Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3831-3840.doi: 10.3864/j.issn.0578-1752.2022.19.012

• HORTICULTURE • Previous Articles     Next Articles

Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature

CUI Peng1(),ZHAO YiRen1(),YAO ZhiPeng2,PANG LinJiang3,LU GuoQuan1()   

  1. 1College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300
    2Management Service Center of Binzhou National Agricultural Science and Technology Park, Binzhou 256600, Shandong
    3College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300
  • Received:2021-12-20 Accepted:2022-02-15 Online:2022-10-01 Published:2022-10-10
  • Contact: GuoQuan LU E-mail:cuipeng626@163.com;545127259@qq.com;lugq10@zju.edu.cn

Abstract:

【Objective】Starch is the main component of sweetpotatoe, and the main use of tuberous roots is directly determined by the physicochemical properties of starch. Sweetpotato is a typical temperature-preferred tropical crop and sensitive to the storage temperature. Therefore, it is very important to study the effects of low temperature on starch physicochemical properties for the safe storage of sweetpotato. 【Method】 The starch average granule size and distribution, heat enthalpy, gelatinization properties, moisture absorption and swelling power were investigated in an experiment conducted by using Yanshu 25 and Shangshu 19 with storage of 13℃ (CK) and 4℃ (Low temperature, LT) for 14 days. 【Result】 The results demonstrated that the significant differences were observed in amylose/amylopectin content between the two sweetpotato varieties. The amylose content of Shangshu 19 (31.47%) was significantly higher than that of Yanshu 25 (25.86%), while the amylopectin content showed an opposite trend. The average particle size, volume and surface area of Yanshu 25 and Shangshu 19 ranged from ≤2.50 μm, 2.50-5.00 μm to 5.00-25.00 μm, respectively. The average particle size, volume and surface area of starch particles, moisture absorption and swelling power were decreased under LT stress. The starch initial temperature (T0), peak temperature (Tp) and heat thermal value (△H) of Yanshu 25 and Shangshu 19 during gelatinization process were decreased significantly as compared with CK. The change in starch △H of Yanshu 25 was higher than that of Shangshu 19, which indicated that the effect of low temperature on thermal properties of Yanshu 25 starch was more serious than that of Shangshu 19. Under low temperature storage conditions, the peak viscosity (PKV), disintegration value (BDV) and recovery value (CSV) of Yanshu 25 and Shangshu 19 were decreased significantly, while the gelatinization temperature (PT) was not significantly affected by temperature. The differences between the two varieties were significant. The expression levels of IbAGPa, IbAGPb, IbSBEI and bSBEII genes were decreased significantly under LT condition, while Ibα-amylase and Ibβ-amylase increased significantly. 【Conclusion】 In conclusion, the temperature played an important role in the starch physicochemical properties of sweetpotato, and the change of which was closely related to the storage temperature.

Key words: sweetpotato, low temperature stress, starch, physicochemical properties, gene

Table 1

Primer information"

引物名称
Primer name
引物序列(5′-3′)
Primer sequence (5′-3′)
Actin-F ATGATAACTCGACGGATCGC
Actin-R CTTGGATGTGGTAGCCGTTT
IbAGPa-F TCGACGGTGATGTTAGCAAG
IbAGPa -R AACAGCCTTTGGAGAAACGA
IbSBEI-F GGTTTACGGGTCTTGATGGA
IbSBEI-R AACAGCCTGCTATCCCACAC
IbSBEII-F CTTCCCTGAAGCCATAACCA
IbSBEII-R CCATTTGCCAATCCTCATCT
Ibα-amlyas-F CTGCATTTTTGTTCCTGCAA
Ibα-amlyas-R TTCGATGCGTCCAAGTCATA
Ibβ-amlyase-F AGACTGGAAGGAGGCTGTGA
Ibβ-amlyase-R TGTTGGCTTCTTCGAGGACT

Table 2

Effects of low temperature on the major compositions of sweetpotato root starch"

品种
Variety
储藏温度
Storage temperature (℃)
直链淀粉
Amylose (%)
支链淀粉
Amylopectin (%)

Nitrogen (%)

Phosphorus (%)
总脂肪
Total lipid (%)
烟薯25
Yanshu 25
13 (CK) 25.86±0.06b 68.82±0.03a 2.11±0.01b 1.45±0.007c 1.76±0.006b
4 (LT) 24.22±0.04b 67.59±0.05a 2.89±0.008a 2.68±0.003a 2.62±0.005a
商薯19
Shangshu 19
13 (CK) 31.47±0.02a 65.36±0.04b 1.13±0.007c 1.66±0.008c 0.38±0.008c
4 (LT) 30.11±0.03a 64.87±0.07b 2.25±0.009b 2.09±0.005b 0.68±0.008c

Table 3

Starch granule diameter and volume frequency percent of sweetpotato root under LT stress"

