Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3890-3904.doi: 10.3864/j.issn.0578-1752.2025.19.007

• PLANT PROTECTION • Previous Articles     Next Articles

Molecular Characterization and Evolutionary Dynamics of Tomato Leaf Curl New Delhi Virus Isolate from Wax Gourd (Benincasa hispida) in Guangdong

GUO MengZe1(), ZHANG Lei1, SUN PingPing1, JIANG Biao2, YAN JinQiang2(), LI ZhengNan1()   

  1. 1 College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018
    2 Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Advanced Vegetable Research, Guangzhou 510640
  • Received:2025-07-09 Accepted:2025-07-28 Online:2025-10-01 Published:2025-10-10
  • Contact: YAN JinQiang, LI ZhengNan

Abstract:

【Objective】Tomato leaf curl New Delhi virus (ToLCNDV) is one of the most severe viral pathogens affecting cucurbit crops in recent years. Reports on the genome sequences of ToLCNDV isolates from China remain limited. ToLCNDV infection in wax gourd (Benincasa hispida) has not been reported in China. The objective of this study is to investigate the occurrence patterns of ToLCNDV in B. hispida in Guangdong Province, analyze sequence characteristics, pathogenicity, genetic diversity, and spatiotemporal dynamics of ToLCNDV isolates from China, and to provide a theoretical basis for the prevention and control of ToLCNDV.【Method】The complete genome of ToLCNDV was amplified using high-throughput sequencing and PCR. PCR assays were performed to detect ToLCNDV in 79 B. hispida samples. The obtained full-length genome sequences were subjected to phylogenetic analysis, sequence identity assessment, genetic diversity evaluation, Bayesian phylogenetics, and phylogeographic analysis. Pathogenicity was tested on 12 potential host species using mechanical sap-inoculation.【Result】High-throughput sequencing revealed that ToLCNDV was present in the collected B. hispida samples. PCR assays confirmed ToLCNDV infection in 58 of 79 suspected virus samples, representing a detection rate of 73.4%. The B. hispida isolate of ToLCNDV was mechanically transmissible through sap-inoculation to eight plant species. These included Citrullus lanatus, Luffa aegyptiaca, Cucurbita pepo, Phaseolus vulgaris, Cucumis sativus, Lagenaria siceraria, Nicotiana clevelandii, and N. benthamiana. All sap-inoculated plants developed characteristic symptoms. The complete nucleotide sequences of the DNA A and B components of the B. hispida isolate 23GD_BeHi1 were 2 739 and 2 693 bp, respectively. Pairwise sequence comparison showed 98.7%-99.7% identity for DNA A and 98.7%-99.3% for DNA B compared to representative Chinese ToLCNDV isolates. Phylogenetic trees based on complete DNA A and DNA B sequences of Chinese ToLCNDV isolates revealed two distinct clades. All isolates obtained in this study clustered within Clade I. No recombination events were detected among these isolates. Genetic diversity analyses indicated that the Chinese ToLCNDV population exhibited relatively low genetic diversity. The adequate population size remained stable, and no evidence of recombination was observed. However, significant genetic differentiation was detected between isolates from Jiangsu and Shanghai. Bayesian maximum clade credibility (MCC) trees constructed from DNA A and DNA B datasets placed Zhejiang isolates at the basal position. The estimated emergence times were April 25, 2020, for DNA A and November 30, 2020, for DNA B. Phylogeographic reconstruction suggested that Zhejiang served as the origin center of ToLCNDV in China, and the population expansion occurred in Guangdong.【Conclusion】The complete genome sequence of ToLCNDV isolate from B. hispida in China was obtained. The DNA A and B components comprise 2 739 and 2 693 bp, respectively. Mechanical sap-inoculation demonstrates that this isolate can infect C. pepo, C. lanatus, L. aegyptiaca, C. sativus, P. vulgaris, N. clevelandii, L. siceraria, and N. benthamiana. Infected plants develop leaf curling, chlorosis, and other typical symptoms.

