Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2525-2538.doi: 10.3864/j.issn.0578-1752.2024.13.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Jasmonic Acid Regulates the Changes of Major Metabolites in Potato Tuber Development in vitro

LIANG LiJuan(), CHENG LiXiang(), YUAN JianLong, SA Gang, ZHANG Feng()   

  1. College of Agriculture, Gansu Agricultural University/State Key Laboratory of Aridland Crop Science, Lanzhou 730070
  • Received:2024-01-11 Accepted:2024-02-28 Online:2024-07-09 Published:2024-07-09
  • Contact: CHENG LiXiang, ZHANG Feng

Abstract:

【Objective】 Jasmonic acid (JA) is one of key regulatory hormones during potato tuber development. Study on JA regulating tuber development mechanism would provide an important theoretical basis for tuber yield and quality formation.【Method】 In this study, potato stolons cultured in vitro were exogenously applied with JA (0, 0.5, 5, 50 μmol·L-1) to analyze the phenotype, tissue microstructure, carbohydrate accumulation and proteome change of tubers.【Result】 With the increase of JA concentration, the tuber number formed per stolon, tuber diameter, fresh and dry weight, cell area of perimedullary zone, starch and soluble sugar content were gradually increased at 0.5 and 5 μmol·L-1 JA (P<0.05), whereas the tuber diameter, fresh and dry weight, starch content were significantly decreased at 50 μmol·L-1 JA (P<0.05). Lipoxygenase activity was gradually decreased with JA concentration increasing (P<0.05). Thirty-five differentially abundant proteins (P<0.05 and fold change≥2.5) closely related to tuber development regulating by JA were identified by 2-DE and MALDI-TOF/TOF-MS. They were mainly involved in bioenergy and metabolism (28.6%), cell defense and rescue (28.6%), protein biogenesis and storage (11.4%), signaling (8.6%), transcription (8.6%), unknown (8.6%) and miscellaneous (5.6%). The differential expression patterns of these proteins were clustered into three categories by hierarchical clustering analysis. Cluster 1 included 17 proteins that down-regulated at 0.5 μmol·L-1 JA and up-regulated at 5 μmol·L-1 JA, which mainly involved in bioenergy and metabolism, protein biogenesis and storage, signaling and transcription. Cluster 2 included 10 proteins that gradually up-regulated with JA concentration increasing, which were mainly involved in cell defense and rescue, bioenergy and metabolism, transcription. Cluster 3 included 8 proteins that down-regulated after JA treatments, which were mainly involved in bioenergy and metabolism, cell defense and rescue, protein biogenesis and storage. 【Conclusion】 Low JA concentration (0.5, 5 μmol·L-1) might promote tuber morphogenesis by inducing cell enlargement in tuber perimedullary zone, intracellular sucrose and polysaccharide accumulation, and cell defense ability, whereas high JA concentration (50 μmol·L-1) showed inhibitory effects.

Key words: Solanum tuberosum, jasmonic acid, proteome, tuber development, lipoxygenase, mass spectrum

Fig. 1

Potato tuber formation and biomass changes under different JA concentrations in vitro A: Tuber morphology; B: Tuber number formed per stolon; C: Tuber diameter; D: Tuber fresh weight; E: Tuber dry weight. Different lowercase letters indicate significant differences at the P<0.05 level. The same as below"

Fig. 2

Microstructure (A) and average cell area (B) of perimedullary region of potato tubers under different JA concentrations in vitro"

Fig. 3

Starch (A) and soluble sugar (B) content of potato tubers under different JA concentrations in vitro"

Fig. 4

LOX activity change of potato tubers under different JA concentrations in vitro"

Fig. 5

2-DE gels of potato tuber proteins under different JA concentrations in vitro A:0 μmol·L-1;B:0.5 μmol·L-1;C:5 μmol·L-1;D:50 μmol·L-1"

Table 1

Identification results of differentially abundant proteins during potato tuber development regulated by JA in vitro"

