Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2549-2567.doi: 10.3864/j.issn.0578-1752.2024.13.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Partial Replacement of Chemical Fertilizers with Green Manure on Dry Matter Accumulation and Yield Formation of Maize

QIN WenLi(), ZHI JianFei, XIE Nan, ZHANG LiFeng, LIU ZhongKuan(), LIU ZhenYu, FENG Wei, PAN Xuan, DAI YunXia   

  1. Institute of Agricultural Resource and Environment, Hebei Academy of Agriculture and Forestry Sciences/Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051
  • Received:2024-01-02 Accepted:2024-04-29 Online:2024-07-09 Published:2024-07-09
  • Contact: QIN WenLi, LIU ZhongKuan

Abstract:

【Objective】 Replacing some chemical nitrogen fertilizers with leguminous green manure is an important technical measure to achieve reduced fertilizer application. The effects of hairy vetch which was planted to replace winter wheat and nitrogen reduction on the accumulation and transportation of dry matter accumulation, yield formation, and post flowering leaf senescence characteristics of maize in North China were studied, so as to provide a scientific basis for leguminous winter green manure substitution for chemical nitrogen fertilizer and optimized management of nitrogen resources in maize. 【Method】 The two-factor split plot field experiment was carried out from 2020 to 2022 at Shenzhou Experimental Station of Dryland Farming Institute of Hebei Academy of Agriculture and Forestry Sciences. The two modes, including the winter fallow field (FF) and hairy vetch being planted in the winter fallow field and total returning (HV), were set as main treatment, and the five nitrogen application rates of maize were set as sub-treatment, including no nitrogen application (0 N), 67.5 kg·hm-2 (25% N), 135.0 kg·hm-2 (50% N), 202.5 kg·hm-2 (75% N), and 270.0 kg·hm-2 (100% N, the conventional nitrogen application level). Yield and yield components, ear agronomic traits, dry matter accumulation and transport, leaf senescence characteristics of maize, and changes in soil nutrients and enzyme activity were investigated, moreover, the nitrogen surplus in farmland were analyzed.【Result】 Returning hairy vetch to the field significantly increased maize yield and could compensate for the reduction in maize yield caused by chemical nitrogen reduction. From 2021 to 2022, the return of hairy vetch dramatically raised maize yield (8.15%-9.21%), which could compensate for the grain yield loss caused by 25%-50% reduction in nitrogen fertilization. Continuous return of hairy vetch significantly reduced the bare top length, dramatically increased the ear length, the ear diameter, and yield components, such as row number, kernels number per row, and hundred-grain weight. After returning hairy vetch to the field, the dry matter accumulation before and after flowering, the dry matter accumulation rate after flowering, and the contribution rate of dry matter after flowering to grains significantly increased by 10.21-12.32 g/plant, 39.94-72.37 g/plant, 4.67%-4.78%, and 3.31%-3.99%, respectively, which could compensate for the negative effect of reducing nitrogen fertilizer application by 25%-50% on the dry matter accumulation before flowering and the contribution rate of dry matter after flowering to grains of maize. The incorporation of hairy vetch prominently postponed the post-anthesis leaf senescence of maize. In 2021 and 2022, the green leaf area of maize treated with HV was 303.44-1 115.10 and 266.23-837.62 cm2/plant higher than that under FF, respectively. The relative green leaf area after flowering increased by 1.12% -13.84% and 0.56% -9.13%, respectively. Vmax decreased by 0.30% and 0.05%, respectively. Tmax was delayed by 6.01 days and 3.56 days, respectively. The organic matter content, total nitrogen content, alkaline nitrogen content, as well as the activities of urease, sucrase, amylase, and protease in the soil significantly increased after continuous returning of hairy vetch to the field. In 2021 and 2022, the nitrogen rates under HV could increase by 40.92 and 72.79 kg·hm-2, respectively; the optimal chemical nitrogen applications under HV could be reduced by 40.96 and 48.90 kg·hm-2, respectively; the nitrogen surplus under HV could be decreased by 7.94 and 0.14 kg·hm-2, respectively; HV could replace a maximum nitrogen application rate of 15.71% and 19.71%, respectively, which could replace conventional nitrogen application rates of 15.71% and 26.23%, respectively. 【Conclusion】 The incorporation of hairy vetch could activate soil enzyme activity, effectively enhance soil nitrogen nutrient supply capacity, delay post popcorn leaf senescence, increase the contribution rate of post flowering dry matter accumulation to grains, and improve ear traits and coordinate yield composition, which all were beneficial for increasing and stabilizing maize yield after nitrogen reduction. The input of soil nitrogen by hairy vetch was the basis for its partial replacement of chemical nitrogen fertilizer and compensation for the yield loss caused by chemical nitrogen reduction. The use of hairy vetch instead of partial chemical nitrogen fertilizer in the seasonal fallow areas of winter wheat in North China was a sustainable nitrogen reduction measure.

