Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5097-5109.doi: 10.3864/j.issn.0578-1752.2025.24.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Gene Mapping of Rice Grain Shape Mutant sgd13

ZHUANG LiHua1,2(), LUO Lei1,2, ZHAO ChunFang2, WANG JiZhong1, ZHANG YaDong2,*(), HE Lei2,*()   

  1. 1 College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, Jiangsu
    2 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014
  • Received:2025-06-11 Accepted:2025-08-07 Online:2025-12-22 Published:2025-12-22
  • Contact: ZHANG YaDong, HE Lei

Abstract:

【Objective】Grain shape is an important agronomic trait affecting rice yield and quality, and its development is regulated by the three-dimensional morphology of grain (grain length, grain width, grain thickness). Identification and cloning of grain shape regulatory genes can enrich the molecular mechanism of rice grain development regulation, and provide theoretical basis and genetic resources for high-yield molecular design breeding of rice. 【Method】A stable inherited grain type mutant sgd13 (small grain and dwarf 13) was screened from the mutant library of Nanjing 9108 induced by ethyl methane sulfonate (EMS). The grain morphology, 1000-grain weight, seed setting rate, yield per plant, plant height, panicle length and other phenotypes of the mutants were statistically analyzed. Paraffin sections and scanning electron microscopy were used to analyze the changes in the number and size of glume and stem cells. The genetic analysis of sgd13 and Nanjing 9108 was carried out. The F2 population constructed by sgd13 and Nanjing 9108 was used to locate the gene by BSA-seq technology. The SWISS-MODEL website was used to predict the three-dimensional structure of wild-type and mutant proteins. 【Result】The grains of sgd13 were significantly smaller and narrower, the grain length decreased by 19.98%, and the grain width decreased by 7.81%. Compared with WT, the plant height, spike length and yield per plant of sgd13 were significantly reduced. There was no significant difference in the number of internodes between sgd13 and WT, but the lengths of the first, second, third and sixth internodes were shorter. Cytological analysis showed that the glume and stem cells of sgd13 became smaller and less, indicating that sgd13 may affect organ development by regulating cell division and expansion. Genetic analysis confirmed that the trait was controlled by a single recessive nuclear gene. The candidate gene was mapped to LOC_Os01g52550 by BSA-seq, which encodes an ATP-binding cassette (ABC) transporter. The ABC transporter contains two typical core domains: A highly conserved nucleotide binding domain (NBD) and a less conserved transmembrane domain (TMD). In the sgd13 mutant, a single base substitution (T→A) occurred in the exon region of the gene, which was located in the NBD domain. This single base substitution directly causes the encoded amino acid to change from glutamic acid (E) to aspartic acid (D). Due to the differences in side chain structure and chemical properties between glutamic acid and aspartic acid, this change is likely to affect the spatial structure of SGD13 protein, thereby interfering with its normal function, and ultimately leading to a unique phenotype of the mutant sgd13. Genetic complementation experiments showed that the introduction of wild-type LOC_Os01g52550 could restore the grain shape of sgd13 to the wild-type level.【Conclusion】The sgd13 mutant phenotype was controlled by a single recessive nuclear gene, which was caused by the LOC_Os01g52550 mutation. The T→A mutation in the exon region of the gene causes the glutamic acid in the NBD domain to become aspartic acid, which affects the three-dimensional structure of the protein.

Key words: rice (Oryza sativa L.), grain shape, mutant, gene mapping, ABC transporter protein

Table 1

Primer sequence list"

引物名称 Primer name 引物序列 Primer name Primer sequence (5′-3′) 用途 Purpose
seq-sgd13-F
seq-sgd13-R
GATCGGCATTCTTCACTGTGG
TGGAATGGCACTCCCTGAAC
鉴定sgd13突变位点的测序引物
Sequencing primers for identifying the sgd13 mutation site
gd13-MluCIF
sgd13-MluCIR
TGCATGCTGCACCAGCTTTTCTAA
AACGTATTGCCATTGCACGG
鉴定sgd13突变位点的dCAPS分子标记
dCAPS marker for genotyping the sgd13 mutation site
COM-sgd13-F
COM-sgd13-R
GGACCTGACATGTTCAATCTCCT
AATACCCGGGTTTGGTGCTT
互补载体构建
Complementary vector construction

