Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3869-3878.doi: 10.3864/j.issn.0578-1752.2023.19.013

• HORTICULTURE • Previous Articles     Next Articles

Nutritional Effects of Liquid Digestate on Tomatoes Grown in Facility Substrates

TENG YunFei1(), SHANG Bin1, TAO XiuPing2()   

  1. 1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Energy Conservation and Waste Management in Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000
  • Received:2023-03-23 Accepted:2023-07-21 Online:2023-10-01 Published:2023-10-08
  • Contact: TAO XiuPing

Abstract:

【Objective】 The nutritional effects of liquid digestate on tomatoes in facility soilless cultivation were investigated, so as to provide scientific basis for the substrate cultivation application of biogas slurry. 【Method】 Here, tomato was used as subject, and the dual inputs of fertilizers (liquid digestate (D) and mineral fertilizer (M)) and soilless substrates (peat substrate (P) and cinder substrate (C)) consisted of four treatments. The parameters of tomato growth, photosynthesis and nutrients uptake were recorded during the experimental period, as well as the properties of substrates. 【Result】The tomato dry biomass under DP treatment was higher than that under MP treatment by 12.6%, and DC treatment was higher than MC treatment by 70.9%. However, the dry biomass under DP and MP treatments were significantly higher than that under DC and MC treatments (P<0.05). The Cond, Ci and Tr of tomato leaf under DP treatment was significantly higher than that under other treatments (P<0.05), and the greatest leaf photosynthetic rate was also observed under DP treatment of (18.17±0.47) µmol·m-2·s-1. Liquid digestate significantly increased the dry biomass and photosynthesis of tomato plants. The total N and total P content of plant under DP treatment were higher than that under MP treatment by 46.9% and 19.7%, respectively, and DC treatment were 1.38 and 2.45 times higher than MC treatment, respectively. Moreover, liquid digestate treatments significantly increased the pH value, organic matter and available phosphate content of substrates compared with chemical fertilizer treatments (P<0.05). The highest fruit yield was obtained under DP treatment of (6.0±0.4) kg·m-2, and the yields between DP and MP treatments had no significant difference. The liquid digestate treatments could significantly increase the soluble sugar content and vitamin C content in tomato fruits (P<0.05), and improve fruit quality. Meanwhile, the results of principal component analysis showed that DP treatment had the best overall performance, followed by MP and DC treatments, while MC treatment was the worst. 【Conclusion】The application of liquid digestate into peat substrate increased the photosynthetic efficiency of leaves and the absorption of nitrogen and phosphorus of tomato plants, as well as the properties of substrate and the yield and quality of fruits. Therefore, the combination was recommended for use in facility tomato cultivation.

Key words: liquid digestate, soilless substrates, tomato, photosynthesis, nutrient uptake, substrate properties

Table 1

Characteristics of liquid digestate and two substrates"

名称
Name
电导率
Electrical conductivity (ms∙cm-1)
pH 总氮
Total nitrogen
(g·kg-1)
氨氮
NH4+-N
(mg·L-1)
有机质
Organic matter
(%)
有效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
沼液1) Liquid digestate 6.8±0.2 8.01±0.01 1000±40 813.3±6.4 213.0±3.0 232.5±0.7 697.0±2.8
草炭基质 Peat substrate 0.4±0.1 5.75±0.08 3.1±0.1 - 8.4±0.4 263.6±1.2 821.1±0.01
炉渣基质 Cinder substrate 0.29±0.01 7.88±0.14 0.2±0.05 - 1.5±0.04 18.0±0.05 37.7±1.2

Table 2

The amounts of fertilizers applied in all treatments"

处理
Treatment
基肥
Base fertilizer (65%)
追肥1)
Topdressing fertilizer (35%)
猪粪沼液+草炭基质(DP)
Liquid digestate applied on peat substrate
2.06 L 0.35 L/次,10次
0.35 L/time, 10 times
化肥+草炭基质(MP)
Mineral fertilizer applied on peat substrate
N: 2.06 g, P2O5: 1.91 g, K2O: 6.24 g 每次N: 0.35 g; P2O5: 0.12 g; K2O: 0.44 g,10次
N: 0.35 g, P2O5: 0.12 g, K2O: 0.44 g per time; 10 times
猪粪沼液+炉渣基质(DC)
Liquid digestate applied on cinder substrate
5.91 L 0.35 L/次,10次
0.35 L/time, 10 times
化肥+炉渣基质(MC)
Mineral fertilizer applied on cinder substrate
N: 5.91 g, P2O5: 2.60 g, K2O: 7.05 g 每次N: 0.35 g; P2O5: 0.12 g; K2O: 0.44 g,10次
N: 0.35 g, P2O5: 0.12 g, K2O: 0.44 g per time; 10 times

