULEON R, HU Z Q, CHEBOTAROV D, TAI S S, WU Z C, LI M, ZHENG T Q, FUENTES R R, ZHANG F, et al. Genomic variation in 3, 010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43-49.
[73]
GAO L, GONDA I, SUN H H, MA Q Y, BAO K, TIEMAN D M, BURZYNSKI-CHANG E A, FISH T L, STROMBERG K A, SACKS G L, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51(6): 1044-1051.

doi: 10.1038/s41588-019-0410-2 pmid: 31086351
[74]
LYU X L, XIA Y L, WANG C H, ZHANG K J, DENG G C, SHEN Q H, GAO W, ZHANG M Y, LIAO N Q, LING J, BO Y M, HU Z Y, YANG J H, ZHANG M F. Pan-genome analysis sheds light on structural variation-based dissection of agronomic traits in melon crops. Plant Physiology, 2023, 193(2): 1330-1348.

doi: 10.1093/plphys/kiad405 pmid: 37477947
[75]
GUI S T, WEI W J, JIANG C L, LUO J Y, CHEN L, WU S S, LI W Q, WANG Y B, LI S Y, YANG N, LI Q, FERNIE A R, YAN J B. A pan-Zea genome map for enhancing maize improvement. Genome Biology, 2022, 23(1): 178.
[76]
EDWARDS D, BATLEY J. Graph pangenomes find missing heritability. Nature Genetics, 2022, 54(7): 919-920.
[77]
LI N, HE Q, WANG J, WANG B K, ZHAO J T, HUANG S Y, YANG T, TANG Y P, YANG S B, AISIMUTUOLA P, et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics, 2023, 55(5): 852-860.

doi: 10.1038/s41588-023-01340-y pmid: 37024581
[78]
JAYAKODI M, LU Q X, PIDON H, TIMOTHY RABANUS-WALLACE M, BAYER M, LUX T, GUO Y, JAEGLE B, BADEA A, BEKELE W, et al. Structural variation in the pangenome of wild and domesticated barley. Nature, 2024, 636(8043): 654-662.
[79]
WANG B B, HOU M, SHI J P, KU L X, SONG W, LI C H, NING Q, LI X, LI C Y, ZHAO B B, et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 2023, 55(2): 312-323.
[80]
LIU Y C, DU H L, LI P C, SHEN Y T, PENG H, LIU S L, ZHOU G A, ZHANG H K, LIU Z, SHI M, HUANG X H, LI Y, ZHANG M, WANG Z, ZHU B G, HAN B, LIANG C Z, TIAN Z X. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182(1): 162-176.e13.

doi: S0092-8674(20)30618-8 pmid: 32553274
[81]
HE Q, TANG S, ZHI H, CHEN J F, ZHANG J, LIANG H K, ALAM O, LI H B, ZHANG H, XING L H, et al. A graph-based genome and pan-genome variation of the model plant Setaria. Nature Genetics, 2023, 55(7): 1232-1242.
[82]
HU H F, LI R S, ZHAO J L, BATLEY J, EDWARDS D. Technological development and advances for constructing and analyzing plant pangenomes. Genome Biology and Evolution, 2024, 16(4): evae081.
[83]
GARRISON E, SIRÉN J, NOVAK A M, HICKEY G, EIZENGA J M, DAWSON E T, JONES W, GARG S, MARKELLO C, LIN M F, PATEN B, DURBIN R. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature Biotechnology, 2018, 36(9): 875-879.

doi: 10.1038/nbt.4227 pmid: 30125266
[84]
LI H, FENG X W, CHU C. The design and construction of reference pangenome graphs with minigraph. Genome Biology, 2020, 21(1): 265.

doi: 10.1186/s13059-020-02168-z pmid: 33066802
[85]
HICKEY G, MONLONG J, EBLER J, NOVAK A M, EIZENGA J M, GAO Y, CONSORTIUM H P R, MARSCHALL T, LI H, PATEN B. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nature Biotechnology, 2024, 42(4): 663-673.
[86]
GARRISON E, GUARRACINO A, HEUMOS S, VILLANI F, BAO Z, TATTINI L, HAGMANN J, VORBRUGG S, MARCO-SOLA S, KUBICA C, et al. Building pangenome graphs. Nature Methods, 2024, 21(11): 2008-2012.

doi: 10.1038/s41592-024-02430-3 pmid: 39433878
[87]
王英豪, 余嘉鑫, 唐海宝, 张兴坦. 植物复杂基因组与泛基因组研究现状与展望. 中国科学: 生命科学, 2024, 54(2): 233-246.
WANG Y H, YU J X, TANG H B, ZHANG X T. Research status and prospect of plant complex genomes and pan-genomes. Scientia Sinica (Vitae), 2024, 54(2): 233-246. (in Chinese)
[88]
ZHANG H Y, MITTAL N, LEAMY L J, BARAZANI O, SONG B H. Back into the wild: Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 2017, 10(1): 5-24.
[89]
MOHD SAAD N S, NEIK T X, THOMAS W J W, AMAS J C, CANTILA A Y, CRAIG R J, EDWARDS D, BATLEY J. Advancing designer crops for climate resilience through an integrated genomics approach. Current Opinion in Plant Biology, 2022, 67: 102220.
[90]
HU H F, ZHAO J L, THOMAS W J W, BATLEY J, EDWARDS D. The role of pangenomics in orphan crop improvement. Nature Communications, 2025, 16(1): 118.
[91]
DELLA COLETTA R, QIU Y J, OU S J, HUFFORD M B, HIRSCH C N. How the pan-genome is changing crop genomics and improvement. Genome Biology, 2021, 22(1): 3.

