Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5128-5142.doi: 10.3864/j.issn.0578-1752.2025.24.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Study on the Function of Soybean Nicotinamide Enzyme GmNIC1 Gene Under Saline Alkali Stress

ZHANG Qi1(), XUE FuZhen1(), YANG XiuJie1, JIANG SuYang1, HUANG XueJuan1, MA JiaYi1, ZHANG ZheWen1, XU JieFei2,*()   

  1. 1 School of Bioengineering, Daqing Normal University/Daqing Research Base of Wetland Center, Chinese Academy of Sciences, Daqing 163712, Heilongjiang
    2 Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences/Jiamusi Comprehensive Experimental Station of National Soybean Industry Technology System, Jiamusi 154002, Heilongjiang
  • Received:2025-07-02 Accepted:2025-09-03 Online:2025-12-16 Published:2025-12-22
  • Contact: XU JieFei

Abstract:

【Objective】Saline-alkali stress is one of the significant abiotic stresses that restrict soybean production. Nicotinamide enzyme gene GmNIC1 is a key enzyme gene involved in the synthesis of NAD+ in soybeans. It has been previously established that this gene participates in abiotic stress responses. Investigating the function of GmNIC1 under saline-alkali stress lays the foundation for soybean breeding for saline-alkali tolerance.【Method】Using the soybean cultivar Hefeng 25 as the receptor, GmNICl-OE (overexpression) and GmNICl-KO (knockout) transgenic T3 generation soybean plants were generated, and their growth and physiological indicators under saline-alkali stress were measured. Transcriptome sequencing was performed on wild-type (WT), GmNICl-OE, and GmNICl-KO plants, followed by GO functional enrichment and KEGG pathway enrichment analysis. A protein-protein interaction network was constructed based on the differentially expressed genes of the three comparative combinations, and proteins interacting with GmNIC1 were identified and validated using quantitative real-time PCR.【Result】After saline-alkali stress, GmNICl-OE plants exhibited yellowing of newly grown leaves but erect petioles and increased plant height; GmNICl-KO plants showed wilted and dried leaves, severed yellowing of stems and near-death: WT plants had yellowish-brown stems and leaves that were less yellowed and wilted than those of the GmNICl-KO plants. Compared to WT and GmNICl-KO plants, GmNIC1-OE plants showed increased NAD+ content and decreased NADP+ content, leading to glucose accumulation, increased activity of SOD and CAT enzymes, and reduced O2- and H2O2 content. Transcriptome sequencing revealed a total of 747 differentially expressed genes in the OE-1 vs KO-1 comparative combination, including 622 upregulated and 125 downregulated differentially expressed genes. The number of differentially expressed genes in this combination was significantly higher than that in the other two groups. The functions of differentially expressed genes in the three comparative combinations were mainly concentrated in lactase activity, transcriptional regulation activity, and oxidoreductase activity (acting on NADP (H)); metabolic pathways were mainly involved in the biosynthesis of secondary metabolites, exogenous substance metabolism, glucosinolate biosynthesis, galactose metabolism, MAPK signaling pathway, glutathione metabolism, etc. Four proteins related to GmNIC1 were identified, suggesting that Glyma.04G055000.1 positively interacts with GmNICl, and Glyma.12G086500.1 negatively interacts with GmNIC1.【Conclusion】GmNIC1 increases NAD+ content and reduces NADP+ content to accumulate glucose and enhance antioxidant enzyme activity to eliminate ROS, thereby strengthening the plant's resistance to salt and alkali stress. The GmNIC1 protein can also collaborate with Glyma.04G055000.1 and Glyma.12G086500.1 to jointly regulate the growth of soybean seedlings under salt and alkali stress.