Fig. 1

Effect of liquid digestate on dry biomass of tomato plant Different letters indicate significant differences (P<0.05). The same as below"

Fig. 2

Effects of liquid digestate on tomato leaf photosynthetic parameters"

Table 3

Effects of liquid digestate on total nitrogen and chlorophyll content of tomato leaves"

处理
Treatment
总N含量
Leaf total nitrogen (%)
叶绿素含量
Chlorophyll content (mg·g-1 FW)
叶绿素a/叶绿素b
Chl a/Chl b
DP 3.98±0.01c 1.10±0.03b 6.15±0.11b
MP 4.06±0.01b 1.15±0.03b 5.46±0.35c
DC 3.91±0.02d 1.28±0.13a 5.42±0.28c
MC 4.58±0.05a 1.35±0.03a 6.92±0.35a
显著性 Significant
肥料 Fertilizer * ns *
基质 Substrate * * ns
肥料×基质 Fertilizer×Substrate * ns *

Table 4

Effects of liquid digestate on the NPK content of plant at harvest time"

处理
Treatment

Root (%)

Stem (%)

Leaf (%)

Fruit (%)
全株含量
Total-plant (g)
N
DP 2.99±0.04d 5.13±1.16a 4.76±0.80b 3.98±0.11b 11.27±1.44a
MP 3.46±0.04c 3.20±0.19b 3.99±0.26b 3.06±0.09c 7.67±0.28b
DC 4.49±0.05b 5.82±1.15a 6.28±1.05a 4.57±0.12a 9.64±1.32a
MC 5.05±0.17a 4.63±0.08ab 4.34±0.38b 2.84±0.05d 4.05±0.44c
P
DP 0.36±0.03b 0.45±0.13a 0.17±0.02bc 0.25±0.03b 0.73±0.09a
MP 0.20±0.02c 0.34±0.02a 0.22±0.02b 0.26±0.07b 0.61±0.02b
DC 0.53±0.03a 0.36±0.02a 0.33±0.04a 0.46±0.10a 0.76±0.11a
MC 0.13±0.01d 0.19±0.09b 0.13±0.06c 0.25±0.01b 0.22±0.02c
K
DP 1.10±0.01d 2.17±0.01c 1.04±0.02d 2.38±0.03c 5.37±0.55b
MP 1.78±0.02b 2.67±0.02b 2.34±0.03a 2.77±0.03a 6.14±0.19a
DC 1.38±0.03c 2.75±0.02a 1.61±0.02c 2.83±0.04a 4.50±0.83b
MC 2.08±0.04a 1.72±0.01d 2.13±0.01b 2.58±0.05b 2.44±0.20c

Table 5

The changes of physiochemical properties of substrates at different experimental stage among the treatments"