品种
Variety
储藏温度
Storage temperature (℃)
淀粉粒径及其体积分布Granule diameter and volume frequency percent
≤2.50 μm 2.50—5.00 μm 5.00—25.00 μm
百分比
Percent
(%)
平均粒径
Average granule
diameter
百分比
Percent
(%)
平均粒径
Average granule
diameter
百分比
Percent
(%)
平均粒径
Average granule
diameter
烟薯25
Yanshu 25
13 (CK) 12.05b 1.67±0.05a 6.24b 4.13±0.02a 81.71b 16.21±0.04a
4 (LT) 10.41c 1.53±0.03b 6.62b 3.94±0.03a 82.97a 13.66±0.03b
商薯19
Shangshu 19
13 (CK) 11.75b 1.83±0.04a 8.54b 4.07±0.02a 79.71c 14.72±0.03b
4 (LT) 14.93a 1.72±0.04a 10.90a 3.81±0.02a 74.17d 16.93±0.02a

Table 4

Starch granule diameter and surface area frequency percent of sweetpotato root under LT treatment"

品种
Variety
储藏温度
Storage temperature (℃)
淀粉粒径及其表面积分布Granule diameter and surface area frequency percent
≤2.50 μm 2.50—5.00 μm 5.00—25.00 μm
百分比
Percent
(%)
平均粒径
Average granule
diameter
百分比
Percent
(%)
平均粒径
Average granule
diameter
百分比
Percent
(%)
平均粒径
Average granule
diameter
烟薯25
Yanshu 25
13 (CK) 52.31b 1.84±0.04b 6.88b 4.64±0.06a 40.81a 18.66±0.03a
4 (LT) 51.23b 2.02±0.03a 7.34b 4.37±0.07b 41.43a 15.21±0.07b
商薯19
Shangshu 19
13 (CK) 55.63a 2.11±0.05a 8.28a 4.58±0.06a 36.09b 16.03±0.05b
4 (LT) 54.01a 1.93±0.05b 9.12a 4.31±0.05b 36.87b 17.71±0.04a

Table 5

Starch DSC characteristic parameter from sweetpotato root under LT stress"

品种
Varieties
储藏温度
Storage temperature
(℃)
热焓值
H
(J·g-1)
起始温度
T0
(℃)
峰值温度
Tp
(℃)
终止温度
Tc
(℃)
烟薯25
Yanshu 25
13 (CK) 14.56±0.11a 62.52±0.24a 71.14±0.04a 82.15±0.34a
4 (LT) 14.25±0.12b 58.11±0.18b 69.67±0.13b 82.94±0.12a
商薯19
Shangshu 19
13 (CK) 14.41±0.09a 63.02±0.19a 72.34±0.22a 83.05±0.19a
4 (LT) 14.17±0.06b 61.91±0.12b 70.33±0.19b 82.64±0.28a

Table 6

RVA characteristic parameter from sweetpotato storage root starch under LT stress"

品种
Variety
储藏温度
Storage temperature
(℃)
最高黏度
PKV
(cp)
最低黏度
HPV
(cp)
崩解值
BDV
(cp)
最终黏度
CPV
(cp)
回复值
CSV
(cp)
糊化温度
PT
(℃)
烟薯25
Yanshu 25
13 (CK) 6531±8.32a 2705±5.84b 3872±9.43a 3587±9.82b 952±9.48b 73.21±1.20b
4 (LT) 6019±7.54b 2934±6.34a 3783±8.34c 3783±7.87a 823±8.11b 73.60±0.80b
商薯19
Shangshu 25
13 (CK) 5890±6.92c 2380±7.88c 3198±5.45b 3498±8.22b 1260±7.36a 74.17±0.52a
4 (LT) 5105±7.73d 2110±8.43d 3012±4.67c 3221±6.23c 1212±8.31a 75.72±0.75a

Fig. 1

Moisture absorption degree of starch from sweetpotato root under LT treatment Different letters were significantly different at the 0.05 level. The same as below"

Fig. 2

Swelling power of starch from sweetpotato root under LT treatment"

Fig. 3

Relative expression levels of anabolism key genes in sweetpotato root under LT treatments"