Key words: hairy vetch, reduced nitrogen application, maize, yield, day matter accumulation, soil nitrogen supply capacity

Fig. 1

Change in precipitation and average temperature during the crop growth period in the Shenzhou experimental station from 2020 to 2022"

Table 1

Shoot dry biomass and nitrogen nutrient accumulation of winter green manure under different treatments in 2021 and 2022"

种植模式
Cropping pattern
氮肥用量
N rate
(%)
2021 2022
地上干物质量
SDB (kg·hm-2)
氮含量
N content (g·kg-1)
地上氮素积累量
NNA (kg·hm-2)
地上干物质量
SDB (kg·hm-2)
氮含量
N content (g·kg-1)
地上氮素积累量
NNA (kg·hm-2)
HV 0 2922.11±50.25a 23.30±0.30a 68.09±1.80a 4360.33±133.24d 24.37±0.64d 106.26±0.52d
25 2952.37±128.55a 22.95±0.47a 67.76±3.88a 4793.05±103.34c 26.70±0.20c 127.98±3.34c
50 2922.15±87.33a 23.70±0.45a 69.25±3.37a 5169.38±40.63b 27.87±0.40b 144.08±3.22b
75 2958.56±165.09a 23.50±0.58a 69.53±4.75a 5331.88±20.84a 28.67±0.15a 152.85±0.43a
100 2930.98±154.61a 23.35±0.36a 68.44±3.35a 5368.13±89.61a 28.77±0.47a 154.41±2.33a
FF 0 1726.33±24.58a 16.00±0.20a 27.62±0.66a 2244.67±59.65e 14.53±0.35e 32.61±0.39e
25 1699.33±18.04a 16.27±0.25a 27.64±0.63a 2416.33±30.66d 15.73±0.31d 38.01±0.61d
50 1704.00±130.15a 16.23±0.15a 27.67±2.28a 2545.33±63.22c 17.03±0.65c 43.38±2.70c
75 1715.33±93.39a 16.27±0.12a 27.91±1.61a 2918.00±37.47b 18.57±0.42b 54.17±0.69b
100 1709.67±26.54a 16.20±0.20a 27.69±0.37a 3157.00±146.81a 19.83±0.70a 62.62±3.90a
平均 Average
HV 2937.23±47.95a 23.36±0.11a 68.61±1.07a 5004.55±46.07a 27.27±0.20a 137.12±1.42a
FF 1710.93±50.40b 16.19±0.05b 27.70±0.80b 2656.27±46.44b 17.14±0.18b 46.16±1.56b

Table 2

Effects of hair vetch and nitrogen reduction on grain yield, yield components and ear agronomic traits of maize"

年份
Year
种植模式
Cropping pattern
氮肥用量
N rate(%)
秃尖长
Bare top
length (cm)
穗长
Ear length (cm)
穗粗
Ear diameter (cm)
穗行数
Row number per ear
行粒数
Kernels
per row
百粒重
100-kernel weight (g)
产量
Yield
(kg·hm-2)
2021 HV 0 1.33±0.01ab 16.77±0.32bcd 4.86±0.02bc 14.82±0.35abc 32.09±0.65d 33.44±0.98cd 5785.18±123.70cd
25 1.28±0.02abc 16.82±0.33bcd 4.88±0.05abc 14.91±0.06ab 34.21±0.48abc 34.00±0.81bc 6148.89±116.10b
50 1.27±0.04bc 16.92±0.48abc 4.89±0.02abc 14.92±0.28ab 35.14±0.62ab 35.25±0.82ab 6324.92±45.47ab
75 1.22±0.06c 17.22±0.50ab 4.94±0.02a 14.97±0.12ab 35.26±0.78ab 35.67±0.58a 6459.31±45.93a
100 1.21±0.07c 17.46±0.05a 4.93±0.03ab 15.02±0.19a 35.67±1.05a 35.55±0.32a 6440.21±63.74a
FF 0 1.38±0.06a 15.88±0.28e 4.83±0.03c 13.28±0.06d 30.40±1.15e 32.42±0.13d 5258.34±93.96e
25 1.35±0.02ab 16.03±0.25e 4.87±0.09abc 13.37±0.08d 32.96±1.06cd 33.27±0.44cd 5639.97±30.77d
50 1.33±0.07ab 16.29±0.27de 4.87±0.05abc 13.57±0.06d 33.11±1.43cd 34.01±0.29bc 5793.48±157.63cd
75 1.31±0.03ab 16.61±0.19cd 4.89±0.02abc 14.55±0.09c 33.94±1.04bc 34.52±0.95abc 5924.06±193.97c
100 1.27±0.03bc 16.73±0.06bcd 4.90±0.10abc 14.68±0.08bc 34.40±0.88abc 34.59±1.09abc 6193.47±132.03b
ANOVA
CP ** ** ns ** ** * **
N ** ** * * ** ** **
CP×N ns ns ns ns ns ** ns
2022 HV 0 1.84±0.04bc 16.81±0.22de 4.88±0.08c 15.33±0.14c 34.38±1.02cd 33.60±0.05c 7739.82±247.12e
25 1.56±0.12cd 16.93±0.20cde 5.03±0.00ab 15.42±0.04bc 36.15±0.85ab 34.62±0.40ab 9429.09±65.12b
50 1.53±0.14cd 17.21±0.32bcd 5.04±0.03ab 15.47±0.12abc 36.59±0.35a 34.90±0.22a 9989.90±226.21a
75 1.34±0.17d 17.41±0.14abc 5.05±0.03a 15.51±0.16abc 36.85±0.76a 34.89±0.27a 10090.84±103.68a
100 1.49±0.15cd 17.81±0.27a 5.04±0.09ab 15.73±0.18a 36.64±0.53a 34.62±0.36ab 10057.07±80.53a
FF 0 2.26±0.17a 15.78±0.47f 4.50±0.09ed 15.31±0.14c 29.01±0.80e 33.03±0.38d 6606.35±367.61f
25 1.98±0.30ab 16.60±0.12e 4.73±0.09d 15.40±0.27c 33.35±1.28d 34.16±0.44b 8349.78±198.51d
50 1.80±0.29bc 16.78±0.43de 4.91±0.10bc 15.42±0.13bc 35.00±0.75bc 34.25±0.14b 8985.62±207.15c
75 1.80±0.13bc 17.26±0.34bcd 5.02±0.04ab 15.49±0.10abc 35.02±0.86bc 34.38±0.38ab 9605.43±229.68b
100 1.77±0.18bc 17.61±0.14ab 5.04±0.01ab 15.71±0.14ab 35.13±0.35bc 34.43±0.14ab 9771.69±104.89b
ANOVA
CP ** ** ** * ** * **
N ** ** ** ** ** ** **
CP×N ns ns ns ** ** ns ns