日期
Date
处理
Treatment
电导率
Electrical conductivity
(ms·cm-1)
pH
有机质
Organic matter
(%)
总氮
Total nitrogen
(%)
有效磷
Available phosphorus (g·kg-1)
速效钾
Available potassium (g·kg-1)
定植后30 d
30 d (DAP)
DP 0.95±0.01b 7.28±0.03a 5.08±0.03a 0.59±0.12a 0.20±0.02c 0.34±0.02bc
MP 0.84±0.01c 7.12±0.03b 4.85±0.05b 0.58±0.15a 0.62±0.01a 0.51±0.15a
DC 1.51±0.36a 7.10±0.02b 3.21±0.06c 0.20±0.08b 0.45±0.001b 0.48±0.04b
MC 0.91±0.12b 6.77±0.04c 1.74±0.15d 0.27±0.03b 0.09±0.001d 0.27±0.01c
定植后60 d
60 d (DAP)
DP 1.50±0.01a 7.03±0.15a 5.09±0.07a 0.50±0.11b 0.47±0.001a 0.22±0.004b
MP 1.62±0.01a 6.67±0.23b 4.12±0.07b 0.69±0.10a 0.02±0.01d 0.48±0.01a
DC 1.10±0.11b 6.70±0.06b 4.46±0.39ab 0.19±0.02c 0.34±0.01b 0.15±0.03c
MC 1.20±0.01b 6.66±0.28b 3.96±0.46b 0.16±0.04c 0.05±0.001c 0.16±0.01c
定植后120 d
120 d (DAP)
DP 1.06±0.02d 6.65±0.08b 6.65±0.37a 0.50±0.05b 0.65±0.002a 0.17±0.01bc
MP 1.98±0.05a 6.56±0.02c 5.58±0.04b 0.68±0.01a 0.21±0.01b 0.23±0.01a
DC 1.42±0.03c 6.77±0.03a 4.92±0.18c 0.45±0.04b 0.65±0.002a 0.19±0.001b
MC 1.53±0.02b 6.52±0.03c 3.59±0.06d 0.21±0.03c 0.04±0.01c 0.17±0.01c

Table 6

Effects of liquid digestate on the yield and quality of tomato fruit"

处理
Treatment
产量
Yield
(kg·m-2)
单果重
Fruit fresh weight
(g/plant)
单株果实数
Fruit number
(no/plant)
可溶性糖含量
Soluble sugar content (g·100 g-1 FW)
维生素C
Vc content
(mg·100 g-1 FW)
可溶性蛋白含量
Soluble protein content (mg·g-1)
DP 6.0±0.4a 177.1±8.4a 11.3±1.2ab 36.57±2.69a 0.10±0.01a 5.18±1.11c
MP 5.8±0.2a 145.3±3.4b 13.3±0.6a 32.07±2.29b 0.09±0.01a 4.43±1.97c
DC 3.4±0.5b 103.6±14.3c 10.0±2.0b 36.98±2.74a 0.10±0.01a 19.79±1.45a
MC 2.2±0.1c 96.7±3.3c 7.7±0.6c 23.28±1.16c 0.07±0.01b 12.43±2.25b

Fig. 3

Principal component analysis of liquid digestate on physiological and biochemical indexes of tomato cultivated in substrate"

[1]
http://www.moa.gov.cn/govpublic/XMYS/201510/t20151023_4875680.htm.
[2]
中国畜牧兽医年鉴编辑委员会. 中国畜牧兽医年鉴-2022. 北京: 中国农业出版社, 2022.
China Animal Husbandry and Veterinary Yearbook Editorial Committee. China Animal Husbandry and Veterinary Yearbook-2022. Beijing: China Agriculture Press, 2022. (in Chinese)
[3]
宋英今, 王冠超, 李然, 陈冠益. 沼液处理方式及资源化研究进展. 农业工程学报, 2021, 37(12): 237-250.
SONG Y J, WANG G C, LI R, CHEN G Y. Research progress of biogas slurry treatment and resource utilization. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 237-250. (in Chinese)
[4]
张明慧, 高大文. 臭氧组合絮凝工艺处理牛粪沼液的研究. 中国沼气, 2020, 38(1): 37-44.
ZHANG M H, GAO D W. Ozonation and flocculation combination treating biogas slurry of cow dung. China Biogas, 2020, 38(1): 37-44. (in Chinese)
[5]
ABUBAKER J, RISBERG K, PELL M. Biogas residues as fertilisers: Effects on wheat growth and soil microbial activities. Applied Energy, 2012, 99: 126-134.

doi: 10.1016/j.apenergy.2012.04.050
[6]
SELEIMAN M F, SELIM S, JAAKKOLA S, MÄKELÄ P S A. Chemical composition and in vitro digestibility of whole-crop maize fertilized with synthetic fertilizer or digestate and harvested at two maturity stages in Boreal growing conditions. Agricultural and Food Science, 2017, 26(1): 47.

doi: 10.23986/afsci.60068
[7]
BARZEE T J, EDALATI A, EL-MASHAD H, WANG D Y, SCOW K, ZHANG R H. Digestate biofertilizers support similar or higher tomato yields and quality than mineral fertilizer in a subsurface drip fertigation system. Frontiers in Sustainable Food Systems, 2019, 3: 58.