Key words: soybean, GmNIC1, salt and alkali stress, NAD+, NADP+

Table 1

Sequences of PCR primers"

用途Purpose 引物Primer 序列Sequence (5′-3′)
基因过表达
Gene overexpression
GmNIC1-OE-F AATTTGGCGCCGAAAGAACC
GmNIC1-OE-R GCCTGAGTGTTGCATTTGGG
基因敲除
Gene knockout
GmNIC1-KO-F GCATAGTACTTGCTTTGCGTTGG
GmNIC1-KO-R CTCGTGAACAACCTTTGGCTAGG
基因表达分析
Analysis of gene expression
Actin-F GATCTACCATGTTCCCAAGT
Actin-R ATAGAGCCACCAATCCAGAC
qGmNIC1-F GCGTGGTAAAGATGTTCAAGAGT
qGmNIC1-R CAATATTCGTACTGCCCAAACCA
qGlyma.04G055000-F ATCTGAGGAGATGCGGAGGA
qGlyma.04G055000-R CAGTGCTGGATTAACCCCCT
qGlyma.12G086500-F CGAGTAGAGGAGGAAACAAAACGA
qGlyma.12G086500-R ATTCTCTCTCCCTTCTCTGGCA
qGlyma.13G242100-F CGACAGGGGTCCATATCCAG
qGlyma.13G242100-R CGCTGCAATTCCCCAGTAGA
qGlyma.14G114300-F CGTAGGAACTGGGTTGGTGT
qGlyma.14G114300-R CCGACGAAGATGTAAGCGGA

Fig. 1

Growth of transgenic soybean under salt alkali stress A: T3 generation transgenic soybeans that have grown normally to the V2 stage, bar=5 cm; B: T3 generation transgenic soybeans grown to the V3 stage under saline-alkali stress, bar=5 cm; C: PCR results were obtained from gene overexpression positive seedlings, M: DL2000 DNA Marker; H2O: No template control; -: Negative control; +: Plasmid positive control; D: Sequencing results of gene knockout positive vaccines. WT: Wild Hefeng 25 soybean seedlings; OE-1, OE-2: Transgenic Hefeng 25 soybean with overexpression of GmNIC1 gene; KO-1, KO-2: GmNIC1 knockout transgenic Hefeng 25 soybean"

Fig. 2

Physiological indicators of transgenic soybeans under saline alkali stress A: NAD+ and NADH content; B: NADP+ and NADPH content; C: NAD+/NADH and NADP+/NADPH; D: Glucose content; E: O2- and H2O2 content; F: SOD and CAT enzyme activity; Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 2

Number of differentially expressed genes in three comparative combinations"

对比组合
Contrast and combination
上调差异表达基因数
The number of up-regulated genes
下调差异表达基因数
The number of down-regulated genes
WT vs OE-1 514 39
WT vs KO-1 607 43
OE-1 vs KO-1 622 125

Fig. 3

GO functional enrichment of differentially expressed genes in transgenic soybean under salt alkali stress A:WT vs OE-1;B:WT vs KO-1;C:OE-1 vs KO-1"

Fig. 4

KEGG enrichment of differentially expressed genes in transgenic soybean under salt alkali stress A:WT vs OE-1;B:WT vs KO-1;C:OE-1 vs KO-1"

Fig. 5

Protein interaction network diagram NIT2: Omega-amidase (NIT2); LTP: LTP protein family; MYB63: Transcription factor MYB63; CGI2: CGI2 related proteins; RAB6: Phosphate transport system protein; C6T5S0: AP2/ERF domain-containing protein; CML14: CML14 related calcium binding protein; SMC: SMC family proteins; DDX51: ATP dependent RNA helicase DDX51; CLV1B: Asparagine synthetase protein (CLV1B). The thickness of the lines between each element represents the level of correlation"

Table 3

Protein interaction analysis screened protein information related to GmNIC1"

序号
Number
交点
Node
分数
Score
功能注释
Functional annotation
1 Glyma.04G055000 988 Omega-酰胺酶 Omega-amidase
2 Glyma.12G086500 939 磷酸盐转运系统蛋白 Phosphate transport system protein
5 Glyma.13G242100 959 天冬酰胺合成酶 Asparagine synthetase
6 Glyma.14G114300 954 ATP依赖性RNA解旋酶 ATP dependent RNA helicase