Table 3

Effects of hair vetch and nitrogen reduction on accumulation and transport of maize dry matter"

年份
Year
种植模式
Cropping pattern
氮肥
用量
N rate
(%)
花前干物质
积累量
DMABF (g/plant)
花后干物质
积累量
DMAAF (g/plant)
花前干物质
积累率DMARBF (%)
花后干物质
积累率DMARAF
(%)
干物质
转运量DMT (g/plant)
干物质
转运率
DMTR rate (%)
花前干物质
积累贡献率
CRDMABF (%)
花后干物质
积累贡献率CRDMAAF (%)
2021 HV 0 140.62±2.18ef 150.10±3.31d 48.37±0.31d 51.63±0.31c 31.54±2.39ab 29.41±2.19bc 19.42±1.47ab 80.58±1.47cd
25 146.40±3.25d 165.75±2.91c 46.90±0.75e 53.10±0.75b 34.67±1.77a 28.39±1.22c 18.86±1.20b 81.14±1.20c
50 153.89±2.89abc 176.01±4.59b 46.65±0.74ef 53.35±0.74ab 33.75±1.20a 26.30±0.75d 17.10±0.52c 82.90±0.52b
75 158.70±4.48a 183.31±5.98ab 46.40±0.52ef 53.60±0.52ab 33.10±1.37ab 25.34±1.07de 16.30±0.89cd 83.70±0.89ab
100 158.84±5.05a 187.30±4.82a 45.89±0.22f 54.11±0.22a 30.54±1.40b 22.97±0.85e 15.24±0.43d 84.76±0.43a
FF 0 128.25±1.73g 126.15±6.67d 50.43±1.16c 49.57±1.16d 32.70±2.30ab 34.65±2.06a 22.25±1.70a 77.75±1.70d
25 136.49±2.72f 133.03±2.06d 50.64±0.74bc 49.36±0.74d 35.14±2.29a 33.50±1.73ab 21.89±0.94a 78.11±0.94d
50 143.64±3.65de 137.27±9.35d 51.17±1.95abc 48.83±1.95d 34.60±1.43a 31.79±0.43b 21.01±0.48a 78.99±0.48d
75 148.30±3.76cd 132.91±14.64d 52.82±2.90a 47.18±2.90d 33.08±1.91ab 29.29±1.61c 19.78±1.04ab 80.22±1.04cd
100 150.74±2.11bcd 133.42±2.09d 53.05±0.51a 46.95±0.51e 31.91±1.18ab 26.94±0.59d 18.51±0.67b 81.49±0.67c
ANOVA
CP ** ** ** ** ns ** ** **
N ** ** ns ns * ** ** **
CP×N ns ** * * ns ns ns ns
2022 HV 0 168.73±2.61e 276.49±5.18c 37.90±0.53b 62.10±0.53a 28.85±0.98c 21.89±0.89bc 15.12±0.59b 84.88±0.59c
25 178.19±2.00c 303.44±9.63b 37.01±0.92b 62.99±0.92a 30.82±0.47ab 20.77±0.43cd 14.68±0.36bc 85.32±0.36c
50 184.13±1.91b 324.51±6.58a 36.20±0.52b 63.80±0.52a 29.92±0.79bc 19.08±0.20e 13.21±0.26d 86.79±0.26b
75 189.19±4.14ab 321.99±8.72a 37.02±1.13b 62.98±1.13a 27.69±1.05cd 16.41±0.38f 12.12±0.51e 87.88±0.51a
100 191.11±3.01a 317.94±6.39a 37.54±±0.53b 62.46±0.53a 26.66±0.96d 15.54±0.31g 12.03±0.41e 87.97±0.41a
FF 0 156.88±0.93f 225.29±3.64e 41.05±0.65a 58.95±0.65b 28.62±1.90b 24.29±0.86a 19.51±1.98a 80.49±1.98d
25 166.74±2.71e 236.31±4.89d 41.37±0.86a 58.63±0.86b 31.14±1.50ab 23.35±1.21ab 18.96±1.62a 81.04±1.62d
50 171.08±2.72de 238.72±9.36d 41.76±1.00a 58.24±1.00b 32.05±1.09a 22.08±0.53bc 18.34±0.99a 81.66±0.99d
75 176.32±4.90cd 242.16±11.23d 42.15±1.81a 57.85±1.81b 30.00±1.36abc 19.84±1.47de 15.99±1.28b 84.01±1.47c
100 178.74±3.42c 240.02±9.47d 42.70±1.42a 57.30±1.42b 29.97±2.05abc 19.61±0.86de 14.32±0.86bcd 85.68±0.86bc
ANOVA
CP ** ** ** ** ** ** ** **
N ** ** ns ns ** ** ** **
CP×N ns ** ns ns ns ns ns ns

Fig 2

Effects of hair vetch and nitrogen reduction on the green leaf area of maize after spinning"

Fig 3

Effects of hair vetch and nitrogen reduction on the dynamic changes of relative green leaf area of maize after spinning"

Table 4

Leaf senescence change characteristic equation of maize under different treatments"