Fig. 1

Phenotypic and agronomic trait analysis of the rice mutant sgd13 A: Plant morphology; B: Panicle morphology; C-D: Grain morphology; E: The yield per plant; F: Comparison of stem length; G-J: Data statistics of plant height, panicle length, number of primary branches and stems, and number of secondary branches and stems (n=10); K-O: Data statistics of grain length and grain width (n=25), 1000-grain weight, yield per plant and seed setting rate. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns: No difference"

Fig. 2

Cytological analysis of wild type and sgd13 mutant A, B: Cross-sections of hulls (Bars=500 μm); C: Scanning electron micrographs of outer epidermal cells of hulls (Bars=100 μm); D: Cross-sections of internode; E-G: Cell number (E), cell length (F) and cell width (G) of outer parenchyma cell layer; H, I: Cell number in the stem and cell length along the stem axis (Bars=400 μm)"

Table 2

Genetic analysis of the mutant sgd13"

组合
Combination
F1植株表型
Phenotype of F1 plants
F2植株数量 Number of F2 plants χ²
(3﹕1≈3.84)
正常表型Normal phenotype 突变表型Mutant phenotype
南粳9108×sgd13 NJ9108×sgd13 正常表型Normal phenotype 98 22 2.844
sgd13×南粳9108 sgd13×NJ9108 正常表型Normal phenotype 143 57 1.307

Fig. 3

BSA-seq mapping plot"

Table 3

Analysis of candidate SNP for sgd13 mutant"

染色体
Chromosome
物理位置
Physical location (bp)
基因型
Genotype
位置
Location
基因位点名称
Name of gene locus
功能类型
Function type
Chr.1 581447 G/A 基因间区 Intergenic / /
Chr.1 5569468 G/A 基因上游 Upstream LOC_Os01g10504 /
Chr.1 7646648 G/A 基因间区 Intergenic / /
Chr.1 12711496 G/A 基因间区 Intergenic / /
Chr.1 24333007 G/A 基因间区 Intergenic / /
Chr.1 25001139 C/T 基因间区 Intergenic / /
Chr.1 25577375 C/T 基因间区 Intergenic / /
Chr.1 27410330 C/T 基因间区 Intergenic / /
Chr.1 30113852 C/T 基因间区 Intergenic / /
Chr.1 30191986 T/A 外显子 Exonic LOC_Os01g52550 非同义突变
Non-synonymous mutation
Chr.1 32405502 C/T 基因间区 Intergenic / /
Chr.1 32928221 T/TA 基因下游 Downstream LOC_Os01g56990 /
Chr.1 33733260 C/T 3′端非翻译区 3′-UTR / /
Chr.1 34069876 C/T 基因间区 Intergenic / /
Chr.1 34550111 T/A 基因上游 Upstream
基因下游 Downstream
/ /

Fig. 4

Identification of candidate genes A: PCR amplification and restriction enzyme digestion identification of dCAPS markers in 22 F₂ individual plants, where M is the DL2000 DNA Marker; B: Gene structure diagram of LOC_Os01g52550, where open boxes indicate the 5′ and 3′ untranslated regions (UTRs), closed boxes represent the coding regions, and the mutation site (T/A) in LOC_Os01g52550 is shown; C: Sequencing chromatograms of the wild type and sgd13 mutant at the candidate SNP locus; D: Protein sequence alignment between the wild type and sgd13 mutant, showing the substitution of glutamic acid (E) to aspartic acid (D)"

Fig. 5

Grain phenotype of the genomic complementary lines for the rice mutant sgd13 A: The grain phenotypes; B-D: Grain length, grain width and 1000-grain weight corresponding to the grain phenotype"

Fig. 6

Prediction of the SGD13 protein structure and function A: Homologous sequence alignment diagram of SGD13 protein. The green dotted box indicates the mutation location; B: Three-dimensional protein structure comparison diagram of wild type and sgd13 mutant"

[1]
TANG S, ZHAO Z Y, LIU X T, SUI Y, ZHANG D D, ZHI H, GAO Y Z, ZHANG H, ZHANG L L, WANG Y N, et al. An E2-E 3 pair contributes to seed size control in grain crops. Nature Communications, 2023, 14: 3091.