Fig. 6

Expression levels of different interacting protein genes in transgenic soybeans A:Glyma.04G055000;B:Glyma.12G086500;C:Glyma.13G242100;D:Glyma.14G114300"

[1]
冯雯蜜, 周芳雪, 于哲, 牟可欣, 井妍, 李海燕. 大豆抗花叶病毒病基因GmRHF1的克隆及功能分析. 中国农业科学, 2024, 57(23): 4632-4645. doi: 10.3864/j.issn.0578-1752.2024.23.005.
FENG W M, ZHOU F X, YU Z, MOU K X, JING Y, LI H Y. Cloning and functional analysis of GmRHF1 gene against soybean mosaic virus. Scientia Agricultura Sinica, 2024, 57(23): 4632-4645. doi: 10.3864/j.issn.0578-1752.2024.23.005. (in Chinese)
[2]
CAO Y B, SONG H F, ZHANG L Y. New insight into plant saline-alkali tolerance mechanisms and application to breeding. International Journal of Molecular Sciences, 2022, 23(24): 16048.

doi: 10.3390/ijms232416048
[3]
FANG S M, HOU X, LIANG X L. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science, 2021, 12: 667458.

doi: 10.3389/fpls.2021.667458
[4]
周道玮, 胡娟, 李强, 黄迎新. 松嫩平原盐碱地研究进展. 生态学杂志, 2025, 44(5): 1671-1677.
ZHOU D W, HU J, LI Q, HUANG Y X. Research progress of salt-affected land in Songnen Plain. Chinese Journal of Ecology, 2025, 44(5): 1671-1677. (in Chinese)

doi: 10.13292/j.1000-4890.202505.006
[5]
LI J, YANG Y Q. How do plants maintain pH and ion homeostasis under saline-alkali stress? Frontiers in Plant Science, 2023, 14: 1217193.

doi: 10.3389/fpls.2023.1217193
[6]
ANDREW D, HANSON G A B. Does abiotic stress cause functional B vitamin deficiency in plants? Plant Physiology, 2016, 172(4): 2082-2097.

pmid: 27807106
[7]
WU R R, ZHANG F X, LIU L Y, LI W, PICHERSKY E, WANG G D. MeNA, controlled by reversible methylation of nicotinate, is an NAD precursor that undergoes long-distance transport in Arabidopsis. Molecular Plant, 2018, 11(10): 1264-1277.

doi: 10.1016/j.molp.2018.07.003
[8]
HASHIDA S N, ITAMI T, TAKAHARA K, HIRABAYASHI T, UCHIMIYA H, KAWAI-YAMADA M. Increased rate of NAD metabolism shortens plant longevity by accelerating developmental senescence in Arabidopsis. Plant & Cell Physiology, 2016, 57(11): 2427-2439.
[9]
ALFEREZ F M, GERBERICH K M, LI J L, ZHANG Y P, GRAHAM J H, MOU Z L. Exogenous nicotinamide adenine dinucleotide induces resistance to Citrus canker in Citrus. Frontiers in Plant Science, 2018, 9: 1472.

doi: 10.3389/fpls.2018.01472
[10]
FERNIE A, HASHIDA S N, YOSHIMURA K, GAKIÈRE B, MOU Z L, PÉTRIACQ P. Editorial: NAD metabolism and signaling in plants. Frontiers in Plant Science, 2020, 11: 146.

doi: 10.3389/fpls.2020.00146 pmid: 32161612
[11]
LI Q, ZHOU M X, CHHAJED S, YU F H, CHEN S X, ZHANG Y P, MOU Z L. N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nature Communications, 2023, 14: 6848.

doi: 10.1038/s41467-023-42629-0 pmid: 37891163
[12]
WANG G D, PICHERSKY E. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. The Plant Journal, 2007, 49(6): 1020-1029.

doi: 10.1111/tpj.2007.49.issue-6
[13]
陈平, 吴立文, 王忠伟, 张宇, 郭龙彪. 烟酰胺腺嘌呤二核苷酸(NAD)合成途径和水稻叶片早衰. 中国水稻科学, 2017, 31(5): 447-456.