年份
Year
种植模式
Cropping pattern
氮肥用量
N rate(%)
叶片衰老变化特征方程
Leaf senescence change characteristic equation
决定系数
Coefficient of determination(R2
Vmax
(%)
Tmax
(d)
2021 HV 0 y=e3.229-0.092x/(1+e3.2229-0.092x)×100% 0.964 2.300 35.098
25 y=e3.393-0.085x/(1+e3.393-0.085x)×100% 0.958 2.125 39.918
50 y=e3.865-0.090x/(1+e3.865-0.090x)×100% 0.967 2.250 42.944
75 y=e4.044-0.091x/(1+e4.044-0.091x)×100% 0.960 2.275 44.440
100 y=e3.929-0.090x/(1+e3.929-0.090x)×100% 0.965 2.250 43.656
平均 Average y=e3.617-0.088x/(1+e3.617-0.088x)×100% 0.964 2.200 41.102
FF 0 y=e3.338-0.112x/(1+e3.338-0.112x)×100% 0.986 2.800 29.804
25 y=e3.521-0.107x/(1+e3.521-0.107x)×100% 0.983 2.675 32.907
50 y=e3.464-0.097x/(1+e3.464-0.097x)×100% 0.968 2.425 35.711
75 y=e3.709-0.098x/(1+e3.709-0.098x)×100% 0.964 2.45 37.847
100 y=e3.820-0.097x/(1+e3.820-0.097x)×100% 0.965 2.425 39.381
平均 Average y=e3.509-0.100x/(1+e3.509-0.100x)×100% 0.975 2.500 35.090
2022 HV 0 y=e4.372-0.113x/(1+e4.372-0.113x)×100% 0.964 2.825 38.690
25 y=e4.524-0.110x/(1+e4.524-0.110x)×100% 0.953 2.750 41.127
50 y=e4.056-0.105x/(1+e4.056-0.105x)×100% 0.949 2.625 42.914
75 y=e4.686-0.106x/(1+e4.686-0.106x)×100% 0.949 2.650 44.208
100 y=e4.723-0.107x/(1+e4.723-0.107x)×100% 0.949 2.675 44.140
平均 Average y=e4.535-0.108x/(1+e4.535-0.108x)×100% 0.953 2.700 41.991
FF 0 y=e4.208-0.122x/(1+e4.208-0.122 x)×100% 0.984 3.050 34.492
25 y=e4.237-0.113x/(1+e4.237-0.113x)×100% 0.976 2.825 37.496
50 y=e4.212-0.107x/(1+e4.212-0.107x)×100% 0.961 2.675 39.365
75 y=e4.335-0.107x/(1+e4.335-0.107x)×100% 0.953 2.675 40.514
100 y=e4.295-0.104x/(1+e4.295-0.104x)×100% 0.950 2.600 41.298
平均 Average y=e4.228-0.110x/(1+e4.228-0.110x)×100% 0.968 2.750 38.436

Fig 4

Effects of hair vetch and nitrogen reduction on the soil nutrient content during maize harvest"

Fig 5

Effects of hair vetch and nitrogen reduction on the soil enzyme activity during maize harvest period"

Fig 6

Effects of hair vetch on the optimal chemical nitrogen application rate for maize"

Table 5

Analysis of input-uptake of nitrogen in field (kg·hm-2)"

年份
Year
主处理
Main treatment
氮素投入量
Nitrogen input
最高产量玉米氮素吸收量
Nitrogen uptake of maize with highest yield
氮素盈余
Input-uptake of nitrogen
绿肥
Green manure
最佳施氮量
The optimal chemical nitrogen input
籽粒
Grian
秸秆
Straw
地上部
Above ground
2021 HV 112.95 229.04 87.51 30.77 118.28 223.71
FF 72.03 270.00 83.40 26.98 110.38 231.65
2022 HV 187.55 199.17 148.94 69.09 218.03 168.69
FF 114.76 248.07 126.78 67.22 194.00 168.83
[1]
赵其国, 沈仁芳, 滕应, 李秀华. 我国地下水漏斗区耕地轮作休耕制度试点成效及对策建议. 土壤, 2018, 50(1): 1-6.
ZHAO Q G, SHEN R F, TENG Y, LI X H. Pilot progress and countermeasures on farmland rotation and fallow system in the groundwater funnel area of China. Soils, 2018, 50(1): 1-6. (in Chinese)
[2]
翁玲云, 杨晓卡, 吕敏娟, 辛思颖, 陈帅, 马文奇, 魏静. 长期不同施氮量下冬小麦-夏玉米复种系统土壤硝态氮累积和淋洗特征. 应用生态学报, 2018, 29(8): 2551-2558.

doi: 10.13287/j.1001-9332.201808.026
WENG L Y, YANG X Q, M J, XIN S Y, CHEN S, MA W Q, WEI J. Characteristics of soil nitrate accumulation and leaching under different long-term nitrogen application rates in winter wheat and summer maize rotation system. Chinese Journal of Applied Ecology, 2018, 29(8): 2551-2558. (in Chinese)
[3]
曹卫东, 包兴国, 徐昌旭, 聂军, 高亚军, 耿明建. 中国绿肥科研60年回顾与未来展望. 植物营养与肥料学报, 2017, 23(6): 1450-1461.
CAO W D, BAO X G, XU C X, NIE J, GAO Y J, GENG M J. Reviews and prospects on science and technology of green manure in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450-1461. (in Chinese)
[4]
张帆, 杨茜. 紫云英与双季稻秸秆协同利用影响稻田土壤钾循环与平衡. 草业学报, 2021, 30(1): 72-80.