点序号a
Spot No.
蛋白名称
Ptotein name
物种
Organism
gi号b
gi No.
理论等电点/相对分子
质量c
Theoretical pI/Mr (kDa)
得分d
Score
匹配
肽段e
PN
相对表达丰度±标注误差f
Relative V% ±SE
0, 0.5, 5, 50 (μmol·L-1)
生物能量与代谢相关蛋白质Bioenergy and metabolism-related proteins
6606 3-磷酸甘油醛脱氢酶
Glyceraldehyde 3-phosphatedehydrogenase
Solanum
tuberosum
gi|22094840 6.34/36.79 882 17
4805 烯醇化酶
Enolase
Solanum lycopersicum gi|350538295 5.68/48.05 1120 23
3819 烯醇化酶
Enolase
Solanum lycopersicum gi|350538295 5.68/48.05 1070 15
7610 假定的线粒体NAD依赖的苹果酸脱氢酶
Putative mitochondrial NAD-dependent malate dehydrogenase
Solanum tuberosum gi|21388544 8.87/36.40 1000 15
1409 尿苷二磷酸葡萄糖醛基转移酶1-6 UDP-glucuronosyltransferase1-6 Medicago truncatula gi|357512853 6.20/54.68 45 7
7701 甲酸脱氢酶
Formate dehydrogenase
Solanum lycopersicum gi|350538487 6.87/42.35 864 19
0804 类3-酮脂酰-CoA合酶17
3-ketoacyl-CoA synthase 17-like
Vitis vinifera gi|359479575 8.24/52.53 59 10
1309 双半乳糖二酰基甘油合酶2
Digalactosyldiacylglycerol synthase 2
Brachypodium distachyon gi|357112938 8.65/53.57 40 8
7311 类细胞色素P450 86A1
Cytochrome P450 86A1-like
Glycine max gi|356553060 9.30/59.44 41 4
1804 细胞色素P450
Cytochrome P450
Arabidopsis thaliana gi|19698839 8.92/58.80 58 12
细胞防御相关蛋白质Cell defense and rescue-related proteins
1715 铜锌超氧化物歧化酶
Cu/Zn-superoxide dismutase
Solanum tuberosum gi|13751866 5.28/14.56 553 8
8711 过氧化物酶
Peroxidase
Nicotiana tabacum gi|14031049 5.99/39.49 440 12
5306 脱氢抗坏血酸还原酶
Dehydroascorbate reductase
Solanum tuberosum gi|160347100 6.09/23.61 653 12
6827 多酚氧化酶
Polyphenol oxidase
Solanum tuberosum gi|1146426 7.18/68.10 492 19
5822 多酚氧化酶
Polyphenol oxidase
Solanum tuberosum gi|1146426 7.18/68.10 379 15
5501 I型几丁质酶
Class I chitinase
Solanum tuberosum gi|6707113 5.66/36.33 494 6
7505 内切几丁质酶2
Endochitinase 2
Solanum tuberosum gi|1705808 5.94/34.57 685 8
8307 假定的无毒性响应蛋白
Putative avirulence-responsive protein
Arabidopsis thaliana gi|15217702 8.23/29.08 49 8
2302 核苷酸结合位点富含亮氨酸重复序列抗病蛋白Nucleotide binding site-leucine-rich repeat disease resistance protein Pyrus communis gi|40644864 5.03/5.80 46 4
7112 羧酸酯酶
Carboxylesterase
Malus pumila gi|82697935 6.02/34.62 35 2
转录相关蛋白质Transcription-related proteins
6714 核RNA结合蛋白
Nuclear RNA binding protein
Solanum tuberosum gi|257215078 6.47/39.06 590 14
0102 假定的富含甘氨酸RNA结合蛋白
Putative glycine-rich RNA binding protein-like
Solanum tuberosum gi|82623423 5.58/17.56 599 12
3310 成熟酶K
Maturase K
Ledermanniella pusilla gi|327204748 9.70/37.54 45 7
蛋白质生物合成与贮藏相关蛋白质Protein biogenesis and storage-related proteins
8001 蛋白酶抑制剂Ⅱ前体类型B
Proteinase inhibitor Ⅱ precursor type B
Solanum tuberosum gi|334898813 5.69/17.60 447 10
9703 类延伸因子1α蛋白
Elongation factor 1-alpha-like protein
Solanum tuberosum gi|77999257 9.20/44.33 303 7
0009 类天冬氨酸蛋白酶前体
Aspartic protease precursor-like
Solanum tuberosum gi|82623417 5.85/55.71 420 8
1907 热激蛋白70
Heat shock 70 protein
Spinacia oleracea gi|2654208 5.19/76.26 885 18
信号转导相关蛋白质Signaling-related proteins
8108 丝裂原活化蛋白激酶
MAP kinase
Medicago truncatula gi|357437463 5.43/103.11 62 14
6416 含EF-手型结构域的钙结合蛋白
Calcium-binding EF-hand-containing protein
Arabidopsis thaliana gi|18407118 4.34/15.32 52 7
7320 类磷脂酰肌醇-4-磷酸5-激酶1
Phosphatidylinositol-4-phosphate 5-kinase 1-like
Brachypodium distachyon gi|357117945 8.74/81.57 46 11
混杂Miscellaneous
8203 果实成熟蛋白
Fruit-ripening protein
Solanum lycopersicum gi|350539427 6.48/12.54 927 13
1507 Ran结合蛋白-1
Ran binding protein-1
Solanum lycopersicum gi|350538193 4.88/25.22 665 9
未知功能Unknown
2203 假定蛋白OsJ_24584
Hypothetical protein OsJ_24584
Oryza sativa Japonica Group gi|222637200 8.24/69.08 60 10
2401 Os09g0491852
Os09g0491852
Oryza sativa Japonica Group gi|297727117 4.96/39.15 51 5
6310 未知Unknown Picea sitchensis gi|294461039 6.51/8.11 45 3