[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 483-492. doi: 10.3864/j.issn.0578-1752.2021.03.003.
doi: 10.3864/j.issn.0578-1752.2021.03.003
WANG X, LI Q, CAO Q H, MA D F. Current status and future prospective of sweetpotato production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 483-492. doi: 10.3864/j.issn.0578-1752.2021.03.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.03.003
[2] ZHOU W Z, YANG J, HONG Y, LIU G L, ZHENG J L, GU Z B, ZHANG P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydrate Polymers, 2015, 122: 417-427. doi: 10.1016/j.carbpol.2014.11.003.
doi: 10.1016/j.carbpol.2014.11.003 pmid: 25817686
[3] ZHANG K, WU Z D, TANG D B, LUO K, LU H X, LIU Y Y, DONG J, WANG X, LV C W, WANG J C, LU K. Comparative transcriptome analysis reveals critical function of sucrose metabolism related- enzymes in starch accumulation in the storage root of sweet potato. Frontiers in Plant Science, 2017, 8: 914.
doi: 10.3389/fpls.2017.00914
[4] HOOVER R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydrate Polymer, 2001, 45(3): 253-267.
doi: 10.1016/S0144-8617(00)00260-5
[5] 谭洪卓, 谭斌, 刘明, 田晓红, 谷文英. 甘薯淀粉性质与其粉丝品质的关系. 农业工程学报, 2009, 25(4): 286-292.
TAN H Z, TAN B, LIU M, TIAN X H, GU W Y. Relationship between properties of sweet potato starch and qualities of sweet potato starch noodles. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(4): 286-292. (in Chinese)
[6] ZHU F, WANG S N. Physicochemical properties, molecular structure, and uses of sweetpotato starch. Trends in Food Science and Technology, 2014, 36(2): 68-78.
doi: 10.1016/j.tifs.2014.01.008
[7] NODA T, KOBAYASHI T, SUDA I. Effect of soil temperature on starch properties of sweet potatoes. Carbohydrate Polymer, 2001, 44(3): 239-246.
doi: 10.1016/S0144-8617(00)00227-7
[8] 唐忠厚, 李洪民, 张爱君, 史新敏, 徐飞, 孙健. 施钾对甘薯常规品质性状及其淀粉RVA特性的影响. 浙江农业学报, 2011, 23(1): 46-51. doi: 10.3969/j.issn.1004-1524.2011.01.009.
doi: 10.3969/j.issn.1004-1524.2011.01.009
TANG Z H, LI H M, ZHANG A J, SHI X M, XU F, SUN J. Effect of potassium fertilizer application on main quality traits and starch RVA characters of sweetpotato. Acta Agriculturae Zhejiangensis, 2011, 23(1): 46-51. doi: 10.3969/j.issn.1004-1524.2011.01.009. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2011.01.009
[9] 柳洪鹃, 姚海兰, 史春余, 张立明. 施钾时期对甘薯济徐23块根淀粉积累与品质的影响及酶学生理机制. 中国农业科学, 2014, 47(1): 43-52. doi: 10.3864/j.issn.0578-1752.2014.01.005.
doi: 10.3864/j.issn.0578-1752.2014.01.005
LIU H J, YAO H L, SHI C Y, ZHANG L M. Effect of potassium application time on starch accumulation and related enzyme activities of sweet potato variety Jixu 23. Scientia Agricultura Sinica, 2014, 47(1): 43-52. doi: 10.3864/j.issn.0578-1752.2014.01.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.01.005
[10] 唐忠厚, 张爱君, 陈晓光, 靳容, 刘明, 李洪民, 丁艳锋. 低钾胁迫对甘薯块根淀粉理化特性的影响及其基因型差异. 中国农业科学, 2017, 50(3): 513-525.
TANG Z H, ZHANG A J, CHEN X G, JIN R, LIU M, LI H M, DING Y F. Starch physico-chemical properties and their difference in three sweetpotato (Ipomoea batatas(L.) lam) genotypes under low potassium stress. Scientia Agricultura Sinica, 2017, 50(3): 513-525. (in Chinese)
[11] 解则义, 李洪民, 马代夫, 陈天娇, 韩永华, 李宗芸. 低温胁迫影响甘薯贮藏的研究进展. 植物生理学报, 2017, 53(5): 758-767.
XIE Z Y, LI H M, MA D F, CHEN T J, HAN Y H, LI Z Y. Research progress of the effects of low temperature stress on the sweetpotato during storage. Plant Physiology Journal, 2017, 53(5): 758-767. (in Chinese)
[12] LI X, YANG H Q, LU G Q. Low-temperature conditioning combined with cold storage inducing rapid sweetening of sweetpotato tuberous roots (Ipomoea batatas (L.) Lam) while inhibiting chilling injury. Postharvest Biology and Technology, 2018, 142: 1-9.
doi: 10.1016/j.postharvbio.2018.04.002