doi: 10.11686/cyxb2020089
ZHANG F, YANG Q. Effects of co-utilization of Chinese milk vetch and rice straw on the potassium cycle and potassium balance in a paddy soil. Acta Prataculturae Sinica, 2021, 30(1): 72-80. (in Chinese)

doi: 10.11686/cyxb2020089
[5]
杨叶华, 张松, 王帅, 刘正兰, 方林发, 张学良, 刘瑞, 张建伟, 张宇亭, 石孝均. 中国不同区域常见绿肥产量和养分含量特征及替代氮肥潜力评估. 草业学报, 2020, 29(6): 39-55.

doi: 10.11686/cyxb2019397
YANG Y H, ZHANG S, WANG S, LIU Z L, FANG L F, ZHANG X L, LIU R, ZHANG J W, ZHANG Y T, SHI X J. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China. Acta Prataculturae Sinica, 2020, 29(6): 39-55. (in Chinese)
[6]
MAITRA S, ZAMAN A, MANDAL T K, PALAI J B. Green manures in agriculture: A review. Journal of Pharmacognosy and Phytochemistry, 2018, 7(5): 1319-1327.
[7]
刘蕊, 常单娜, 高嵩涓, 周国朋, 韩梅, 张久东, 曹卫东, 孙小凤. 西北小麦与豆科绿肥间作体系箭筈豌豆和毛叶苕子生物固氮效率及氮素转移特性. 植物营养与肥料学报, 2020, 26(12): 2184-2194.
LIU R, CHANG D N, GAO S J, ZHOU G P, HAN M, ZHANG J D, CAO W D, SUN X F. Nitrogen fixation and transfer efficiency of common vetch and hairy vetch in wheat-vetch intercropping system in Northwest China. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2184-2194. (in Chinese)
[8]
KEBEDE E. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems, 2021, 5: 767998.
[9]
李红燕, 胡铁成, 曹群虎, 鱼昌为, 曹卫东, 黄冬琳, 翟丙年, 高亚军. 旱地不同绿肥品种和种植方式提高土壤肥力的效果. 植物营养与肥料学报, 2016, 22(5): 1310-1318.
LI H Y, HU T C, CAO Q H, YU C W, CAO W D, HUANG D L, ZHAI B N, GAO Y J. Effect of improving soil fertility by planting different green manures in different patterns in dryland. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1310-1318. (in Chinese)
[10]
YAO Z Y, XU Q, CHEN Y P, LIU N, LI Y Y, ZHANG S Q, CAO W D, ZHAI B N, WANG Z H, ZHANG D B, ADL S, GAO Y J. Leguminous green manure enhances the soil organic nitrogen pool of cropland via disproportionate increase of nitrogen in particulate organic matter fractions. Catena, 2021, 207: 105574.
[11]
ZHOU G P, CAO W D, BAI J S, XU C X, ZENG N H, GAO S J, REES R M, DOU F G. Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen (N) and reduce carbon and N losses: An incubation study. Pedosphere, 2020, 30(5): 661-670.
[12]
赵秋, 张新建, 宁晓光. 华北冬绿肥作物养分累积特征及对翻压前土壤养分的影响. 中国土壤与肥料, 2022(5): 61-67.
ZHAO Q, ZHANG X J, NING X G. Study on green manure crops nutrient accumulation and effect on soil nutrients before returning in North China. Soil and Fertilizer Sciences in China, 2022(5): 61-67. (in Chinese)
[13]
梁鑫宇, 宋明丹, 韩梅, 李正鹏. 有机物料腐解过程中养分的释放特征及其影响因素. 植物营养与肥料学报, 2023, 29(6): 1082-1090.
LIANG X Y, SONG M D, HAN M, LI Z P. Release characteristics and influencing factors of carbon, nitrogen, and phosphorus during decomposition of organic materials. Journal of Plant Nutrition and Fertilizers, 2023, 29(6): 1082-1090. (in Chinese)
[14]
王晋龙, 孙崇凤, 程永钢, 郑普山, 洪坚平. 不同绿肥对复垦地土壤化学性状及酶活性的影响. 中国土壤与肥料, 2022(9): 85-93.
WANG J L, SUN C F, CHENG Y G, ZHENG P S, HONG J P. Effects of different green manures on chemical properties and enzyme activities of reclaimed soil. Soil and Fertilizer Sciences in China, 2022(9): 85-93. (in Chinese)
[15]
戴伊莎, 成欣, 刘帮艳, 何鲜, 胡梦阳, 杨武魁, 王龙昌, 武海燕, 李茜, 吴进红. 秸秆和紫云英协同覆盖对西南旱地土壤养分、酶活性及小麦产量的影响. 土壤通报, 2021, 52(6): 1339-1347.
