Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2539-2548.doi: 10.3864/j.issn.0578-1752.2024.13.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Differences of Plant Nitrogen Transport and Grain Nitrogen Accumulation in Different Yield Levels of Wheat Field

ZHANG Zhen(), SHI Yu(), YU ZhenWen, ZHANG YongLi   

  1. College of Agronomy, Shandong Agricultural University/Key Laboratory of Crop Physiology, Ecology and Tillage, Ministry of Agriculture, Taian 271018, Shandong
  • Received:2023-12-14 Accepted:2024-03-29 Online:2024-07-09 Published:2024-07-09
  • Contact: SHI Yu

Abstract:

【Objective】 Improving the nitrogen transport and accumulation of nutrient organs after wheat flowering, as well as improving the nitrogen accumulation characteristics of wheat grains, is beneficial for increasing the nitrogen accumulation and yield of wheat. This study aimed to clarify the physiological mechanisms underlying the differences in nitrogen utilization efficiency among wheat plants at different yield levels, so as to provide a theoretical basis for reducing yield differences and improving nitrogen utilization efficiency and to achieve high yield and efficient production of wheat.【Method】 The field experiments were conducted in Shiwang Village, Xiaomeng Town, Shandong Province for two consecutive years from 2020 to 2022. Using Tobacco Farmer 1212 as the planting material, three yield levels of wheat fields with a perennial winter wheat yield of around 10 500 kg·hm-2 (S), 9 000 kg·hm-2 (H), and 7 500 kg·hm-2 (M) were selected to compare and analyze the differences in plant nitrogen accumulation and transport, grain nitrogen accumulation characteristics, and grain yield in wheat fields with different yield levels.【Result】 Compared with H and M wheat fields, S wheat field significantly increased the number of spikes per unit area and thousand grain weight, with grain yield 19.64%-27.91% and 51.68%-80.87% higher than H and M wheat fields, respectively, resulting in the highest nitrogen absorption efficiency, nitrogen partial productivity and nitrogen harvest index. The nitrogen accumulation in the nutrient organs of S wheat field during the flowering period increased by 14.22-42.11 kg·hm-2 and 53.74-103.16 kg·hm-2, respectively. The nitrogen accumulation in mature nutrient organs was S, H>M. Compared with H and M wheat fields, S wheat field significantly increased the nitrogen transport of pre flowering nutrient organs and nitrogen accumulation after flowering, and increased the contribution rate of nitrogen accumulation in post flowering nutrient organs to grains, thereby achieving the highest nitrogen accumulation in mature grains. The S wheat field significantly increased the content of free amino acids and soluble proteins in flag leaves after flowering, for promoting the inter source sink transport of nitrogen. According to the logistic equation fitting, the S wheat field significantly increased the maximum and average accumulation rates of grain nitrogen, prolonged the duration of grain nitrogen accumulation, and was the main reason for obtaining the highest grain nitrogen accumulation.【Conclusion】 Suitable soil environment in S wheat field could promote the transfer of stored nitrogen from vegetative organs to grain, and increase the rate of grain nitrogen accumulation and prolong the duration of grain nitrogen accumulation, which was the main reason for the highest grain yield and nitrogen use efficiency.

Key words: nitrogen accumulation, nitrogen utilization, nitrogen translocation, characteristics of grain nitrogen accumulation, wheat fields with different yield levels, grain yield, wheat

Table 1

Soil nutrient content before wheat sowing0"

年份
Year
麦田
Wheat field
全氮
Total nitrogen
(g·kg-1)
有机质
Organic matter
(g·kg-1)
速效钾
Available potassium
(mg·kg-1)
速效磷
Available phosphorous (mg·kg-1)
碱解氮
Alkaline nitrogen
(mg·kg-1)
2020—2021 S 1.20 19.21 204.77 56.11 161.32
H 1.08 14.80 117.73 34.49 115.84
M 0.82 10.30 91.66 21.90 90.82
2021—2022 S 1.27 19.28 204.81 57.52 168.21
H 1.02 14.22 116.97 32.25 121.79
M 0.86 11.69 97.92 25.25 100.31

Table 2

Wheat yield and yield components"