doi: 10.1038/s41467-023-38812-y
[2]
龚成云, 朱裕敬, 桂金鑫, 石居斌, 罗新阳, 曾哲, 张海清, 贺记外. 水稻粒型全基因组关联分析. 农业生物技术学报, 2024, 32(11): 2447-2461.
GONG C Y, ZHU Y J, GUI J X, SHI J B, LUO X Y, ZENG Z, ZHANG H Q, HE J W. Genome-wide association analysis of rice (Oryza sativa) grain shape. Journal of Agricultural Biotechnology, 2024, 32(11): 2447-2461. (in Chinese)
[3]
ZHANG Y, XIONG Y, LIU R Y, XUE H W, YANG Z B. The Rho- family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(32): 16121-16126.
[4]
XING Y Z, ZHANG Q F. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010, 61: 421-442.

doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739
[5]
DEAN M, ANNILO T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annual Review of Genomics and Human Genetics, 2005, 6: 123-142.

pmid: 16124856
[6]
方云龙, 李珍加, 何洪权, 敖越凡, 李龙英, 付珊, 彭丽云, 夏继星. ABC转运蛋白OsABCC9参与水稻对盐的耐受性. 分子植物育种, 2025: 1-19. https://kns.cnki.net/.
FANG Y L, LI Z J, HE H Q, AO Y F, LI L Y, FU S, PENG L Y, XIA J X. The ABC transporter OsABCC9 is involved in salt tolerance in rice. Molecular Plant Breeding, 2025: 1-19. https://kns.cnki.net/. (in Chinese)
[7]
HOW S S, CHIENG S, NATHA S, LAMAM S D. The structure of ABC transporters and their roles in bacterial pathogenesis. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2025, 26: 58-76.
[8]
GANI U, VISHWAKARMA R A, MISRA P. Membrane transporters: The key drivers of transport of secondary metabolites in plants. Plant Cell Reports, 2021, 40(1): 1-18.

doi: 10.1007/s00299-020-02599-9
[9]
MA B, CAO X B, LI X Y, BIAN Z, ZHANG Q Q, FANG Z J, LIU J Y, LI Q, LIU Q Q, ZHANG L, et al. Two ABCI family transporters, OsABCI15 and OsABCI16, are involved in grain-filling in rice. Journal of Genetics and Genomics, 2024, 51(5): 492-506.

doi: 10.1016/j.jgg.2023.10.007
[10]
ZHAO J Z, DENG X J, QIAN J Y, LIU T, JU M, LI J, YANG Q, ZHU X X, LI W Q, LIU C J, et al. Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long-distance transport of isopentenyladenine-type cytokinins. Plant Communications, 2023, 4(2): 100468.

doi: 10.1016/j.xplc.2022.100468
[11]
ZHAO J Z, DING B L, ZHU E G, DENG X J, ZHANG M Y, ZHANG P H, WANG L, DAI Y S, XIAO S, ZHANG C K, et al. Phloem unloading via the apoplastic pathway is essential for shoot distribution of root-synthesized cytokinins. Plant Physiology, 2021, 186(4): 2111-2123.

doi: 10.1093/plphys/kiab188
[12]
ZHAO J Z, YU N N, JU M, FAN B, ZHANG Y J, ZHU E G, ZHANG M Y, ZHANG K W. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. Journal of Experimental Botany, 2019, 70(21): 6277-6291.

doi: 10.1093/jxb/erz382 pmid: 31504730
[13]
DU M M, SPALDING E P, GRAY W M. Rapid auxin-mediated cell expansion. Annual Review of Plant Biology, 2020, 71: 379-402.

doi: 10.1146/annurev-arplant-073019-025907 pmid: 32131604
[14]
LI B J, BAO R X, SHI Y N, GRIERSON D, CHEN K S. Auxin response factors: Important keys for understanding regulatory mechanisms of fleshy fruit development and ripening. Horticulture Research, 2024, 11(10): uhae209.
[15]
QU R H, ZHANG P X, LIU Q, WANG Y F, GUO W J, DU Z Y, LI X L, YANG L W, YAN S Y, GU X F. Genome-edited ATP binding cassette b1 transporter sd8 knockouts show optimized rice architecture without yield penalty. Plant Communications, 2022, 3(5): 100347.