doi: 10.16819/j.1001-7216.2017.7028 447
CHEN P, WU L W, WANG Z W, ZHANG Y, GUO L B. Nicotinamide adenine dinucleotide (NAD) biosynthesis pathway and leaf senescence in rice. Chinese Journal of Rice Science, 2017, 31(5): 447-456. (in Chinese)
[14]
HASHIDA S N, TAKAHASHI H, TAKAHARA K, KAWAI- YAMADA M, KITAZAKI K, SHOJI K, GOTO F, YOSHIHARA T, UCHIMIYA H. NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination. Molecular Plant, 2013, 6(1): 216-225.

doi: 10.1093/mp/sss071
[15]
KAWAI S, MURATA K. Structure and function of NAD kinase and NADP phosphatase: Key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Bioscience, Biotechnology, and Biochemistry, 2008, 72(4): 919-930.

doi: 10.1271/bbb.70738
[16]
WU B Y, LI P, HONG X F, XU C H, WANG R, LIANG Y. The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling ROS production. Molecular Plant, 2022, 15(5): 887-903.

doi: 10.1016/j.molp.2022.03.003
[17]
SINGH R V, KALIA V C, SAMBYAL K, SINGH B, KUMAR A, LEE J K. Enzymatic approaches to nicotinic acid synthesis: Recent advances and future prospects. Frontiers in Bioengineering and Biotechnology, 2025, 13: 1585736.

doi: 10.3389/fbioe.2025.1585736
[18]
LI B B, WANG X, TAI L, MA T T, SHALMANI A, LIU W T, LI W Q, CHEN K M. NAD kinases: Metabolic targets controlling redox co-enzymes and reducing power partitioning in plant stress and development. Frontiers in Plant Science, 2018, 9: 379.

doi: 10.3389/fpls.2018.00379
[19]
杨萍. 外源维生素对盐胁迫下黄瓜种子萌发及植株生理特性的影响[D]. 重庆: 西南大学, 2010.
YANG P. The effect of exogenous vitamins on cucumber seed germination and plant physiological characteristics under salt stress[D]. Chongqing: Southwest University, 2010. (in Chinese)
[20]
张婉莹, 王怡, 张洋, 窦可欣, 邱桂林, 赵晓菊, 张琦. 烟酰胺调控大豆幼苗耐盐碱性的生理机制研究. 安徽农学通报, 2024, 30(12): 38-44.
ZHANG W Y, WANG Y, ZHANG Y, DOU K X, QIU G L, ZHAO X J, ZHANG Q. Physiological mechanism of nicotinamide regulating salt and alkaline tolerance in soybean seedlings. Anhui Agricultural Science Bulletin, 2024, 30(12): 38-44. (in Chinese)
[21]
HUANG Y, LIU Q C, JIBRIN M, MOU Z L, DUFAULT N, LI Y C, ZHANG S A. Evaluating nicotinamide adenine dinucleotide for its effects on halo blight of snap bean. Plant Disease, 2023, 107(3): 675-681.

doi: 10.1094/PDIS-05-22-1126-RE
[22]
REGMI H, ABDELSAMAD N, DIGENNARO P, DESAEGER J. Potential of nicotinamide adenine dinucleotide (NAD) for management of root-knot nematode in tomato. Journal of Nematology, 2021, 53: e2021-94.
[23]
张琦, 刘兴宇, 任馨原, 刘雅心, 隋京芮, 严红静, 赵晓菊, 徐杰飞. 大豆GmNIC1基因克隆及非生物胁迫应答分析. 西南农业学报, 2024, 37(12): 2573-2581.
ZHANG Q, LIU X Y, REN X Y, LIU Y X, SUI J R, YAN H J, ZHAO X J, XU J F. Cloning of soybean GmNIC1 gene and analysis of abiotic stress response. Southwest China Journal of Agricultural Sciences, 2024, 37(12): 2573-2581. (in Chinese)
[24]
MA X L, ZHANG Q Y, ZHU Q L, LIU W, CHEN Y, QIU R, WANG B, YANG Z F, LI H Y, LIN Y R, et al. A robust CRISPR/Cas 9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.