Key words: tomato leaf curl New Delhi virus (ToLCNDV), wax gourd (Benincasa hispida), complete genome sequence, genetic diversity, phylogeographic analysis

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
退火温度
Tm (℃)
位置
Region
位点
Site (nt)
DG1-1 CTAGAACGTCTCCGTCTTTGT 58 DNA A 2251-2541
DG1-2 TCCTCACATATCCAAAGTGCT
DG1-3 ACCGAATGGCCGCGCAAATT 60 DNA A 1-2739
DG1-4 AATATTATACGAATGGCCGCTT
DG1-5 CTTTAGGGAATTTGAATTAAAGTAAT 60 DNA B 1-2675
DG1-6 TACCGAAAGGCCGCGAAAATTT

Fig. 1

Symptoms of B. hispida infected with ToLCNDV"

Fig. 2

Symptoms of different plants after inoculation with ToLCNDV through sap rubbing"

Fig. 3

Sequence consistency matrix constructed based on the complete nucleotide sequences of DNA A and DNA B fragments of ToLCNDV"

Fig. 4

Phylogenetic tree constructed based on the nucleotide sequences of DNA A and DNA B fragments of ToLCNDV"

Table 2

Analysis of selection parameters acting on different coding regions of ToLCNDV"

编码区
Coding
region
ENC dN dS dN/dS 归一化dN-dS值
Normalized dN-dS
负选择密码子数
Number of negatively selected codon
正选择密码子位点
Site of positively selected codon
Log (L) Mean (dN/dS) FEL SLAC FUBAR FEL SLAC FUBAR MEME
AC1 361 0.00406 0.01514 0.268 -2325.48 0.307 23 4 9 0 0 0 0
AC2 139 0.00469 0.00566 0.829 -809.73 0.946 1 0 1 0 0 0 0
AC3 136 0.00363 0.01068 0.340 -782.48 0.548 2 1 2 0 0 0 0
AC4 58 0.00652 0.00480 1.358 -325.65 5.16 1 0 1 0 0 10 0
AC5 162 0.00447 0.00288 1.552 -742.11 2.12 2 1 1 0 0 0 0
AV1 256 0.00781 0.00193 4.047 -1429.51 0.284 7 0 6 0 0 0 0
AV2 122 0.00322 0.00729 0.442 -644.11 0.399 5 1 3 0 0 112 0
BC1 281 0.00223 0.01783 0.125 -1383.69 0.133 30 4 20 0 0 0 0
BV1 258 0.00468 0.01069 0.438 -1780.71 0.549 14 2 5 0 0 48, 193 193

Table 3

Population genetic parameters and neutrality tests calculated for the complete genome nucleotide sequences of ToLCNDV isolates based on host and geographic origins"

群体
Population
序列数
Number of sequences
单倍型多样性
Haplotype diversity
核苷酸多态性
Nucleotide diversity
Tajima’s D Fu and Li’s D* Fu and Li’s F*
All 56 1.000±0.003 0.00708±0.00095 -2.52445*** -4.66339** -4.58633**
广东Guangdong 25 1.000±0.011 0.00727±0.00087 -2.15107* -3.15544** -3.33509**
江苏Jiangsu 3 1.000±0.272 0.00444±0.00075 NA NA NA
山东Shandong 3 1.000± 0.272 0.00786±0.00100 NA NA NA
上海Shanghai 12 1.000±0.034 0.00509±0.00062 -1.04203ns -0.99753ns -1.15086ns
浙江Zhejiang 11 1.000±0.039 0.00587±0.00072 -1.38448ns -1.58347ns -1.74005ns
冬瓜B. hispida 5 1.000±0.126 0.00679±0.00082 -0.70558ns -0.68630ns -0.74972ns
西瓜C. lanatus 3 1.000±0.272 0.00564±0.00084 NA NA NA
甜瓜C. melo 13 1.000±0.030 0.00742±0.00085 -1.77037ns -1.93222ns -2.16362ns
南瓜C. moschata 7 1.000±0.076 0.00729±0.00082 -0.94402ns -0.91144ns -1.01852ns
黄瓜C. sativus 7 1.000±0.076 0.00658±0.00080 -1.03788ns -1.12559ns -1.12983ns
丝瓜L. aegyptiaca 14 1.000±0.027 0.00767±0.00089 -1.98427* -2.53216* -2.73777**
番茄S. lycopersicum 6 1.000±0.096 0.00558±0.00074 -1.11658ns -1.17026ns -1.27258ns