DAI Y S, CHENG X, LIU B Y, HE X, HU M Y, YANG W K, WANG L C, WU H Y, LI Q, WU J H. Impacts of synergistic mulching of straw and milk vetch on soil nutrients, enzyme activities and wheat yield in upland of southwest China. Chinese Journal of Soil Science, 2021, 52(6): 1339-1347. (in Chinese)
[16]
李丽娜, 席运官, 陈鄂, 和丽萍, 王磊, 肖兴基, 田伟. 耕作方式与绿肥种植对土壤微生物组成和多样性的影响. 生态与农村环境学报, 2018, 34(4): 342-348.
LI L N, XI Y G, CHEN E, HE L P, WANG L, XIAO X J, TIAN W. Effects of tillage and green manure crop on composition and diversity of soil microbial community. Journal of Ecology and Rural Environment, 2018, 34(4): 342-348. (in Chinese)
[17]
高嵩涓. 冬绿肥—水稻模式下的土壤微生物特征及硝化作用调控机制[D]. 北京: 中国农业大学, 2018.
GAO S J. Soil microbial community and the regulation mechanisms of nitrification in winter green manure-rice cropping system[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[18]
韩梅, 高嵩娟, 李正鹏, 严清彪, 曹卫东. 青海高原长期复种绿肥毛叶苕子对土壤氨氧化细菌和氨氧化古菌的影响. 干旱地区农业研究, 2021, 39(4): 102-108.
HAN M, GAO S J, LI Z P, YAN Q B, CAO W D. Effects of green manure crop on abundances of ammonia-oxidizing Archaea and ammonia-oxidizing bacteria in soil in Qinghai Plateau. Agricultural Research in the Arid Areas, 2021, 39(4): 102-108. (in Chinese)
[19]
谭英爱, 赵秋, 田秀平, 周丽平, 宁晓光, 张新建, 岳露. 冬绿肥覆盖翻压对土壤碳、氮含量的影响. 河南农业科学, 2020, 49(5): 81-87.
TAN Y A, ZHAO Q, TIAN X P, ZHOU L P, NING X G, ZHANG X J, YUE L. Effect of winter green manure overturning on soil carbon and nitrogen content. Journal of Henan Agricultural Sciences, 2020, 49(5): 81-87. (in Chinese)
[20]
殷芳, 何小七, 樊志龙, 胡发龙, 范虹, 殷文, 柴强. 复种绿肥补偿减量施氮导致的小麦光合效能和产量损失. 植物营养与肥料学报, 2022, 28(11): 1990-2000.
YIN F, HE X Q, FAN Z L, HU F L, FAN H, YIN W, CHAI Q. Compensation of photosynthesis indexes and yield loss of wheat caused by nitrogen reduction with multiple cropping green manures. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 1990-2000. (in Chinese)
[21]
毛小红, 李正鹏, 严清彪, 韩梅. 青海高原麦后复种毛叶苕子对小麦体内养分积累、转运和分配的影响. 青海大学学报, 2022, 40(1): 41-48.
MAO X H, LI Z P, YAN Q B, HAN M. Effects of multiple cropping of Vicia villosa L. after wheat in Qinghai Plateau on the nutrient accumulation, transport and distribution of wheat. Journal of Qinghai University, 2022, 40(1): 41-48. (in Chinese)
[22]
张小毅, 刘文露, 向焱赟, 肖峰, 田伟, 张玉盛, 敖和军. 混合绿肥还田对双季稻干物质积累及产量的影响. 湖南农业大学学报(自然科学版), 2021, 47(6): 609-615.
ZHANG X Y, LIU W L, XIANG Y Y, XIAO F, TIAN W, ZHANG Y S, AO H J. Effects of returning mixed green manure on dry matter accumulation and yield of double cropping rice. Journal of Hunan Agricultural University (Natural Sciences), 2021, 47(6): 609-615. (in Chinese)
[23]
苟志文, 殷文, 徐龙龙, 何小七, 王琦明, 柴强. 绿洲灌区复种豆科绿肥条件下小麦稳产的减氮潜力. 植物营养与肥料学报, 2020, 26(12): 2195-2203.
GOU Z W, YIN W, XU L L, HE X Q, WANG Q M, CHAI Q. Potential of nitrogen reduction for maintaining wheat grain yield under multiple cropping with leguminous green manure in irrigated oasis. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2195-2203. (in Chinese)
[24]
杨绣娟, 孙继颖, 高聚林, 刘剑, 孟繁盛, 张悦忠, 温晓亮, 王志刚, 于晓芳, 刘文翔, 王彦淇. 不同生态条件下氮肥对玉米干物质积累、氮素分配及产量的影响. 华北农学报, 2023, 38(3): 108-120.