年份
Year
麦田
Wheat field
单位面积穗数
Spike number
(×104 spike·hm-2)
穗粒数
Kernel number
(kernel/spike)
千粒重
1000-grain weight (g)
籽粒产量
Grain yield
(kg·hm-2)
氮素吸收效率
NUpE
(%)
氮肥偏生产力
NPFP
(kg·kg-1)
氮素收获指数
NHI
2020—2021 S 713.96a 40.89a 49.32a 11494.10a 71.86a 42.57a 0.76a
H 628.46b 41.55a 44.33b 8985.81b 68.11b 37.44b 0.72b
M 470.99c 38.08b 44.50b 6354.80c 62.89c 30.26c 0.69b
2021—2022 S 689.95a 39.79a 48.83a 11280.54a 71.12a 41.78a 0.76a
H 612.36b 39.62a 45.75b 9428.37b 69.19b 39.28b 0.73b
M 542.68c 36.97b 44.12b 7436.93c 64.60c 30.99c 0.69b

Table 3

Nitrogen translocation from vegetative organs to grain after the anthesis stages of wheat"

年份
Year
麦田
Wheat field
开花期营养器官氮素积累量
NAA
(kg·hm-2)
成熟期营养器官氮素积累量
NAM
(kg·hm-2)
成熟期籽粒
氮素积累量
GNAm
(kg·hm-2)
营养器官
氮素转运量
NRA
(kg·hm-2)
营养器官氮素
转运量对籽粒
贡献率
NRR (%)
开花后氮素
积累量
ANAaf
(kg·hm-2)
开花后氮素
积累量对籽粒的
贡献率
NCP (%)
2020—2021 S 270.17a 78.14a 253.00a 161.03a 64.15c 89.21a 37.10a
H 228.06b 79.50a 206.65b 140.56b 66.28b 66.35b 32.08b
M 167.01c 67.62b 147.31c 105.39c 71.37a 42.91c 27.42c
2021—2022 S 225.29a 69.07a 245.07a 156.22a 63.75c 88.85a 36.25a
H 211.07b 68.83a 210.52b 142.24b 67.57b 68.28b 32.43b
M 171.55c 57.81b 158.12c 113.74c 71.93a 44.38c 28.07c

Fig. 1

Free amino acids content of flag leaf after anthesis in wheat"

Fig. 2

Soluble protein concentration of flag leaf after anthesis under different treatments"

Fig. 3

Accumulation amount and rate of nitrogen in wheat grains after anthesis under different treatments"

Table 4

Characteristics of nitrogen accumulation under different treatments"

年份
Year
麦田
Wheat field
增长曲线方程
Growth curve equation
R2 Vmax
(mg/grain)
Vmean
(mg/grain·d-1)
D
(d)
2020—2021 S y=242.72/(1+13.77e-0.24x 0.98 13.62a 7.51a 26.37a
H y=194.58/(1+11.61e-0.22x 0.99 11.59b 6.61b 25.31b
M y=140.51/(1+12.17e-0.33x 0.98 11.07b 6.45b 19.67c
2021—2022 S y=234.34/(1+13.95e-0.23x 0.98 13.48a 7.42a 26.09a
H y=198.82/(1+11.74e-0.24x 0.99 11.73b 6.63b 25.42b
M y=150.71/(1+12.57e-0.31x 0.98 11.49b 6.17b 18.92c
[1]
RONG L B, GONG K Y, DUAN F Y, LI S K, ZHAO M, HE J Q, ZHOU W B, YU Q. Yield gap and resource utilization efficiency of three major food crops in the world-A review. Journal of Integrative Agriculture, 2021, 20(2): 349-362.
[2]
XU X X, ZHANG M, LI J P, LIU Z Q, ZHAO Z G, ZHANG Y H, ZHOU S L, WANG Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Research, 2018, 221: 219-227.
[3]
WANG L F, SUN J T, ZHANG Z B, XU P, SHANGGUAN Z P. Winter wheat grain yield in response to different production practices and soil fertility in Northern China. Soil and Tillage Research, 2018, 176: 10-17.
[4]
左婷, 王新霞, 侯琼, 倪亮, 倪玥敏, 王剑, 倪吾钟. 稻-麦轮作体系不同施肥模式对氮肥利用效率和土壤有效养分平衡的影响. 水土保持学报, 2021, 35(1): 213-221, 228.
ZUO T, WANG X X, HOU Q, NI L, NI Y M, WANG J, NI W Z. Nitrogen use efficiency of crops and available nutrient balance in soil as affected by different fertilization modes with a rice-wheat rotation. Journal of Soil and Water Conservation, 2021, 35(1): 213-221, 228. (in Chinese)
[5]
LU X S, YU D S, CHEN Y, XU Z C, HUANG J J, ZHOU C C, PAN Y. Yield and nitrogen use efficiency of winter wheat with different soil fertility. Nutrient Cycling in Agroecosystems, 2020, 116(2): 165-177.
[6]
李传梁, 于振文, 石玉, 张永丽, 张娟. 高产与中产麦田小麦产量和光能及氮素利用效率的差异. 水土保持学报, 2022, 36(6): 340-345.
LI C L, YU Z W, SHI Y, ZHANG Y L, ZHANG J. Differences in wheat yield, light energy and nitrogen use efficiency between high-yield and medium yield wheat fields. Journal of Soil and Water Conservation, 2022, 36(6): 340-345. (in Chinese)
[7]
李欣欣, 石祖梁, 王久臣, 徐志宇, 江荣风. 氮肥基追比对稻茬小麦氮素转运及利用的影响. 麦类作物学报, 2021, 41(1): 61-71.
LI X X, SHI Z L, WANG J C, XU Z Y, JIANG R F. Effect of nitrogen application on nitrogen translocation and utilization in winter wheat in rice-wheat rotation. Journal of Triticeae Crops, 2021, 41(1): 61-71. (in Chinese)
[8]
丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析. 作物学报, 2022, 48(12): 3144-3154.