doi: 10.3389/fsufs.2019.00058
[8]
NKOA R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development, 2014, 34(2): 473-492.

doi: 10.1007/s13593-013-0196-z
[9]
YU F B, LUO X P, SONG C F, ZHANG M X, SHAN S D. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 2010, 60(3): 262-268.
[10]
BILALIS D, KROKIDA M, ROUSSIS I, PAPASTYLIANOU P, TRAVLOS I, CHEIMONA N, DEDE A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Horticulturae, 2018, 30(2): 321-332.

doi: 10.2478/fhort-2018-0027
[11]
乔锋, 肖洋, 赵淑苹. 海林农场沼肥连年施用对玉米产量和土壤化学性质的影响. 中国农学通报, 2018, 34(36): 93-98.

doi: 10.11924/j.issn.1000-6850.casb18080109
QIAO F, XIAO Y, ZHAO S P. Consecutive application of biogas manure affects maize production and soil chemical properties in Hailin farm. Chinese Agricultural Science Bulletin, 2018, 34(36): 93-98. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb18080109
[12]
张钧恒, 马乐乐, 李建明. 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响. 中国农业科学, 2018, 51(14): 2788-2798. doi: 10.3864/j/issn.0578-1752.2018.14.015.
ZHANG J H, MA L L, LI J M. Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato. Scientia Agricultura Sinica, 2018, 51(14): 2788-2798. doi: 10.3864/j/issn.0578-1752.2018.14.015. (in Chinese)
[13]
王红宁, 林琭, 汤昀, 李永平, 孙俊宝, 张生智, 吴晓璇. 沼液营养液对基质栽培草莓叶片气体交换日变化的影响. 河北农业大学学报, 2019, 42(6): 57-64.
WANG H N, LIN L, TANG Y, LI Y P, SUN J B, ZHANG S Z, WU X X. Effects of nutrient solution based on biogas slurry on diurnal change leaf gas exchange of strawberry in soilless cultivation. Journal of Agricultural University of Hebei, 2019, 42(6): 57-64. (in Chinese)
[14]
XIE X T, MACHIKOWA T, WONPRASAID S. Fertigation based on a nutrient balance model for cassava production in two different textured soils. Plant Production Science, 2020, 23(4): 407-416.

doi: 10.1080/1343943X.2020.1743189
[15]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[16]
蔡庆生. 植物生理学实验. 北京: 中国农业大学出版社, 2013.
CAI Q S. Plant Physiology Experiment. Beijing: China Agricultural University Press, 2013. (in Chinese)
[17]
REDDY K R, MATCHA S K. Quantifying nitrogen effects on castor bean (Ricinus communis L.) development, growth, and photosynthesis. Industrial Crops and Products, 2010, 31(1): 185-191.

doi: 10.1016/j.indcrop.2009.10.004
[18]
SHIRATSUCHI H, YAMAGISHI T, ISHII R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Research, 2006, 95(2/3): 291-304.

doi: 10.1016/j.fcr.2005.04.005
[19]
NAEEM M, KHAN M M A, IDREES M, AFTAB T. Phosphorus ameliorates crop productivity, photosynthetic efficiency, nitrogen- fixation, activities of the enzymes and content of nutraceuticals of Lablab purpureus L. Scientia Horticulturae, 2010, 126(2): 205-214.

doi: 10.1016/j.scienta.2010.07.009
[20]
XU C M, TIAN Y, SUN Y X, DONG L M. Effects of biogas slurry irrigation on growth, photosynthesis, and nutrient status of Perilla frutescens seedlings. Communications in Soil Science and Plant Analysis, 2013, 44(22): 3381-3390.

doi: 10.1080/00103624.2013.847447
[21]
LUO A R, ZHOU C N, CHEN J L. The associated with carbon conversion rate and source-sink enzyme activity in tomato fruit subjected to water stress and potassium application. Frontiers in Plant Science, 2021, 12: 681145.

doi: 10.3389/fpls.2021.681145
[22]
JIN Z W, SUN R H, PING L F, ZHANG C A, YING M F, DING S H. Evaluating the key factors of soil fertility and tomato yield with fresh and aged biogas slurry addition through greenhouse experiment. Biomass Conversion and Biorefinery, 2023, 13(6): 5073-5084.