doi: 10.1186/s13059-020-02224-8 pmid: 33397434
[92]
ALONGE M, WANG X G, BENOIT M, SOYK S, PEREIRA L, ZHANG L, SURESH H, RAMAKRISHNAN S, MAUMUS F, CIREN D, et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145-161.e23.

doi: S0092-8674(20)30616-4 pmid: 32553272
[93]
LI Q, FENG Q, SNOUFFER A, ZHANG B Y, RODRÍGUEZ G R, VAN DER KNAAP E. Increasing fruit weight by editing a Cis- regulatory element in tomato KLUH promoter using CRISPR/Cas9. Frontiers in Plant Science, 2022, 13: 879642.
[94]
YU H, LIN T, MENG X B, DU H L, ZHANG J K, LIU G F, CHEN M J, JING Y H, KOU L Q, LI X X, et al. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.e14.
[95]
TAY FERNANDEZ C G, NESTOR B J, DANILEVICZ M F, MARSH J I, PETEREIT J, BAYER P E, BATLEY J, EDWARDS D. Expanding gene-editing potential in crop improvement with pangenomes. International Journal of Molecular Sciences, 2022, 23(4): 2276.
[96]
HU H F, SCHEBEN A, WANG J, LI F P, LI C D, EDWARDS D, ZHAO J L. Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding. Plant Biotechnology Journal, 2024, 22(3): 544-554.
[97]
GAGE J L, VAILLANCOURT B, HAMILTON J P, MANRIQUE-CARPINTERO N C, GUSTAFSON T J, BARRY K, LIPZEN A, TRACY W F, MIKEL M A, KAEPPLER S M, BUELL C R, DE LEON N. Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel. The Plant Genome, 2019, 12(2): 180069.
[98]
DAWARE A, MALIK A, SRIVASTAVA R, DAS D, ELLUR R K, SINGH A K, TYAGI A K, PARIDA S K. Rice Pangenome Genotyping Array: An efficient genotyping solution for pangenome-based accelerated genetic improvement in rice. The Plant Journal, 2023, 113(1): 26-46.
[99]
RUPERAO P, THIRUNAVUKKARASU N, GANDHAM P, SELVANAYAGAM S, GOVINDARAJ M, NEBIE B, MANYASA E, GUPTA R, DAS R R, ODENY D A, GANDHI H, EDWARDS D, DESHPANDE S P, RATHORE A. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Frontiers in Plant Science, 2021, 12: 666342.
[100]
WANG J, YANG W, ZHANG S H, HU H F, YUAN Y X, DONG J F, CHEN L, MA Y M, YANG T F, ZHOU L, CHEN J S, LIU B, LI C D, EDWARDS D, ZHAO J L. A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biology, 2023, 24(1): 19.

doi: 10.1186/s13059-023-02861-9 pmid: 36703158
[101]
SIBBESEN J A, EIZENGA J M, NOVAK A M, SIRÉN J, CHANG X, GARRISON E, PATEN B. Haplotype-aware pantranscriptome analyses using spliced pangenome graphs. Nature Methods, 2023, 20(2): 239-247.

doi: 10.1038/s41592-022-01731-9 pmid: 36646895
[102]
ZHANG H, CHEN W, ZHU D, ZHANG B T, XU Q, SHI C L, HE H Y, DAI X F, LI Y L, HE W C, et al. Population-level exploration of alternative splicing and its unique role in controlling agronomic traits of rice. The Plant Cell, 2024, 36(10): 4372-4387.
[103]
ZHONG Y Y, LUO Y H, SUN J L, QIN X M, GAN P, ZHOU Z W, QIAN Y Q, ZHAO R P, ZHAO Z Y, CAI W G, LUO J J, CHEN L L, SONG J M. Pan-transcriptomic analysis reveals alternative splicing control of cold tolerance in rice. The Plant Cell, 2024, 36(6): 2117-2139.

doi: 10.1093/plcell/koae039 pmid: 38345423
[104]
HSIEH C H, CHANG Y S, YEN M R, HSIEH J A, CHEN P Y. Predicting protein synergistic effect in Arabidopsis using epigenome profiling. Nature Communications, 2024, 15(1): 9160.
[105]
DONG X M, ZHANG M, CHEN J, PENG L Z, ZHANG N, WANG X, LAI J S. Dynamic and antagonistic allele-specific epigenetic modifications controlling the expression of imprinted genes in maize endosperm. Molecular Plant, 2017, 10(3): 442-455.

doi: S1674-2052(16)30232-5 pmid: 27793787
[106]
WANG P, WU X, SHI Z B, TAO S T, LIU Z, QI K J, XIE Z H, QIAO X, GU C, YIN H, CHENG M Y, GU X Y, LIU X Y, TANG C, CAO P, XU S H, ZHOU B J, GU T T, BIAN Y Y, WU J Y, ZHANG S L. A large-scale proteogenomic atlas of pear. Molecular Plant, 2023, 16(3): 599-615.

doi: 10.1016/j.molp.2023.01.011 pmid: 36733253
[1] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[2] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[3] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[4] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[5] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[6] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[7] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[8] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[9] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[10] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[11] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[12] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[15] ZHANG Xingping,QIAN Qian,ZHANG JiaNan,DENG XingWang,WAN JianMin,XU Yunbi. Transforming and Upgrading Off-Season Breeding in Hainan Through Molecular Plant Breeding [J]. Scientia Agricultura Sinica, 2021, 54(18): 3789-3804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!