doi: 10.7668/hbnxb.20193260
YANG X J, SUN J Y, GAO J L, LIU J, MENG F S, ZHANG Y Z, WEN X L, WANG Z G, YU X F, LIU W X, WANG Y Q. Effects of nitrogen fertilizer on dry matter accumulation, nitrogen distribution and yield of maize under different ecological conditions. Acta Agriculturae Boreali-Sinica, 2023, 38(3): 108-120. (in Chinese)
[25]
钱晨晨, 王淑彬, 杨滨娟, 黄国勤. 紫云英与氮肥配施对早稻干物质生产及氮素吸收利用的影响. 中国生态农业学报, 2017, 25(4): 563-571.
QIAN C C, WANG S B, YANG B J, HUANG G Q. Effect of combined application of Chinese milk vetch and nitrogen fertilizer on nitrogen uptake, utilization and dry matter accumulation in early rice. Chinese Journal of Eco-Agriculture, 2017, 25(4): 563-571. (in Chinese)
[26]
马艳芹, 钱晨晨, 邓丽萍, 黄国勤. 紫云英配施氮肥对双季稻产量、干物质量及氮素吸收利用的影响. 核农学报, 2017, 31(12): 2399-2407.

doi: 10.11869/j.issn.100-8551.2017.12.2399
MA Y Q, QIAN C C, DENG L P, HUANG G Q. Effects of combining Chinese milk vetch with nitrogen fertilizer on grain and dry matter yield, nitrogen absorption and utilization of double-cropping rice. Journal of Nuclear Agricultural Sciences, 2017, 31(12): 2399-2407. (in Chinese)

doi: 10.11869/j.issn.100-8551.2017.12.2399
[27]
吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9): 2624-2632. doi: 10.3864/j.issn.0578-1752.2008.09.008.
L H, ZHAO M, ZHAO J R, TAO H B, WANG P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. doi: 10.3864/j.issn.0578-1752.2008.09.008. (in Chinese)
[28]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[29]
张忠学, 尚文彬, 齐智娟, 郑恩楠, 刘明. 不同水氮管理下玉米叶片衰老对氮转移效率的影响. 农业机械学报, 2019, 50(12): 297-303, 267.
ZHANG Z X, SHANG W B, QI Z J, ZHENG E N, LIU M. Effects of different water and nitrogen managements on nitrogen remobilization efficiency during leaf senescence in maize. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 297-303, 267. (in Chinese)
[30]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme and Its Research Methods. Beijing: Agricultural Press, 1986. (in Chinese)
[31]
苏向向, 于爱忠, 吕汉强, 王玉珑. 绿洲灌区小麦复种绿肥并翻压还田对翌年玉米产量形成及氮素吸收利用的影响. 植物营养与肥料学报, 2022, 28(7): 1208-1218.
SU X X, YU A Z, H Q, WANG Y L. Effects of wheat multiple cropping with green manure on grain yield formation and nitrogen absorption and utilization of maize in oasis irrigation area in Northwest China. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1208-1218. (in Chinese)
[32]
罗跃, 卢秉林, 周国朋, 常单娜, 高嵩涓, 张久东, 车宗贤, 朱青, 曹卫东. 河西绿洲灌区玉米间作绿肥根茬还田的氮肥减施效应. 植物营养与肥料学报, 2021, 27(12): 2125-2135.
LUO Y, LU B L, ZHOU G P, CHANG D N, GAO S J, ZHANG J D, CHE Z X, ZHU Q, CAO W D. Effects of returning the root of green manure on reducing N application in maize within their intercropping system in Hexi oasis irrigation area. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2125-2135. (in Chinese)
[33]
柴健, 于爱忠, 李悦, 王玉珑, 王凤, 王鹏飞, 吕汉强, 杨学慧, 尚永盼. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响. 作物学报, 2023, 49(11): 3131-3140.

doi: 10.3724/SP.J.1006.2023.31017
CHAI J, YU A Z, LI Y, WANG Y L, WANG F, WANG P F, H Q, YANG X H, SHANG Y P. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area. Acta Agronomica Sinica, 2023, 49(11): 3131-3140. (in Chinese)

doi: 10.3724/SP.J.1006.2023.31017
[34]
廖育林, 鲁艳红, 谢坚, 周兴, 聂军, 汤文光, 杨曾平. 紫云英配施控释氮肥对早稻产量及氮素吸收利用的影响. 水土保持学报, 2015, 29(3): 190-195, 201.
LIAO Y L, LU Y H, XIE J, ZHOU X, NIE J, TANG W G, YANG Z P. Effects of combined application of controlled release nitrogen fertilizer and Chinese milk vetch on yield and nitrogen nutrient uptake of early rice. Journal of Soil and Water Conservation, 2015, 29(3): 190-195, 201. (in Chinese)
[35]
魏全全, 张萌, 柳玲玲, 顾小凤, 秦松, 芶久兰. 豆科绿肥还田及氮肥减施对黄壤玉米生长的影响. 河南农业科学, 2023, 52(4): 66-73.
WEI Q Q, ZHANG M, LIU L L, GU X F, QIN S, GOU J L. Effects of leguminous green manure return and nitrogen fertilizer reduction on maize growth in yellow soil. Journal of Henan Agricultural Sciences, 2023, 52(4): 66-73. (in Chinese)

doi: 10.15933/j.cnki.1004?3268.2023.04.008
[36]
卢秉林, 车宗贤, 张久东, 包兴国, 吴科生, 杨蕊菊. 氮肥减量下长期间作毛叶苕子根茬还田对玉米产量及氮肥利用率的影响. 中国农业科学, 2022, 55(12): 2384-2397. doi: 10.3864/j.issn.0578-1752.2022.12.010.
LU B L, CHE Z X, ZHANG J D, BAO X G, WU K S, YANG R J. Effects of long-term intercropping of maize with hairy vetch root returning to field on crop yield and nitrogen use efficiency under nitrogen fertilizer reduction. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397. doi: 10.3864/j.issn.0578-1752.2022.12.010. (in Chinese)
[37]
CAI F, MI N, MING H Q, ZHANG Y S, ZHANG H, ZHANG S J, ZHAO X L, ZHANG B B. Responses of dry matter accumulation and partitioning to drought and subsequent rewatering at different growth stages of maize in Northeast China. Frontiers in Plant Science, 2023, 14: 1110727.
[38]
周琦, 张富仓, 李志军, 强生才, 田建柯, 李国栋, 范军亮. 施氮时期对夏玉米生长、干物质转运与产量的影响. 干旱地区农业研究, 2018, 36(1): 76-82.
ZHOU Q, ZHANG F C, LI Z J, QIANG S C, TIAN J K, LI G D, FAN J L. Effects of nitrogen application at different stages on growth, yield, and dry matter transportation of summer maize. Agricultural Research in the Arid Areas, 2018, 36(1): 76-82. (in Chinese)
[39]
张磊, 孔丽丽, 侯云鹏, 于雷, 李海燕, 王立春. 施氮水平对玉米开花后干物质积累、转运及土壤无机氮含量的影响. 玉米科学, 2020, 28(4): 155-164.
ZHANG L, KONG L L, HOU Y P, YU L, LI H Y, WANG L C. Effects of nitrogen application on dry matter accumulation, translocation, and inorganic nitrogen content in soil after anthesis of maize. Journal of Maize Sciences, 2020, 28(4): 155-164. (in Chinese)
[40]
WANG H Y, WU J Q, LI G, YAN L J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecology and Evolution, 2020, 10(21): 12211-12223.