doi: 10.1016/j.xplc.2022.100347
[16]
WAADT R, SELLER C A, HSU P K, TAKAHASHI Y, MUNEMASA S, SCHROEDER J I. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 680-694.

doi: 10.1038/s41580-022-00479-6 pmid: 35513717
[17]
SHU K, ZHOU W G, CHEN F, LUO X F, YANG W Y. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Frontiers in Plant Science, 2018, 9: 416.

doi: 10.3389/fpls.2018.00416 pmid: 29636768
[18]
YANG Q, DENG X J, LIU T, QIAN J Y, ZHANG P H, ZHU E G, WANG J Q, ZHU X X, KUDOYAROVA G, ZHAO J Z, et al. Abscisic acid root-to-shoot translocation by transporter AtABCG 25 mediates stomatal movements in Arabidopsis. Plant Physiology, 2024, 195(1): 671-684.

doi: 10.1093/plphys/kiae073
[19]
YING W, LIAO L H, WEI H, GAO Y X, LIU X, SUN L F. Structural basis for abscisic acid efflux mediated by ABCG25 in Arabidopsis thaliana. Nature Plants, 2023, 9(10): 1697-1708.

doi: 10.1038/s41477-023-01510-0
[20]
陈道波, 王教瑜, 肖琛闻, 王艳丽, 孙国昌. ABC转运蛋白结构及在植物病原真菌中的功能研究进展. 生物化学与生物物理进展, 2021, 48(3): 309-316.
CHEN D B, WANG J Y, XIAO C W, WANG Y L, SUN G C. Research progress in structure of ABC transporters and their function in pathogenic fungi. Progress in Biochemistry and Biophysics, 2021, 48(3): 309-316. (in Chinese)
[21]
陈孟洁. ABC转运蛋白在水稻籽粒微量元素积累中的作用初步研究[D]. 武汉: 华中农业大学, 2022.
CHEN M J. Preliminary study on the role of ABC transporters in the accumulation of trace elements in rice grains[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[22]
张惠慧. ABC转运蛋白介导小麦根系菲吸收的机制研究[D]. 南京: 南京农业大学, 2022.
ZHANG H H. The mechanism of ABC transporter mediating Phenanthrene absorption by wheat roots[D]. Nanjing: Nanjing Agricultural University, 2022. (in Chinese)
[23]
SONG W Y, YAMAKI T, YAMAJI N, KO D, JUNG K H, FUJII-KASHINO M, AN G, MARTINOIA E, LEE Y, MA J F. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 15699-15704.
[24]
YING W, WANG Y W, WEI H, LUO Y M, MA Q, ZHU H Y, JANSSENS H, VUKAŠINOVIĆ N, KVASNICA M, WINNE J M, et al. Structure and function of the Arabidopsis ABC transporter ABCB 19 in brassinosteroid export. Science, 2024, 383(6689): 1301-1306.

doi: 10.1126/science.ado2827
[25]
WU L N, GUAN Y S, WU Z G, YANG K, LV J, CONVERSE R, HUANG Y X, MAO J X, ZHAO Y, WANG Z W, et al. OsABCG 15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Reports, 2014, 33(11): 1881-1899.

doi: 10.1007/s00299-014-1666-8
[26]
杨虎彪, 李晓霞, 罗丽娟. 植物石蜡制片中透明和脱蜡技术的改良. 植物学报, 2009, 44(2): 230-235.
YANG H B, LI X X, LUO L J. An improved clearing and de-waxing method for plant paraffin sectioning. Chinese Bulletin of Botany, 2009, 44(2): 230-235. (in Chinese)
[27]
李素坤, 张秋芝, 郝玉兰, 南张杰, 朱瑾, 陈丽, 潘金豹. 玉米成熟期茎秆石蜡切片方法的研究. 安徽农业科学, 2010, 38(8): 3935-3937.
LI S K, ZHANG Q Z, HAO Y L, NAN Z J, ZHU J, CHEN L, PAN J B. Research on the method of paraffin section of the corn stalk in its maturity stage. Journal of Anhui Agricultural Sciences, 2010, 38(8): 3935-3937. (in Chinese)
[28]
王金平, 张俊梅. 白头翁花的石蜡切片制作. 信阳师范学院学报(自然科学版), 2008, 21(4): 573-576.
WANG J P, ZHANG J M. Manufaction of paraffin section on chinese pulsatilla flower. Journal of Xinyang Normal University (Natural Science Edition), 2008, 21(4): 573-576. (in Chinese)
[29]
田晨霞, 张咏梅, 马晖玲. 草地早熟禾胚胎结构石蜡切片制作方法初探. 草业科学, 2013, 30(12): 1980-1986.
TIAN C X, ZHANG Y M, MA H L. Primary study on preparation procedure of paraffin section with embryo structure of Poa pratensis. Pratacultural Science, 2013, 30(12): 1980-1986. (in Chinese)
[30]
邹良平, 张治国, 起登凤, 孙建波, 路铁刚, 彭明. 一份水稻叶片反卷突变体的遗传分析及电镜显微观察. 植物学报, 2015, 50(2): 191-197.