Fig. 5

Analysis of neutrality tests and nucleotide polymorphism for the ToLCNDV China isolates"

Fig. 6

Mismatch distribution analysis based on the ToLCNDV genome sequences"

Table 4

Genetic differentiation among different subpopulations of ToLCNDV"

比较Comparison Ks* Kst* P value Z P value Z* P value Snn P value FST Nm
广东Guangdong (n=25) vs.
江苏Jiangsu (n=3)
3.59050 0.01339 0.0020** 176.30097 0.0190* 4.79813 0.0010** 1.00000 P<0.001*** 0.281 1.28
广东Guangdong (n=25) vs.
山东Shandong (n=3)
3.61758 0.00563 0.1060ns 181.84139 0.1200ns 4.89036 0.1070ns 0.91071 0.0330ns 0.059 7.92
广东Guangdong (n=25) vs.
上海Shanghai (n=12)
3.49517 0.02367 P<0.001*** 304.62982 P<0.001*** 5.23252 P<0.001*** 0.97297 P<0.001*** 0.132 3.26
广东Guangdong (n=25) vs.
浙江Zhejiang (n=11)
3.52988 0.02868 P<0.001*** 278.73554 P<0.001*** 5.16733 P<0.001*** 0.88889 P<0.001*** 0.164 2.56
江苏Jiangsu (n=3) vs.
山东Shandong (n=3)
3.41363 0.05378 0.0940ns 4.91667 0.0940ns 1.42466 0.0940ns 0.66667 0.1920ns 0.220 1.77
江苏Jiangsu (n=3) vs.
上海Shanghai (n=12)
3.21326 0.03059 0.0100* 43.07300 0.0100* 3.40610 0.0040** 0.86667 0.0500ns 0.223 1.74
江苏Jiangsu (n=3) vs.
浙江Zhejiang (n=11)
3.29615 0.03585 0.0180* 39.19818 0.0340* 3.31263 0.0100* 0.78571 0.1640ns 0.271 1.34
山东Shandong (n=3) vs.
上海Shanghai (n=12)
3.27235 0.02922 0.0130* 44.25069 0.0200* 3.44929 0.0090** 0.80000 0.2510ns 0.071 6.49
山东Shandong (n=3) vs.
浙江Zhejiang (n=11)
3.36115 0.03228 0.0380* 39.12727 0.0440* 3.33703 0.0340* 0.78571 0.2120ns 0.111 4.01
上海Shanghai (n=12) vs.
浙江Zhejiang (n=11)
3.27000 0.03913 P<0.001*** 106.61994 P<0.001*** 4.20364 P<0.001*** 0.78261 0.0110* 0.148 2.88
冬瓜B. hispida (n=5) vs.
西瓜C. lanatus (n=3)
3.53104 0.00964 0.1460ns 13.20833 0.4390ns 2.29216 0.2000ns 0.81250 0.1250ns 0.084 5.48
冬瓜B. hispida (n=5) vs.
甜瓜C. melo (n=13)
3.61523 0.00894 0.0700ns 72.24615 0.0680ns 3.95727 0.0670ns 0.91667 0.0020** 0.063 7.44
冬瓜B. hispida (n=5) vs.
南瓜C. moschata (n=7)
3.61913 -0.01784 0.9980ns 35.44345 0.9750ns 3.41699 0.9980ns 0.16667 0.9700ns -0.094 -5.81
冬瓜B. hispida (n=5) vs.
黄瓜C. sativus (n=7)
3.54832 -0.00045 0.4900ns 30.90893 0.1330ns 3.15826 0.21100ns 0.66667 0.1960ns 0.026 19.07
冬瓜B. hispida (n=5) vs.
丝瓜L. aegyptiaca (n=14)