doi: 10.1016/j.molp.2015.04.007
[25]
姚改芳, 张绍铃, 曹玉芬, 刘军, 吴俊, 袁江, 张虎平, 肖长城. 不同栽培种梨果实中可溶性糖组分及含量特征. 中国农业科学, 2010, 43(20): 4229-4237. doi: 10.3864/j.issn.0578-1752.2010.20.014.
YAO G F, ZHANG S L, CAO Y F, LIU J, WU J, YUAN J, ZHANG H P, XIAO C C. Characteristics of components and contents of soluble sugars in pear fruits from different species. Scientia Agricultura Sinica, 2010, 43(20): 4229-4237. doi: 10.3864/j.issn.0578-1752.2010.20.014. (in Chinese)
[26]
黄友举, 于泳波, 逄翠晶, 孙轼絮, 路晨, 于延冲. 大豆GmWRKY44生物信息学分析及功能验证. 华北农学报, 2025, 40(1): 29-35.

doi: 10.7668/hbnxb.20195201
HUANG Y J, YU Y B, PANG C J, SUN S L, LU C, YU Y C. Cloning and biology function analysis of soybean GmWRKY44. Acat Agriculturaeboreali-Sinica, 2025, 40(1): 29-35. (in Chinese)
[27]
ZHANG Z N, ZHAO Q, WANG W Y, FENG R Q, CAO Y, WANG G D, DU J D, DU Y L. Starch-sucrose metabolic homeostasis in germinating soybean reserve mobilization with different levels of salt stress. Plant Physiology and Biochemistry, 2025, 225: 110050.

doi: 10.1016/j.plaphy.2025.110050
[28]
LU P, DAI S Y, YONG L T, ZHOU B H, WANG N, DONG Y Y, LIU W C, WANG F W, YANG H Y, LI X W. A soybean sucrose non-fermenting protein kinase 1 gene, GmSNF1, positively regulates plant response to salt and salt-alkali stress in transgenic plants. International Journal of Molecular Sciences, 2023, 24(15): 12482.

doi: 10.3390/ijms241512482
[29]
LI Y, FANG Q X, CAO Y X, YANG M Y, WANG J, WANG M Z, LI N, MENG F L. Identification and functional characterization of soybean microexon in response to saline-alkali stress. Plant, Cell & Environment, 2025, doi: 10.1111/pce.15596.
[30]
REN H L, ZHANG F Y, ZHU X, LAMLOM S F, ZHAO K Z, ZHANG B X, WANG J J. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: A study on soybean growth and development. Frontiers in Microbiology, 2023, 14: 1233351.

doi: 10.3389/fmicb.2023.1233351
[31]
马敏, 左震, 韩燕东, 邱野, 乔牡冬. 松嫩平原土壤盐碱化地表基质成因研究. 自然资源遥感, 2025, 37(2): 128-139.
MA M, ZUO Z, HAN Y D, QIU Y, QIAO M D. Origin of surface substrate for soil salinization and alkalization in the Songnen Plain. Remote Sensing for Natural Resources, 2025, 37(2): 128-139. (in Chinese)
[32]
BERTRAND G, HAO J F, LINDA B, PIERRE P, ADRIANO N N, ALISDAIR R F. NAD+ biosynthesis and signaling in plants. Critical Reviews in Plant Sciences, 2018, 20(12): 1549-7836.
[33]
REID D E, FERGUSON B J, GRESSHOFF P M. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Molecular Plant-Microbe Interactions, 2011, 24(5): 606-618.
[34]
CANTÓ C, MENZIES K J, AUWERX J. NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism, 2015, 22(1): 31-53.

doi: 10.1016/j.cmet.2015.05.023
[35]
SHIN-NOSUKE HASHIDA H T. The role of NAD biosynthesis in plant development and stress responses. Annals of Botany, 2009, 103(6): 819-824.