doi: 10.3724/SP.J.1259.2015.00191
ZOU L P, ZHANG Z G, QI D F, SUN J B, LU T G, PENG M. Genetic analysis and scanning electron microscopy of an abaxial rolled-leaf mutant in rice. Chinese Bulletin of Botany, 2015, 50(2): 191-197. (in Chinese)

doi: 10.3724/SP.J.1259.2015.00191
[31]
CAI J X, CHEN W. Physiological and biochemical analysis of pre-harvest sprouting and hull scanning electron microscopy (SEM) observation in rice. Agricultural Science & Technology, 2008, 23(8): 75-80.
[32]
ZOU C, WANG P X, XU Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016, 14(10): 1941-1955.

doi: 10.1111/pbi.12559 pmid: 26990124
[33]
MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.
[34]
汪清焰. 水稻茎秆成分与其力学性能关系的研究[D]. 合肥: 中国科学技术大学, 2019.
WANG Q Y. Study on the relationship between components and mechanical properties of rice stem[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
[35]
丰安徽. 控制水稻茎秆粗细的OsTB1等位基因发掘与功能分析[D]. 雅安: 四川农业大学, 2017.
FENG A H. Discovery and functional analysis of OsTB1 alleles for cotrolling rice culm thickness[D]. Yaan: Sichuan Agricultural University, 2017. (in Chinese)
[36]
宋文成. 水稻粒型基因GSW1b的精细定位与候选基因验证[D]. 雅安: 四川农业大学, 2022.
SONG W C. Fine mapping of rice grain size gene GSW1b and candidate gene validation[D]. Yaan: Sichuan Agricultural University, 2022. (in Chinese)
[37]
MIAO R, LIN Q B, CAO P H, ZHOU C L, FENG M, LAN J, LUO S, ZHANG F L, WU H M, HAO Q X, et al. Small and round grain is involved in the brassinosteroid signaling pathway which regulates grain size in rice. Journal of Integrative Plant Biology, 2025, 67(5): 1290-1306.

doi: 10.1111/jipb.v67.5
[38]
TIAN P, LIU J F, YAN B H, ZHOU C L, WANG H Y, SHEN R X. BRASSINOSTEROID-SIGNALING KINASE1-1, a positive regulator of brassinosteroid signalling, modulates plant architecture and grain size in rice. Journal of Experimental Botany, 2023, 74(1): 283-295.

doi: 10.1093/jxb/erac429
[39]
LI J, ZHANG B L, DUAN P G, YAN L, YU H Y, ZHANG L M, LI N, ZHENG L Y, CHAI T Y, XU R, et al. An endoplasmic reticulum- associated degradation-related E2-E 3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. The Plant Cell, 2023, 35(3): 1076-1091.