3.66197 -0.00604 0.9040ns 88.52385 0.9200ns 4.22878 0.8780ns 0.55263 0.6940ns -0.033 -15.49
冬瓜B. hispida (n=5) vs.
番茄S. lycopersicum (n=6)
3.46208 -0.01724 0.9130ns 28.80000 0.8660ns 3.19820 0.8960ns 0.40909 0.6390ns -0.088 -6.21
西瓜C. lanatus (n=3) vs.
甜瓜C. melo (n=13)
3.60395 -0.00045 0.5070ns 60.79327 0.6520ns 3.83590 0.5320ns 0.71875 0.5040ns 0.052 9.17
西瓜C. lanatus (n=3) vs.
南瓜C. moschata (n=7)
3.59786 0.00822 0.1640ns 21.46429 0.3470ns 2.72573 0.1140ns 0.90000 0.0520ns 0.101 4.46
西瓜C. lanatus (n=3) vs.
黄瓜C. sativus (n=7)
3.50344 0.00740 0.2650ns 21.63492 0.3830ns 2.77007 0.1850ns 0.90000 0.0380* 0.070 6.68
西瓜C. lanatus (n=3) vs.
丝瓜L. aegyptiaca (n=14)
3.65875 0.00277 0.2910ns 68.45323 0.5840ns 3.89677 0.2360ns 0.94118 0.0230* 0.093 4.87
西瓜C. lanatus (n=3) vs.
番茄S. lycopersicum (n=6)
3.37373 0.02037 0.0420* 15.17333 0.0930ns 2.40958 0.0590ns 0.88889 0.0520ns 0.108 4.15
甜瓜C. melo (n=13) vs.
南瓜C. moschata (n=7)
3.62976 0.01302 0.0080** 87.52810 0.0070** 4.12911 0.0140* 1.00000 P<0.001*** 0.073 6.32
甜瓜C. melo (n=13) vs.
黄瓜C. sativus (n=7)
3.59436 -0.00115 0.5280ns 95.23867 0.5550ns 4.28371 0.5660ns 0.55000 0.4370ns -0.003 -145.54
甜瓜C. melo (n=13) vs.
丝瓜L. aegyptiaca (n=14)
3.65447 0.01116 P<0.001*** 165.11085 P<0.001*** 4.75332 0.0040** 0.85185 P<0.001*** 0.058 8.09
甜瓜C. melo (n=13) vs.
番茄S. lycopersicum (n=6)
3.55718 0.00891 0.0730ns 81.53650 0.0580ns 4.07607 0.0590ns 0.68421 0.1620ns 0.070 6.60
南瓜C. moschata (n=7) vs.
黄瓜C. sativus (n=7)
3.58495 0.00802 0.1470ns 42.53571 0.1090ns 3.42859 0.1100ns 0.78571 0.0510ns 0.044 10.91
南瓜C. moschata (n=7) vs.
丝瓜L. aegyptiaca (n=14)
3.67015 -0.00744 0.9620ns 107.58382 0.9050ns 4.44414 0.9560ns 0.38095 0.9070ns -0.034 -15.30
南瓜C. moschata (n=7) vs.
番茄S. lycopersicum (n=6)
3.52195 -0.01071 0.9670ns 40.81323 0.9330ns 3.49448 0.8570ns 0.42308 0.6120ns -0.057 -9.23
黄瓜C. sativus (n=7) vs.
丝瓜L. aegyptiaca (n=14)
3.63683 0.00187 0.3010ns 103.33603 0.2540ns 4.34873 0.3240ns 0.61905 0.2840ns 0.026 18.63
黄瓜C. sativus (n=7) vs.
番茄S. lycopersicum (n=6)
3.45900 0.00457 0.4120ns 36.48042 0.1060ns 3.31631 0.2100ns 0.57692 0.3250ns 0.046 10.48
丝瓜L. aegyptiaca (n=14) vs.
番茄S. lycopersicum (n=6)
3.60463 -0.00764 0.9840ns 100.08773 0.9960ns 4.32873 0.8890ns 0.42500 0.8910ns -0.036 -14.56