Fig. 6

Venn diagrams of the number of up-regulated (A) and down-regulated (B) expression protein spots in potato tubers under different JA concentrations in vitro"

Fig. 7

Functional classification of differential abundance proteins during potato tuber development regulated by JA in vitro"

Fig. 8

Hierarchical clustering analysis of differential abundance proteins during potato tuber development regulated by JA in vitro"

[1]
VIOLA R, ROBERTS A G, HAUPT S, GAZZANI S, HANCOCK R D, MARMIROLI N, MACHRAY G C, OPARKA K J. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. The Plant Cell, 2001, 13(2): 385-398.
[2]
DUTT S, MANJUL A S, RAIGOND P, SINGH B, SIDDAPPA S, BHARDWAJ V, KAWAR P G, PATIL V U, KARDILE H B. Key players associated with tuberization in potato: Potential candidates for genetic engineering. Critical Reviews in Biotechnology, 2017, 37(7): 942-957.

doi: 10.1080/07388551.2016.1274876 pmid: 28095718
[3]
KODA Y, KIKUTA Y. Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Production Science, 2001, 4(1): 66-70.
[4]
PRUSKI K, ASTATKIE T, NOWAK J. Jasmonate effects on in vitro tuberization and tuber bulking in two potato cultivars (Solanum tuberosum) under different media and photoperiod conditions. In Vitro Cellular & Developmental Biology-Plant, 2002, 38(2): 203-209.
[5]
SARKAR D, PANDEY S K, SHARMA S. Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum L.) tuber formation in vitro. Plant Cell, Tissue and Organ Culture, 2006, 87(3): 285-295.
[6]
TAKAHASHI K, FUJINO K, KIKUTA Y, KODA Y. Involvement of the accumulation of sucrose and the synthesis of cell wall polysaccharides in the expansion of potato cells in response to jasmonic acid. Plant Science, 1995, 111(1): 11-18.
[7]
CENZANO A, CANTORO R, RACAGNI G, DE LOS SANTOS- BRIONES C, HERNÁNDEZ-SOTOMAYOR T, ABDALA G. Phospholipid and phospholipase changes by jasmonic acid during stolon to tuber transition of potato. Plant Growth Regulation, 2008, 56(3): 307-316.
[8]
KOLOMIETS M V, HANNAPEL D J, CHEN H, TYMESON M, GLADON R J. Lipoxygenase is involved in the control of potato tuber development. The Plant Cell, 2001, 13(3): 613-626.
[9]
GAO X Q, YANG Q, MINAMI C, MATSUURA H, KIMURA A, YOSHIHARA T. Inhibitory effect of salicylhydroxamic acid on theobroxide-induced potato tuber formation. Plant Science, 2003, 165(5): 993-999.
[10]
CHENG L X, WANG D X, WANG Y P, XUE H W, ZHANG F. An integrative overview of physiological and proteomic changes of cytokinin-induced potato (Solanum tuberosum L.) tuber development in vitro. Physiologia Plantarum, 2020, 168(3): 675-693.
[11]
CHENG L X, WANG Y P, LIU Y S, ZHANG Q Q, GAO H H, ZHANG F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. Physiologia Plantarum, 2018, 163(1): 103-123.
[12]
SHARMA N, GRUSZEWSKI H A, PARK S W, HOLM D G, VIVANCO J M. Purification of an isoform of patatin with antimicrobial activity against Phytophthora infestans. Plant Physiology and Biochemistry, 2004, 42(7/8): 647-655.
[13]
ZHAO J, SAKAI K. Multiple signalling pathways mediate fungal elicitor‐induced β‐thujaplicin biosynthesis in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 2003, 54(383): 647-656.
[14]
WANG D X, CHENG L X, WANG Y P, ZHANG F. Comparative proteomic analysis of potato (Solanum tuberosum L.) tuberization in vitro regulated by IAA. American Journal of Potato Research, 2018, 95(4): 395-412.
[15]
KODA Y, KIKUTA Y, TAZAKI H, TSUJINO Y, SAKAMURA S, YOSHIHARA T. Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry, 1991, 30(5): 1435-1438.
[16]
CENZANO A, VIGLIOCCO A, KRAUS T, ABDALA G. Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Annals of Botany, 2003, 91(7): 915-919.