doi: 10.3724/SP.J.1006.2022.11117
DING Y G, CHEN L, DONG J X, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency. Acta Agronomica Sinica, 2022, 48(12): 3144-3154. (in Chinese)
[9]
潘晓丽, 林治安, 袁亮, 温延臣, 赵秉强. 不同土壤肥力水平下玉米氮素吸收和利用的研究. 中国土壤与肥料, 2013(1): 8-13.
PAN X L, LIN Z A, YUAN L, WEN Y C, ZHAO B Q. Nitrogen uptake and use of summer maize under different soil fertility levels. Soil and Fertilizer Sciences in China, 2013(1): 8-13. (in Chinese)
[10]
杨雅, 夏贤格, 范先鹏, 夏颖, 张富林, 刘冬碧, 吴茂前, 张志毅. 长期秸秆还田提升稻麦轮作系统土壤供钾容量和强度. 植物营养与肥料学报, 2022, 28(4): 589-597.
YANG Y, XIA X G, FAN X P, XIA Y, ZHANG F L, LIU D B, WU M Q, ZHANG Z Y. Long-term straw returning increase the capacity and intensity of soil potassium supply in a rice and wheat rotation system. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 589-597. (in Chinese)
[11]
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000. (in Chinese)
[12]
郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46(3): 423-431.

doi: 10.3724/SP.J.1006.2020.91046
ZHENG F N, CHU J P, ZHANG X, FEI L W, DAI X L, HE M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agronomica Sinica, 2020, 46(3): 423-431. (in Chinese)
[13]
臧贺藏, 刘云鹏, 余鹏, 张英华, 王志敏. 水氮限量供给下两个高产小麦品种物质积累与水分利用特征. 麦类作物学报, 2012, 32(4): 689-695.
ZANG H C, LIU Y P, YU P, ZHANG Y H, WANG Z M. Dry matter accumulation and water utilization characteristics of two highyield winter wheat cultivars under limited irrigation and nitrogen supply. Journal of Triticeae Crops, 2012, 32(4): 689-695. (in Chinese)
[14]
ZHANG Z, YU Z W, ZHANG Y L, SHI Y. Optimized nitrogen fertilizer application strategies under supplementary irrigation improved winter wheat (Triticum aestivum L.) yield and grain protein yield. PeerJ, 2021, 9: e11467.
[15]
徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响. 作物学报, 2022, 48(2): 437-447.