Fig. 7

MCC trees and Bayesian skyline plots constructed based on DNA A and DNA B of all ToLCNDV isolates from China"

Table 5

Marginal likelihoods of different combinations of clock model and tree prior"

片段
Segment
分子钟模型
Molecular clock model
溯祖树先验模型
Coalescent tree prior
边际似然值的对数
Log marginal likelihood
DNA A 严格分子钟Strict clock 贝叶斯天际线Bayesian skyline -7047.037
严格分子钟Strict clock 恒定种群大小Constant size -7063.477
严格分子钟Strict clock 指数增长种群Exponential growth -7048.470
非相关对数正态宽松分子钟
Uncorrelated lognormal relaxed clock
贝叶斯天际线Bayesian skyline -7054.126
非相关对数正态宽松分子钟
Uncorrelated lognormal relaxed clock
恒定种群大小Constant size -7055.758
非相关对数正态宽松分子钟
Uncorrelated lognormal relaxed clock
指数增长种群Exponential growth -7065.284
DNA B 严格分子钟Strict clock 贝叶斯天际线Bayesian skyline -7021.287
严格分子钟Strict clock 恒定种群大小Constant size -7056.605
严格分子钟Strict clock 指数增长种群Exponential growth -7041.550
非相关对数正态宽松分子钟
Uncorrelated lognormal relaxed clock
贝叶斯天际线Bayesian skyline -7030.064
非相关对数正态宽松分子钟
Uncorrelated lognormal relaxed clock
恒定种群大小Constant size -7040.607
非相关对数正态宽松分子钟
Uncorrelated lognormal relaxed clock
指数增长种群Exponential growth -7024.184

Table 6

ToLCNDV migration events inferred from DNA A and DNA B fragments"

事件Event 输出From 输入To DNA A DNA B
1 广东Guangdong 上海Shanghai +** +**
2 上海Shanghai 浙江Zhejiang +*** +*
[1]
BHARATH B S, NAGENDRAN K, HARISH S, KARTHIKEYAN G. First report of cucurbit yellow stunting disorder virus causing yellowing disease on major gourds in India. Crop Protection, 2025, 187: 106998.
[2]
翟彩娇, 葛礼姣, 程玉静, 仇亮, 王小秋, 刘水东. 基于表型性状与SSR标记的冬瓜、节瓜种质资源遗传多样性分析. 中国农业科学, 2024, 57(17): 3440-3457. doi: 10.3864/j.issn.0578-1752.2024.17.010.
ZHAI C J, GE L J, CHENG Y J, QIU L, WANG X Q, LIU S D. Genetic diversity analysis of wax gourd and chieh-qua germplasm resources based on phenotypic traits and SSR markers. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457. doi: 10.3864/j.issn.0578-1752.2024.17.010. (in Chinese)
[3]
SUN X, WU B, JIANG S, HONG H, XIN Z, ZHANG M, WANG S, ZHU X, XIN X. First report of cucumber green mottle mosaic virus infecting zucchini (Cucurbita pepo) and wax gourd (Benincasa hispida) in China. Plant Disease, 2023, 107: 4037.
[4]
CHE H, MA Y, LIN Y, FENG T, LUO D, LONG H. Virome profiling, new virus identification and the prevalence and distribution of viruses infecting chieh-qua (Benincasa hispida Cogn. var. chieh-qua How) in China. Viruses, 2023, 15(6): 1396.
[5]
尤毅, 李华平, 谢大森. 侵染冬瓜的病毒病原种类鉴定. 植物保护, 2016, 42(2): 182-186.
YOU Y, LI H P, XIE D S. Identification of pathogenic viruses infecting wax gourd. Plant Protection, 2016, 42(2): 182-186. (in Chinese)
[6]
CHOWDHURY S, MUKHERJEE A, BASAK S, DAS R, MANDAL A, KUNDU P. Disruption of tomato TGS machinery by ToLCNDV causes reprogramming of vascular tissue-specific TORNADO1 gene expression. Planta, 2022, 256(4): 78.