doi: 10.1093/aob/mcp019
[36]
FU S Q, WANG L, LI C Q, ZHAO Y H, ZHANG N, YAN L, LI C M, NIU Y S. Integrated transcriptomic, proteomic, and metabolomic analyses revealed molecular mechanism for salt resistance in soybean (Glycine max L.) seedlings. International Journal of Molecular Sciences, 2024, 25(24): 13559.

doi: 10.3390/ijms252413559
[37]
韩乐乐, 宋文迪, 边嘉珅, 李阳, 杨双胜, 陈紫怡, 李晓薇. 转录组与代谢组联合分析揭示大豆GmERD15c参与盐胁迫下类黄酮的生物合成. 生物技术通报, 2024, 40(10): 243-252.

doi: 10.13560/j.cnki.biotech.bull.1985.2024-0373
HAN L L, SONG W D, BIAN J S, LI Y, YANG S S, CHEN Z Y, LI X W. Revealing the flavonoid biosynthesis of soybean GmERD15c under salt stress by combined analysis of transcriptome and metabolome. Biotechnology Bulletin, 2024, 40(10): 243-252. (in Chinese)
[38]
夏敏, 徐楠, 朱倩锋, 陈彦超, 杜丽桦, 汪启明, 夏新界, 饶力群. 基于转录组学挖掘湘巨1号耐盐相关候选基因. 西南农业学报, 2024, 37(8): 1645-1654.
XIA M, XU N, ZHU Q F, CHEN Y C, DU L H, WANG Q M, XIA X J, RAO L Q. Exploring candidate genes related to salt tolerance of Xiangju 1 based on transcriptomics. Southwest China Journal of Agricultural Sciences, 2024, 37(8): 1645-1654. (in Chinese)
[39]
FENG C, HUSSAIN M A, ZHAO Y, WANG Y N, SONG Y Y, LI Y X, GAO H T, JING Y, XU K H, ZHANG W P, et al. GmAKT1-mediated K+ absorption positively modulates soybean salt tolerance by GmCBL9-GmCIPK 6 complex. Plant Biotechnology Journal, 2025, 23(6): 2276-2289.

doi: 10.1111/pbi.v23.6
[40]
BASNET P, LEE S, MOON K H, PARK N I, LEE G S, LEE S, UM T, CHOI I Y. Circadian clock regulation in soybean senescence: A transcriptome analysis of early and late senescence types. BMC Genomics, 2025, 26(1): 56.