doi: 10.3724/SP.J.1006.2022.01093
XU L L, YIN W, HU F L, FAN H, FAN Z L, ZHAO C, YU A Z, CHAI Q. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat. Acta Agronomica Sinica, 2022, 48(2): 437-447. (in Chinese)
[16]
张铭, 蒋达, 缪瑞林, 许轲, 刘艳阳, 张军, 张洪程. 不同土壤肥力条件下施氮量对稻茬小麦氮素吸收利用及产量的影响. 麦类作物学报, 2010, 30(1): 135-140, 148.
ZHANG M, JIANG D, MIAO R L, XU K, LIU Y Y, ZHANG J, ZHANG H C. Effects of N application rate on nitrogen absorption, utilization and yield of wheat under different soil fertility after rice. Journal of Triticeae Crops, 2010, 30(1): 135-140, 148. (in Chinese)
[17]
高国华. 不同肥力土壤小麦施氮增产效应及氮肥利用率研究. 河南科技学院学报(自然科学版), 2012, 40(3): 11-15.
GAO G H. Effect of nitrogen application on yield-increasing and nitrogen use efficiency of wheat in different fertility soils. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2012, 40(3): 11-15. (in Chinese)
[18]
朱元刚, 初金鹏, 张秀, 钤太峰, 代兴龙, 贺明荣. 不同播期冬小麦氮素出籽效率与氮素利用及转运的相关性. 应用生态学报, 2019, 30(4): 1151-1160.

doi: 10.13287/j.1001-9332.201904.005
ZHU Y G, CHU J P, ZHANG X, QIAN T F, DAI X L, HE M R. Correlation between nitrogen fruiting efficiency and nitrogen utilization and remobilization in winter wheat at different sowing dates. Chinese Journal of Applied Ecology, 2019, 30(4): 1151-1160. (in Chinese)
[19]
崔亚坤, 王妮妮, 田中伟, 戴廷波, 陈艳萍, 袁建华. 分蘖和拔节期干旱对小麦植株氮素积累转运的影响. 麦类作物学报, 2019, 39(3): 322-328.
CUI Y K, WANG N N, TIAN Z W, DAI T B, CHEN Y P, YUAN J H. Effect of water deficit during tillering and jointing stages on nitrogen accumulation and translocation in winter wheat. Journal of Triticeae Crops, 2019, 39(3): 322-328. (in Chinese)
[20]
LI H R, WANG H G, FANG Q, JIA B, LI D X, HE J N, LI R Q. Effects of irrigation and nitrogen application on NO3--N distribution in soil, nitrogen absorption, utilization and translocation by winter wheat. Agricultural Water Management, 2023, 276: 108058.
[21]
孙梦, 冯昊翔, 张晓燕, 刘世洁, 韩志栋, 韩潇杰, 李尊, 马耕, 王丽芳, 王晨阳. 不同土壤肥力下施氮量对小麦产量和品质的影响. 麦类作物学报, 2022, 42(7): 826-834.
SUN M, FENG H X, ZHANG X Y, LIU S J, HAN Z D, HAN X J, LI Z, MA G, WANG L F, WANG C Y. Effects of nitrogen rates on wheat yield and quality under different soil fertility regimes. Journal of Triticeae Crops, 2022, 42(7): 826-834. (in Chinese)
[22]
张露, 张水清, 任科宇, 李俊杰, 段英华, 徐明岗. 不同肥力潮土的酶活计量比特征及其与微生物量的关系. 中国农业科学, 2020, 53(20): 4226-4236. doi: 10.3864/j.issn.0578-1752.2020.20.011.
ZHANG L, ZHANG S Q, REN K Y, LI J J, DUAN Y H, XU M G. Soil ecoenzymatic stoichiometry and relationship with microbial biomass in fluvo-aquic soils with various fertilities. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236. doi: 10.3864/j.issn.0578-1752.2020.20.011. (in Chinese)
[23]
吕广德, 亓晓蕾, 张继波, 牟秋焕, 吴科, 钱兆国. 中、高产型小麦干物质和氮素累积转运对水氮的响应. 植物营养与肥料学报, 2021, 27(9): 1534-1547.
G D, QI X L, ZHANG J B, MOU Q H, WU K, QIAN Z G. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1534-1547. (in Chinese)
[24]
宋兆云, 赵阳, 王东, 谷淑波. 拔节期补灌对两种土壤质地上冬小麦旗叶衰老特性和籽粒产量的影响. 作物学报, 2016, 42(12): 1834-1843.