doi: 10.1007/s00425-022-03985-1 pmid: 36094622
[7]
VINUTHA T, VANCHINATHAN S, BANSAL N, KUMAR G, PERMAR V, WATTS A, RAMESH S V, PRAVEEN S. Tomato auxin biosynthesis/signaling is reprogrammed by the geminivirus to enhance its pathogenicity. Planta, 2020, 252(4): 51.

doi: 10.1007/s00425-020-03452-9 pmid: 32940767
[8]
AGUILAR E, GOMEZ B G, LOZANO-DURAN R. Recent advances on the plant manipulation by geminiviruses. Current Opinion in Plant Biology, 2020, 56: 56-64.

doi: S1369-5266(20)30039-X pmid: 32464465
[9]
杨柳, 胡婕, 高晓晓, 杨帆, 孙枫, 李硕, 季英华, 龚伟荣. 新德里番茄曲叶病毒的发生与研究进展. 植物检疫, 2024, 38(6): 15-22.
YANG L, HU J, GAO X X, YANG F, SUN F, LI S, JI Y H, GONG W R. Occurrence and research progress of tomato leaf curl New Delhi virus. Plant Quarantine, 2024, 38(6): 15-22. (in Chinese)
[10]
MEI Y, CAI L, WANG Y, LI F, YANG X, YANG J, ZHOU X. Molecular characterization and pathogenicity of an infectious clone of tomato leaf curl New Delhi virus isolate infecting Cucumis melo. Stress Biology, 2023, 3(1): 51.
[11]
CAI L, MEI Y, YE R, DENG Y, ZHANG X, HU Z, ZHOU X, ZHANG M, YANG J. Tomato leaf curl New Delhi virus: An emerging plant begomovirus threatening cucurbit production. aBIOTECH, 2023, 4(3): 257-266.

doi: 10.1007/s42994-023-00118-4 pmid: 37970471
[12]
程雨欣, 胡红霞, 梁燕青, 钱亚娟. 新德里番茄曲叶病毒西瓜分离物的全基因组序列测定及分析. 浙江大学学报(农业与生命科学版), 2023, 49(5): 687-695, 754.
CHENG Y X, HU H X, LIANG Y Q, QIAN Y J. Whole genome sequencing and analysis of isolates of tomato leaf curl New Delhi virus collected from watermelon. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 687-695, 754. (in Chinese)
[13]
ZENG R, GU H, FAN J, XU L, GAO S, SONG Z, GAO P, ZHANG K, ZHANG C, ZHU P, DAI F. Occurrence of tomato leaf curl New Delhi virus in cucurbit plants in China. Plant Disease, 2023, 107: 2561.
[14]
GU Q, YAN L, LIU L, BAO W, FANG H, XU J, LI J, KANG B, WU H, WANG K, TAO X, PENG B. First report of tomato leaf curl New Delhi virus infecting several cucurbit plants in China. Plant Disease, 2023, 107: 2563.
[15]
古勤生, 严蕾艳, 刘莉铭, 陶小荣, 包卫红, 方辉, 徐锦华, 李菊芬, 康保珊, 王少丽, 王康, 彭斌, 吴会杰. 瓜类作物新病毒——新德里番茄曲叶病毒. 中国瓜菜, 2023, 36(8): 1-4.
GU Q S, YAN L Y, LIU L M, TAO X R, BAO W H, FANG H, XU J H, LI J F, KANG B S, WANG S L, WANG K, PENG B, WU H J. A new virus of cucurbits: Tomato leaf curl New Delhi virus. China Cucurbits and Vegetables, 2023, 36(8): 1-4. (in Chinese)
[16]
郭孟泽. 内蒙古洋葱和大蒜病毒性病原检测与五种大蒜病毒多重PCR检测体系建立[D]. 呼和浩特: 内蒙古农业大学, 2023.
GUO M Z. Detection of viral pathogens in onions and garlic in Inner Mongolia Autonomous Region and establishment of a multiplex PCR detection system for five garlic viral pathogens[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese)
[17]
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.