doi: 10.1002/ece3.6852 pmid: 33209282
[41]
焦亚鹏, 齐鹏, 王晓娇, 武均, 姚一铭, 蔡立群, 张仁陟. 施氮量对农田土壤有机氮组分及酶活性的影响. 中国农业科学, 2020, 53(12): 2423-2434. doi: 10.3864/j.issn.0578-1752.2020.12.010.
JIAO Y P, QI P, WANG X J, WU J, YAO Y M, CAI L Q, ZHANG R Z. Effects of different nitrogen application rates on soil organic nitrogen components and enzyme activities in farmland. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434. doi: 10.3864/j.issn.0578-1752.2020.12.010. (in Chinese)
[42]
杨文权, 卢彪儒, 程宇阳, 魏倩倩, 寇建村. 白三叶降解对陕西地区苹果园土壤酶活性的影响. 草业科学, 2019, 36(2): 295-303.
YANG W Q, LU B R, CHENG Y Y, WEI Q Q, KOU J C. Effect of Trifolium repens degradation on apple orchard soil enzyme activities in different regions. Pratacultural Science, 2019, 36(2): 295-303. (in Chinese)
[43]
刘威, 耿明建, 秦自果, 张智, 鲁君明, 鲁剑巍, 曹卫东. 种植绿肥与稻秸协同还田对单季稻田土壤有机碳库和酶活性的影响. 农业工程学报, 2020, 36(7): 125-133.
LIU W, GENG M J, QIN Z G, ZHANG Z, LU J M, LU J W, CAO W D. Effects of co-incorporation of green manure planting and rice straw on soil organic carbon pool and soil enzyme activity in a mono-rice cropping system. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 125-133. (in Chinese)
[44]
李慧敏, 田胜营, 李丹丹, 李增强, 谭钧, 赵炳梓. 有机物料施用对潮土活性有机碳及微生物群落组成的影响. 土壤学报, 2021, 58(3): 777-787.
LI H M, TIAN S Y, LI D D, LI Z Q, TAN J, ZHAO B Z. Effect of application of organic materials on content of labile organic carbon and composition of microbial community in fluvio-aquatic soil. Acta Pedologica Sinica, 2021, 58(3): 777-787. (in Chinese)
[45]
石一鸣, 于春晓, 李可心, 张海波, 王光美. 黄河三角洲盐碱地毛叶苕子不同还田方式下腐解及养分释放特征. 中国土壤与肥料, 2022(12): 183-191.
SHI Y M, YU C X, LI K X, ZHANG H B, WANG G M. Characteristics of decomposition and nutrient release of Vicia villosa under different returning methods in saline alkali land of the Yellow River Delta. Soil and Fertilizer Sciences in China, 2022(12): 183-191. (in Chinese)
[46]
杨林生, 张宇亭, 杨柳青, 谢军, 杨敏, 张跃强, 石孝均. 不同氮钾水平对水稻干物质累积、转运及产量的影响. 中国土壤与肥料, 2019(4): 89-95.
YANG L S, ZHANG Y T, YANG L Q, XIE J, YANG M, ZHANG Y Q, SHI X J. Effects of different nitrogen and potassium rates on dry matter accumulation, transport and yield of rice. Soil and Fertilizer Sciences in China, 2019(4): 89-95. (in Chinese)
[47]
张均华, 刘建立, 张佳宝, 赵夫涛, 程亚南, 王伟鹏. 施氮量对稻麦干物质转运与氮肥利用的影响. 作物学报, 2010, 36(10): 1736-1742.

doi: 10.3724/SP.J.1006.2010.01736
ZHANG J H, LIU J L, ZHANG J B, ZHAO F T, CHENG Y N, WANG W P. Effects of nitrogen application rates on translocation of dry matter and utilization of nitrogen in rice and wheat. Acta Agronomica Sinica, 2010, 36(10): 1736-1742. (in Chinese)
[48]
李潮海, 刘奎, 周苏玫, 栾丽敏. 不同施肥条件下夏玉米光合对生理生态因子的响应. 作物学报, 2002, 28(2): 265-269.
LI C H, LIU K, ZHOU S M, LUAN L M. Response of photosynthesis to eco-physiological factors of summer maize on different fertilizer amounts. Acta Agronomica Sinica, 2002, 28(2): 265-269. (in Chinese)
[49]
WANG W, LI M Y, ZHOU R, MO F, KHAN A, BATOOL A, ZHANG W, LU J S, ZHU Y, WANG B Z, YANG Y M, WANG J, TAO X P, XIONG Y C. Leaf senescence, nitrogen remobilization, and productivity of maize in two semiarid intercropping systems. European Journal of Agronomy, 2023, 150: 126943.
[50]
KOSGEY J R, MOOT D J, FLETCHER A L, MCKENZIE B A. Dry matter accumulation and post-silking N economy of ‘stay-green’ maize (Zea mays L.) hybrids. European Journal of Agronomy, 2013, 51: 43-52.
[51]
叶君, 高聚林, 于晓芳, 王志刚, 孙继颖, 李丽君. 施氮量对超高产春玉米花粒期叶片衰老及产量的影响. 内蒙古农业大学学报(自然科学版), 2011, 32(3): 178-183.
YE J, GAO J L, YU X F, WANG Z G, SUN J Y, LI L J. Effects of nitrogen amounts on senescence process in leaves and yield of super-high yield spring maize during flowering and heading period. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2011, 32(3): 178-183. (in Chinese)
[52]
巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1): 1-13.
JU X T, ZHANG C. The principles and indicators of rational N fertilization. Acta Pedologica Sinica, 2021, 58(1): 1-13. (in Chinese)
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[6] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[7] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[8] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[9] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[10] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[11] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[12] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[13] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[14] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[15] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!