doi: 10.1186/s12864-024-11095-3 pmid: 39838316
[1] LIU LuPing, HU XueJie, QI Jin, CHEN Qiang, LIU Zhi, ZHAO TianTian, SHI XiaoLei, LIU BingQiang, MENG QingMin, ZHANG MengChen, HAN TianFu, YANG ChunYan. Cloning of the Promoters and Analysis of Expression Patterns of Maturity Genes E1 and E2 in Soybean [J]. Scientia Agricultura Sinica, 2025, 58(5): 840-850.
[2] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[3] MA HeXiao, GE GuoLong, ZHANG XiangQian, LU ZhanYuan, WANG ManXiu, RONG MeiRen, SHI JingJing, ZHANG DeJian, SUN XuePing. Effects of Different Crop Rotation Systems on Soil Readily Oxidized Organic Carbon and Carbon Pool Activity Differences [J]. Scientia Agricultura Sinica, 2025, 58(24): 5201-5215.
[4] GAO ChunHua, ZHAO HaiJun, ZHAO FengTao, KONG WeiLin, JU FeiYan, LI ZongXin, SHI DeYang, LIU Ping. Effect of Growth Regulators on the Stem Characteristics and Yield of Summer Maize in Maize-Soybean Strip Intercropping [J]. Scientia Agricultura Sinica, 2025, 58(23): 4920-4935.
[5] YANG ShuQi, ZHAO YingXing, QIAN Xin, ZHANG XuePeng, MENG WeiWei, SUI Peng, LI ZongXin, CHEN YuanQuan. Comprehensive Evaluation of the Maize-Soybean Intercropping Pattern in the Huang-Huai Region [J]. Scientia Agricultura Sinica, 2025, 58(23): 4936-4951.
[6] FANG Jian, QIN ZhaoJi, YU YuanYuan, YU NingNing, ZHAO Bin, LIU Peng, REN BaiZhao, ZHANG JiWang. Impacts of Varying Row Ratio Arrangements on Plant Performance, Stand Yield, and Comprehensive Benefits in Soybean-Maize Strip intercropping [J]. Scientia Agricultura Sinica, 2025, 58(23): 4841-4857.
[7] SONG XuHui, ZHAO XueYing, ZHAO Bin, REN BaiZhao, ZHANG JiWang, LIU Peng, REN Hao. Effects of Row Ratio Allocation on Light Distribution and Photosynthetic Production Capacity of Maize-Soybean Strip Intercropping [J]. Scientia Agricultura Sinica, 2025, 58(23): 4858-4871.
[8] SHI DeYang, GAO ChunHua, LI YanHong, ZHAO HaiJun, XIA DeJun. Effects of Row Spacing Configuration on the Canopy Characteristics and Grain Yield of the Intercropping Maize [J]. Scientia Agricultura Sinica, 2025, 58(23): 4872-4885.
[9] ZHANG MengYu, HE ZaiJu, WANG XingXing, REN Hao, REN BaiZhao, LIU Peng, ZHANG JiWang, ZHAO Bin. The Influences of Different Plant Height Combinations of Maize Varieties on Light Distribution in the Canopy and the Photosynthetic Characteristics of Maize Under Maize-Soybean Strip Intercropping Pattern [J]. Scientia Agricultura Sinica, 2025, 58(23): 4886-4904.
[10] KONG WeiLin, GAO ChunHua, ZHAO FengTao, JU FeiYan, LI ZongXin, ZHAO HaiJun, LIU Ping. Effects of Nitrogen Application Rate Combined with Drip Irrigation Amount After Sowing on Yield, Economic Benefit, Water Use Characteristics of Maize-Soybean Strip Intercropping Planting System [J]. Scientia Agricultura Sinica, 2025, 58(23): 4905-4919.
[11] YU Zhe, ZHOU FangXue, LIU RunFa, TIAN YaQi, JIHAO MuHa, WANG YongXiang, FENG WenMi, MOU KeXin, JING Yan, LI HaiYan. Screening for Soybean Host Factors that Interact with Soybean Mosaic Virus Nuclear Inclusion Proteins Using the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2025, 58(19): 3799-3813.
[12] LI ShuaiBing, LI ChenXin, REN Li, YU XiaoNa, GENG SaiNan, SHENG Kai, ZHANG YinJie, WANG YiLun. Effects of Soybean Planting on Phosphorus Absorption of Wheat and Phosphorus Transformation in Soil [J]. Scientia Agricultura Sinica, 2025, 58(19): 3932-3945.
[13] QI MengNan, ZHAO DingLing, ZHANG XueYan, ZHANG YuJie, WANG RongNa, LIU BingQiang, YAN Long, ZHANG Jie, WANG DongMei. Identification of GmSZFP-Interacting Proteins and Functional Analysis of GmERF7 in Soybean Resistance to SMV Infection [J]. Scientia Agricultura Sinica, 2025, 58(14): 2739-2750.
[14] WANG ShiJi, LI YueYing, CHEN Chen, JIANG GuiYing, LIU ChaoLin, ZHU ChangWei, YANG Jin, WANG MengRu, JIE XiaoLei, LIU Fang, LIU ShiLiang. The Characteristics of Ammonia Volatilization and Crop Yield Under Legume-Wheat Rotation System in Fluvo-Aquic Soil in Northern Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(13): 2614-2629.
[15] CHEN HuiXian, HE Wen, RUAN LiXia, HUANG XiaoJuan, LAN Xiu, CAI ZhaoQin, LI HengRui, HUANG ZhenLing, WEI WanLing, LIANG ZhenHua, LI TianYuan, CAO Sheng, LI XiDi, WEI JunCan. Effects of Intercropping Soybean on Cassava Growth and Soil Characteristics [J]. Scientia Agricultura Sinica, 2025, 58(11): 2176-2189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!