doi: 10.1093/molbev/msab120 pmid: 33892491
[18]
MUHIRE B M, VARSANI A, MARTIN D P. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE, 2014, 9(9): e108277.
[19]
MARTIN D P, MURRELL B, GOLDEN M, KHOOSAL A, MUHIRE B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 2015, 1(1): vev003.
[20]
ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, GUIRAO-RICO S, LIBRADO P, RAMOS-ONSINS S E, SÁNCHEZ- GRACIA A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 2017, 34(12): 3299-3302.

doi: 10.1093/molbev/msx248 pmid: 29029172
[21]
POND S L K, FROST S D W, MUSE S V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics, 2005, 21(5): 676-679.

doi: 10.1093/bioinformatics/bti079 pmid: 15509596
[22]
LEMEY P, RAMBAUT A, DRUMMOND A J, SUCHARD M A. Bayesian phylogeography finds its roots. PLoS Computational Biology, 2009, 5(9): e1000520.
[23]
RAMBAUT A, LAM T T, MAX CARVALHO L, PYBUS O G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evolution, 2016, 2(1): vew007.
[24]
PATRONO L V, PLÉH K, SAMUNI L, ULRICH M, RÖTHEMEIER C, SACHSE A, MUSCHTER S, NITSCHE A, COUACY-HYMANN E, BOESCH C, WITTIG R M, CALVIGNAC-SPENCER S, LEENDERTZ F H. Monkeypox virus emergence in wild chimpanzees reveals distinct clinical outcomes and viral diversity. Nature Microbiology, 2020, 5(7): 955-965.

doi: 10.1038/s41564-020-0706-0 pmid: 32341480
[25]
TRIFINOPOULOS J, NGUYEN L T, VON HAESELER A, MINH B Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 2016, 44(W1): W232-W235.
[26]
GAO F, KAWAKUBO S, HO S, OHSHIMA K. The evolutionary history and global spatio-temporal dynamics of potato virus Y. Virus Evolution, 2020, 6(2): veaa056.
[27]
VO T T B, LAL A, HO P T, TROIANO E, PARRELLA G, KIL E J, LEE S. Different infectivity of Mediterranean and Southern Asian tomato leaf curl New Delhi virus isolates in cucurbit crops. Plants, 2022, 11(5): 704.
[28]
JAYANTHI P, KUMAR P, ROY A, MANDAL B, GEETANJALI A S. Detection of multiple Begomoviruses in chilli crop in the five agro-climatic zones of Tamil Nadu state of India. Tropical Plant Pathology, 2024, 49(5): 649-661.
[29]
SANDRA N, MANDAL B. Emerging evidence of seed transmission of begomoviruses: Implications in global circulation and disease outbreak. Frontiers in Plant Science, 2024, 15: 1376284.
[30]
BUDZYŃSKA D, MINICKA J, OLMO-UCEDA M J, ELENA S F, HASIÓW-JAROSZEWSKA B. Population dynamics of defective viral genomes of tomato black ring virus during host-to-host transmission. Journal of Virology, 2024, 98(11): e0124424.
[31]
杨柳, 高晓晓, 孙枫, 季英华, 杨秀玲. 新德里番茄曲叶病毒江苏西瓜分离物的鉴定与克隆. 植物病理学报, 2025, 55(3): 380-390.