doi: 10.3724/SP.J.1006.2016.01834
SONG Z Y, ZHAO Y, WANG D, GU S B. Effects of supplemental irrigation at jointing on flag leaf senescence characteristics and grain yield of winter wheat grown in two soil textures. Acta Agronomica Sinica, 2016, 42(12): 1834-1843. (in Chinese)
[25]
隋娜, 李萌, 韩伟, 赵世杰, 田纪春. 超高产小麦生育后期旗叶生理特性的研究. 麦类作物学报, 2009, 29(6): 1039-1042.
SUI N, LI M, HAN W, ZHAO S J, TIAN J C. Study on physiological characteristics of flag leaf of super high yield wheat cultivars at late growth period. Journal of Triticeae Crops, 2009, 29(6): 1039-1042. (in Chinese)
[26]
杨阳, 熊淑萍, 刘娟, 李燕强, 王晓航, 吴延鹏, 马新明. 土壤质地对强筋型小麦郑麦366氮代谢及氮利用效率的影响. 麦类作物学报, 2013, 33(3): 466-471.
YANG Y, XIONG S P, LIU J, LI Y Q, WANG X H, WU Y P, MA X M. Effects of soil texture on nitrogen metabolism and nitrogen efficiency of strong-gluten wheat cultivar Zhengmai 366. Journal of Triticeae Crops, 2013, 33(3): 466-471. (in Chinese)
[27]
王丽华, 曹鑫波, 左师宇, 魏湜, 李晶. 开花后小黑麦旗叶氮代谢与籽粒蛋白质形成的品种间差异. 植物生理学报, 2018, 54(3): 401-410.
WANG L H, CAO X B, ZUO S Y, WEI S, LI J. Differences in flag leaf nitrogen metabolism and grain protein formation among triticale varieties after anthesis. Plant Physiology Journal, 2018, 54(3): 401-410. (in Chinese)
[28]
TIAN Z W, JING Q, DAI T B, JIANG D, CAO W X. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Research, 2011, 124(3): 417-425.
[29]
徐凤娇, 田奇卓, 裴艳婷, 李慧, 刘鑫, 李娜娜, 石玉华. 土壤肥力和施氮方式对冬小麦不同生育期两类氮源吸收利用的影响. 麦类作物学报, 2011, 31(2): 257-264.
XU F J, TIAN Q Z, PEI Y T, LI H, LIU X, LI N N, SHI Y H. Effect of soil fertility and nitrogen application types on absorption and utilization rate of two types of nitrogen sources in wheat at different growth stages. Journal of Triticeae Crops, 2011, 31(2): 257-264. (in Chinese)
[30]
张明伟, 王梦尧, 马泉, 丁锦峰, 朱敏, 李春燕, 朱新开, 封超年, 郭文善. 稻茬晚播小麦公顷产8000 kg高产群体特征及产量构成分析. 麦类作物学报, 2020, 40(10): 1194-1205.
ZHANG M W, WANG M Y, MA Q, DING J F, ZHU M, LI C Y, ZHU X K, FENG C N, GUO W S. Population characteristics and yield components of high-yielding population of late sowing wheat at the level of 8000 kg per hectare in rice-wheat rotation. Journal of Triticeae Crops, 2020, 40(10): 1194-1205. (in Chinese)
[31]
孔海波, 肖丽丽, 代兴龙, 李传兴, 王月超, 李华英, 贺明荣. 地力水平和播期对冬小麦籽粒产量及氮素利用率的影响. 山东农业科学, 2014, 46(6): 35-39.
KONG H B, XIAO L L, DAI X L, LI C X, WANG Y C, LI H Y, HE M R. Effects of fertility level and sowing date on grain yield and nitrogen use efficiency of winter wheat. Shandong Agricultural Sciences, 2014, 46(6): 35-39. (in Chinese)
[32]
丁锦峰, 杨佳凤, 王云翠, 陈芳芳, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 稻茬小麦公顷产量9000 kg群体氮素积累、分配与利用特性. 植物营养与肥料学报, 2013, 19(3): 543-551.
DING J F, YANG J F, WANG Y C, CHEN F F, FENG C N, ZHU X K, LI C Y, PENG Y X, GUO W S. Nitrogen accumulation, distribution and utilization characteristics of wheat at yield level of 9000 kg/ha in rice-wheat rotation. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 543-551. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[7] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[8] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[9] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[10] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[11] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[12] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[13] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[14] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[15] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!