doi: 10.1093/plcell/koac364
[40]
MA M M, WANG P, CHEN R B, BAI M, HE Z Y, XIAO D, XU G Y, WU H, ZHOU J M, DOU D L, et al. The OXIDATIVE SIGNAL-INDUCIBLE 1 kinase regulates plant immunity by linking microbial pattern-induced reactive oxygen species burst to MAP kinase activation. The Plant Cell, 2024, 37(1): koae311.
[41]
HUANG L J, FANG N, ZHANG L M, XU R, ZHANG B L, DUAN P G, LI G S, LUO Y H, LI Y H. The Mediator subunit OsMED23 associates with the histone demethylase OsJMJ703 and the transcription factor OsWOX3A to control grain size and yield in rice. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(12): e2419464122.
[42]
甘秋云. ED算法和SNP-index算法计算SNP位点的比较分析: 以拟南芥为例. 计算机工程与科学, 2022, 44(4): 707-712.
GAN Q Y. Comparison and analysis of ED algorithm and SNP-index algorithm in calculating SNP sites-take Arabidopsis thaliana for example. Computer Engineering & Science, 2022, 44(4): 707-712. (in Chinese)
[43]
ABE A, KOSUGI S, YOSHIDA K, NATSUME S, TAKAGI H, KANZAKI H, MATSUMURA H, YOSHIDA K, MITSUOKA C, TAMIRU M, et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30(2): 174-178.

doi: 10.1038/nbt.2095 pmid: 22267009
[44]
LIU H L, NI J L, ZHANG Y H, CHEN Y, LUO Y M, WANG Y, SHANG F, YANG Y K, XU R F, CAO L Y, et al. GLGW10 controls grain size associated with the lignin content in rice. Journal of Genetics and Genomics, 2025. https://doi.org/10.1016/j.jgg.2025.02.009.
[45]
MA Y F, MACKON E, JEAZET DONGHO EPSE MACKON G C, ZHAO Y T, LI Q F, DAI X G, YAO Y H, XIA X Z, NONG B X, LIU P Q. Combined analysis of BSA-seq based mapping, RNA-seq, and metabolomic unraveled candidate genes associated with panicle grain number in rice (Oryza sativa L.). Biomolecules, 2022, 12(7): 918.

doi: 10.3390/biom12070918
[46]
GAO H J, GUANG M, XU J, SHI S L. Research progress of ABC transporter mediated ion transmembrane transportation. Journal of Anhui Agricultural University, 2019, 53(6): 1037-1048.
[47]
ANFANG M, SHANI E. Transport mechanisms of plant hormones. Current Opinion in Plant Biology, 2021, 63: 102055.

doi: 10.1016/j.pbi.2021.102055
[48]
DAHUJA A, KUMAR R R, SAKHARE A, WATTS A, SINGH B, GOSWAMI S, SACHDEV A, PRAVEEN S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologia Plantarum, 2021, 171(4): 785-801.

doi: 10.1111/ppl.v171.4
[1] ZENG YueHui, ZOU WenGuang, ZHAO FuMing, XIAO ChangChun, HUANG JianHong, MA BinLin, YANG WangXing, WEI XinYu, XU XuMing. Map-Based Cloning and Functional Verification of A Novel Split Glume Gene OsSG2 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2025, 58(11): 2062-2080.
[2] LEI JianFeng, YOU YangZi, ZHANG JinEn, DAI PeiHong, YU Li, DU ZhengYang, LI Yue, LIU XiaoDong. Screening of High-Efficient sgRNA for Targeted Knockout of GhAGL16 Gene in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(6): 1023-1033.
[3] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[4] YAN LiuHui, ZHONG Qi, MA ZengFeng, WEI MinYi, LIU Chi, QIN YuanYuan, ZHOU XiaoLong, HUANG DaHui, LU YingPing, QIN Gang, ZHANG YueXiong. Identification and Evolutionary Analysis of the Early Heading Gene OsEHD8 in Common Wild Rice (Oryza rufipogon Giff.) [J]. Scientia Agricultura Sinica, 2024, 57(14): 2703-2716.
[5] ZHANG Jian, ZHAO BinSen, FENG Hao, HUANG LiLi. Function and Mechanism Analysis of Vm-milRN7 Regulating the Pathogenicity of Valsa mali [J]. Scientia Agricultura Sinica, 2024, 57(10): 1930-1942.
[6] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[7] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[8] WANG XiaoYang, PENG Zhen, XING AiShuang, ZHAO YingRui, MA XinLi, LIU Fang, DU XiongMing, HE ShouPu. Identification and Expression Analysis of Fuzz Fiber Development Related Long Noncoding RNAs in Gossypium arboreum [J]. Scientia Agricultura Sinica, 2023, 56(23): 4565-4584.
[9] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[10] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[11] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[14] ZHENG Wei, SHI Zheng, LONG Mei, LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[15] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!