pmid: 12770846
[17]
PLATONOVA T A, EVSIUNINA A S, KORABLEVA N P. Changes in the plastid apparatus of apical meristem cells of potato tubers upon growth regulation with jasmonic acid. Applied Biochemistry and Microbiology, 2010, 46(3): 385-392.
[18]
BLACKLOCK B J, JAWORSKI J G. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochemical and Biophysical Research Communications, 2006, 346(2): 583-590.
[19]
MIZUTANI M. Impacts of diversification of cytochrome P450 on plant metabolism. Biological & Pharmaceutical Bulletin, 2012, 35(6): 824-832.
[20]
WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021-1058.
[21]
MAYER A M. Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry, 2006, 67(21): 2318-2331.

doi: 10.1016/j.phytochem.2006.08.006 pmid: 16973188
[22]
LLORENTE B, LÓPEZ M G, CARRARI F, ASÍS R, DI PAOLA NARANJO R D, FLAWIÁ M M, ALONSO G D, BRAVO- ALMONACID F. Downregulation of polyphenol oxidase in potato tubers redirects phenylpropanoid metabolism enhancing chlorogenate content and late blight resistance. Molecular Breeding, 2014, 34(4): 2049-2063.
[23]
XIA X J, ZHOU Y H, SHI K, ZHOU J, FOYER C H, YU J Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 2015, 66(10): 2839-2856.
[24]
MARUYAMA T, NARA K, YOSHIKAWA H, SUZUKI N. Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly (ADP-ribose) polymerase 1 and elongation factor 1α and regulates interferon-γ gene transcription in Th1 cells. Clinical and Experimental Immunology, 2007, 147(1): 164-175.
[25]
黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析. 作物学报, 2022, 48(3): 597-607.

doi: 10.3724/SP.J.1006.2022.14023
HUANG C, LIANG X M, DAI C, WEN J, YI B, TU J X, SHEN J X, FU T D, MA C Z. Genome wide analysis of BnAPs gene family in Brassica napus. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[26]
SIMÕES I, FARO C. Structure and function of plant aspartic proteinases. European Journal of Biochemistry, 2004, 271(11): 2067-2075.

doi: 10.1111/j.1432-1033.2004.04136.x pmid: 15153096
[27]
CHOUDHARY M K, BASU D, DATTA A, CHAKRABORTY N, CHAKRABORTY S. Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Molecular & Cellular Proteomics, 2009, 8(7): 1579-1598.
[28]
MILLER E A, LEE M C, ATKINSON A H O, ANDERSON M A. Identification of a novel four-domain member of the proteinase inhibitor Ⅱ family from the stigmas of Nicotiana alata. Plant Molecular Biology, 2000, 42(2):329-333.
[29]
HANNAPEL D J, SHARMA P, LIN T, BANERJEE A K. The multiple signals that control Tuber formation. Plant Physiology, 2017, 174(2): 845-856.
[30]
RODRIGUEZ M C S, PETERSEN M, MUNDY J. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology, 2010, 61(1): 621-649.
[31]
DRØBAK B K, DEWEY R E, BOSS W F. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells. International Review of Cytology, 1999, 189: 95-130.
[32]
STENZEL I, ISCHEBECK T, KÖNIG S, HOŁUBOWSKA A, SPORYSZ M, HAUSE B, HEILMANN I. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. The Plant Cell, 2008, 20(1): 124-141.
[33]
NOOKARAJU A, PANDEYS K, UPADHYAYA C P, HEUNG J J, KIM H S, CHUN S C, KIM D H, PARK S W. Role of Ca2+-mediated signaling in potato tuberization: An overview. Botanical Studies, 2012, 53(2): 177-189.
[34]
KUHN J M, BRETON G, SCHROEDER J I. mRNA metabolism of flowering-time regulators in wild-type Arabidopsis revealed by a nuclear cap binding protein mutant, abh1. The Plant Journal, 2007, 50(6): 1049-1062.
[35]
VOINNET O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687.