doi: 10.1007/s13399-021-01583-x
[23]
CRISTINA G, CAMELIN E, TOMMASI T, FINO D, PUGLIESE M. Anaerobic digestates from sewage sludge used as fertilizer on a poor alkaline sandy soil and on a peat substrate: Effects on tomato plants growth and on soil properties. Journal of Environmental Management, 2020, 269: 110767.

doi: 10.1016/j.jenvman.2020.110767
[24]
PEREZ-ESPINOSA A, MORENO-CASELLES J, MORAL R, PEREZ- MURCIA M D, GOMEZ I. Effect of sewage sludge and cobalt treatments on tomato fruit yield, weight, and quality. Journal of Plant Nutrition, 1999, 22(2): 379-385.

doi: 10.1080/01904169909365635
[25]
BOURIOUG M, ALAOUI-SEHMER L, LAFFRAY X, BENBRAHIM M, ALEYA L, ALAOUI-SOSSÉ B. Sewage sludge fertilization in larch seedlings: Effects on trace metal accumulation and growth performance. Ecological Engineering, 2015, 77: 216-224.

doi: 10.1016/j.ecoleng.2015.01.031
[26]
ZHANG Y T, KIRIIWA Y, NUKAYA A. Influence of nutrient concentration and composition on the growth, uptake patterns of nutrient elements and fruit coloring disorder for tomatoes grown in extremely low-volume substrate. The Horticulture Journal, 2015, 84(1): 37-45.

doi: 10.2503/hortj.MI-003
[27]
GRUDA N, CARON J, PRASAD M, MAHER M J. Growing Media. Encyclopedia of Soil Sciences, 2016.
[28]
PAN W L, MADSEN I J, BOLTON R P, GRAVES L, SISTRUNK T. Ammonia/ammonium toxicity root symptoms induced by inorganic and organic fertilizers and placement. Agronomy Journal, 2016, 108(6): 2485-2492.

doi: 10.2134/agronj2016.02.0122
[29]
MA L L, ZHANG J W, REN R D, FAN B H, HOU L P, LI J M. Effects of different organic nutrient solution formulations and supplementation on tomato fruit quality and aromatic volatiles. Archives of Agronomy and Soil Science, 2021, 67(4): 563-575.

doi: 10.1080/03650340.2020.1740208
[30]
TENG Y F, SHANG B, TAO X P. Effects of digested pig slurry on photosynthesis, carbohydrate metabolism and yield of tomato (Solanum lycopersicum L.). Agronomy, 2022, 12(9): 2042.

doi: 10.3390/agronomy12092042
[31]
MOYA C, OYANEDEL E, VERDUGO G, FLORES M F, URRESTARAZU M, ÁLVARO J E. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience, 2017, 52(6): 868-872.

doi: 10.21273/HORTSCI12026-17
[1] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[2] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[3] LIU Lei, SHI JianShuo, ZHANG GuoYin, GAO Jing, LI Pin, REN Yanli, WANG LiYing. Effects of Long-Term Application of Organic Fertilizer on Rare and Abundant Bacterial Sub-Communities in Greenhouse Tomato Soil [J]. Scientia Agricultura Sinica, 2023, 56(18): 3615-3628.
[4] GAO ZiYuan, HU JingAng, ZHANG BeiBei, GONG Biao. Screening and Comprehensive Evaluation of Tomato Rootstocks with High Efficiency of Phosphorus Utilization [J]. Scientia Agricultura Sinica, 2023, 56(14): 2761-2775.
[5] CHANG JiaYue, MA XiaoLong, WU YanLi, LI JianMing. Effects of Row Spacing and Irrigation Amount on Canopy Light Interception and Photosynthetic Capacity, Matter Accumulation and Fruit Quality of Tomato [J]. Scientia Agricultura Sinica, 2023, 56(11): 2141-2157.
[6] CHU YanMeng, MAO YingChao, CAI Jian, ZHOU Qin, DAI TingBo, WANG Xiao, JIANG Dong. Effect of Phytochlorin Iron on Stress Tolerance to Waterlogging in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(10): 1848-1858.
[7] LI YiLing, PENG XiHong, CHEN Ping, DU Qing, REN JunBo, YANG XueLi, LEI Lu, YONG TaiWen, YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[9] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[10] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[11] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[12] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[13] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[14] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[15] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!