doi: 10.13926/j.cnki.apps.001359
YANG L, GAO X X, SUN F, JI Y H, YANG X L. Identification and cloning of tomato leaf curl New Delhi virus on watermelon in Jiangsu Province. Acta Phytopathologica Sinica, 2025, 55(3): 380-390. (in Chinese)

doi: 10.13926/j.cnki.apps.001359
[32]
PEDERSEN N C. An update on feline infectious peritonitis: Virology and immunopathogenesis. Veterinary Journal, 2014, 201(2): 123-132.
[33]
JAIMES J A, WHITTAKER G R. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology, 2018, 517: 108-121.

doi: S0042-6822(17)30440-3 pmid: 29329682
[34]
YE G, WANG X, TONG X, SHI Y, FU Z F, PENG G. Structural basis for inhibiting porcine epidemic diarrhea virus replication with the 3C-like protease inhibitor GC376. Viruses, 2020, 12(2): 240.
[35]
MOUSTAQIL M, OLLIVIER E, CHIU H, VAN TOL S, RUDOLFFI- SOTO P, STEVENS C, BHUMKAR A, HUNTER D J B, FREIBERG A N, JACQUES D, LEE B, SIERECKI E, GAMBIN Y. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): Implications for disease presentation across species. Emerging Microbes & Infections, 2021, 10(1): 178-195.
[36]
TANG X, QIAN Z, LU X, LU J. Adaptive evolution of the spike protein in coronaviruses. Molecular Biology and Evolution, 2023, 40(4): msad089.
[37]
SHAN K, WU C, TANG X, LU R, HU Y, TAN W, LU J. Molecular evolution of protein sequences and codon usage in monkeypox viruses. Genomics, Proteomics & Bioinformatics, 2024, 22(1): qzad003.
[38]
刘莉铭, 耿艳飞, 郝芳敏, 康保珊, 吴会杰, 古勤生. 新德里番茄曲叶病毒侵染性克隆构建及甜瓜品种抗病性鉴定. 园艺学报, 2024, 51(11): 2555-2564.

doi: 10.16420/j.issn.0513-353x.2023-0733
LIU L M, GENG Y F, HAO F M, KANG B S, WU H J, GU Q S. Construction of tomato leaf curl New Delhi virus infectious clone and its application in evaluation for melon disease resistance. Acta Horticulturae Sinica, 2024, 51(11): 2555-2564. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2023-0733
[39]
VALOUZI H, SHAHMOHAMMADI N, GOLNARAGHI A, MOOSAVI M R, OHSHIMA K. Genetic diversity and evolutionary analyses of potyviruses infecting narcissus in Iran. Journal of Plant Pathology, 2022, 104(1): 237-250.
[40]
JONES D R. Plant viruses transmitted by thrips. European Journal of Plant Pathology, 2005, 113(2): 119-157.
[1] LIU PengPeng, LI JiangBo, XU HongJun, NIE YingBin, HAN XinNian, KONG DeZhen, SANG Wei. Genetic Diversity Analysis of Protein Fractions and Quality in Xinjiang Winter Wheat Cultivar Resources [J]. Scientia Agricultura Sinica, 2025, 58(15): 2948-2959.
[2] WANG Hui, DING BaoPeng, LI YuXian, REN QuanRu, ZHOU Hai, ZHAO JunLiang, HU HaiFei. Research Progress and Prospects on Crop Pan-Genomics [J]. Scientia Agricultura Sinica, 2025, 58(11): 2045-2061.
[3] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[4] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[5] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[6] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[7] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[8] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[9] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[10] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[11] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[12] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[13] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[14] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[15] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!