doi: 10.1016/j.cell.2009.01.046 pmid: 19239888
[36]
GLISOVIC T, BACHORIK J L, YONG J, DREYFUSS G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Letters, 2008, 582(14): 1977-1986.

doi: 10.1016/j.febslet.2008.03.004 pmid: 18342629
[37]
HAO D C, CHEN S L, XIAO P G. Molecular evolution and positive Darwinian selection of the chloroplast maturase matK. Journal of Plant Research, 2010, 123(2): 241-247.

doi: 10.1007/s10265-009-0261-5 pmid: 19943076
[38]
TAKAI Y, SASAKI T, MATOZAKI T. Small GTP-binding proteins. Physiological Reviews, 2001, 81(1): 153-208.

doi: 10.1152/physrev.2001.81.1.153 pmid: 11152757
[39]
CHEN N, XU Y Y, WANG X, DU C, DU J Z, YUAN M, XU Z H, CHONG K. OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant Cell & Environment, 2011, 34(1): 52-64.
[1] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[2] YIN YanDie, YANG YanMei, FU QiChun, WANG Qin, LI YongQing, DUAN JinFeng, LIU YuZhu, WANG QiaoMei, HU XianQi. The Effects of Potato Root Exudates on the Hatching and Chemotaxis of Globodera rostochiensis and Verification of Exogenous Acid Substances [J]. Scientia Agricultura Sinica, 2024, 57(11): 2161-2175.
[3] TANG ZhenSan, YUAN JianLong, KANG LiangHe, CHENG LiXiang, LÜ Tai, YANG Chen, ZHANG Feng. Potato Tuber Skin Roughness Classification Analysis Based on Image Characteristics Recognition [J]. Scientia Agricultura Sinica, 2023, 56(22): 4428-4440.
[4] KONG LeHui, ZONG DeQian, SHI QingYao, YIN PanPan, WU WenYu, TIAN Peng, SHAN WeiXing, QIANG XiaoYu. Identification of StCYP83 Gene Family in Potato and Analysis of Its Function in Resistance Against Late Blight [J]. Scientia Agricultura Sinica, 2023, 56(16): 3124-3139.
[5] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[6] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[7] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[8] LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture [J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293.
[9] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[10] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[11] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[12] ZHAO Xue,WANG Feng,WANG WenJing,LIU XiaoFeng,BIAN ShiQuan,LIU YanHua,LIU XinMin,DU YongMei,ZHANG ZhongFeng,ZHANG HongBo. Splicing Property Analyses of the NRSE1 Element from Tobacco PR3b mRNA After Fusion Expression with GUS Gene [J]. Scientia Agricultura Sinica, 2020, 53(8): 1524-1531.
[13] XU XiaoYu,LI AiPing,WU SiFeng,LI ChengXun,ZHENG KaiBin. Composition Analysis of Gas Phase and Liquid Phase of Fresh Floral Water Extract and Fresh Flowers Cell Sap from Gardenia jasminoides [J]. Scientia Agricultura Sinica, 2020, 53(22): 4710-4726.
[14] QIN XiuJuan,QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui,LI Qiang. Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4189-4203.
[15] ZHANG FuYan, CHEN Feng, CHENG ZhongJie, YANG BaoAn, FAN JiaLin, CHEN XiaoJie, ZHANG JianWei, CHEN YunTang, CUI Long. Effects of TaLox-B Alleles on Lipoxygenase Activity and Flour Color in Wheats [J]. Scientia Agricultura Sinica, 2017, 50(8): 1370-1377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!