[13] CHAUDHARY P R, JAYAPRAKASHA G K, PORAT R, PATIL B S. Low temperature conditioning reduces chilling injury while maintaining quality and certain bioactive compounds of ‘Star Ruby’ grapefruit. Food Chemistry, 2014, 153: 243-249. doi: 10.1016/j.foodchem.2013.12.043.
doi: 10.1016/j.foodchem.2013.12.043
[14] JIN P, ZHANG Y, SHAN T, HUANG Y, XU J, ZHENG Y. Low-temperature conditioning alleviates chilling injury in loquat fruit and regulates glycine betaine content and energy status. Journal of Agricultural and Food Chemistry, 2015, 63(14): 3654-3659. doi: 10.1021/acs.jafc.5b00605.
doi: 10.1021/acs.jafc.5b00605 pmid: 25822129
[15] 江凌峰, 周淑倩, 潘靖禹, 杨虎清, 陆国权, 李永新. 不同贮藏时间及温度对新鲜甘薯淀粉特性的影响. 中国粮油学报. https://kns.cnki.net/kcms/detail/11.2864.TS.20210609.1743.014.html.
JIANG L F, ZHOU S Q, PAN J Y, YANG H Q, LU G Q, LI Y X. Effect of different storage time and temperature on starch properties of fresh sweet potato. Journal of the Chinese Cereals and Oils Association. https://kns.cnki.net/kcms/detail/11.2864.TS.20210609.1743.014.html. (in Chinese)
[16] SHIMADA T, OTANI M, HAMADA T, KIM S H. Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnology, 2006, 23(1): 85-90.
doi: 10.5511/plantbiotechnology.23.85
[17] 唐忠厚, 朱晓倩, 李强, 李洪民, 徐飞. 不同基因型甘薯直链淀粉含量差异研究. 食品工业科技, 2011, 32(11): 108-110.
TANG Z H, ZHU X Q, LI Q, LI H M, XU F. Genotype variation in amylose content of sweetpotato. Science and Technology of Food Industry, 2011, 32(11): 108-110. (in Chinese)
[18] RASPER V. Investigations on starches from major starch crops grown in Ghana: III.-Particle size and particle size distribution. Journal of the Science of Food and Agriculture, 1971, 22(11): 572-580.
doi: 10.1002/jsfa.2740221105
[19] YI J, KERR W L, JOHNSON J W. Effects of waxy wheat flour and water on frozen dough and bread properties. Journal of Food Science, 2009, 74(5): E278-E284. doi: 10.1111/j.1750-3841.2009.01180.x.
doi: 10.1111/j.1750-3841.2009.01180.x
[20] SILVAS-GARCIA M I, RAMIREZ-WONG B, TORRES-CHAVEZ P I, BELLO P, LUIS A, CARVAJAL M, Elizabeth, BARRON H, JESUS M, RODRIGUEZ G, MARIO E, VASQUEZ L, VAZQUEZ-LARA F, QUINTERO-RAMOS A. Effect of freezing rate and storage on the rheological, thermal and structural properties of frozen wheat dough starch. Starch-Stärke, 2016, 68(11/12): 1103-1110.
doi: 10.1002/star.201500123
[21] 史春余, 姚海兰, 张立明, 柳洪鹃, 张超, 刘桂玲. 不同类型甘薯品种块根淀粉粒粒度的分布特征. 中国农业科学, 2011, 44(21): 4537-4543.
SHI C Y, YAO H L, ZHANG L M, LIU H J, ZHANG C, LIU G L. Starch Granule size distribution in storage roots of different types of sweetpotato cultivars. Scientia Agricultura Sinica, 2011, 44(21): 4537-4543. (in Chinese)
[22] PYCIA K, JUSZCZSK L, GALKOWSKA D, WITCZAK M. Physicochemical properties of starches obtained from Polish potato cultivars. Starch-Starke, 2012, 64(2): 105-114.
doi: 10.1002/star.201100072
[23] BHASKAR P B, WU L, BUSSE J S, WHITTY B R, HAMERNIK A J, JANSKY S H, BUELL C R, BETHKE P C, JIANG J. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiology, 2010, 154(2): 939-948. doi: 10.1104/pp.110.162545.
doi: 10.1104/pp.110.162545 pmid: 20736383
[24] CHARLES M T, MAKHLOUF J, ARUL J. Physiological basis of UV-C induced resistance to Botrytis cinereal in tomato fruit: II. Modification of fruit surface and changes in fungal colonization. Postharvest Biology and Technology, 2008, 47(1): 21-26.
doi: 10.1016/j.postharvbio.2007.05.014
[25] COLEBROOK E H, THOMAS S G, PHILLIPS A L, HEDDEN P. The role of gibberellin signalling in plant responses to abiotic stress. The Journal of Experimental Biology, 2014, 217(1): 67-75. doi: 10.1242/jeb.089938.
doi: 10.1242/jeb.089938
[26] COOLS K, ALAMAR M D C, TERRY L A. Controlling sprouting in potato tubers using ultraviolet-irradiance. Postharvest Biology and Technology, 2014, 98(1): 106-114.
doi: 10.1016/j.postharvbio.2014.07.005
[27] PESHEV D, VAN DEN ENDE W. Sugars as antioxidants in plants// Crop Improvement Under Adverse Conditions. Springer-Verlag, Berlin, Heidelberg, Germany, 2013: 285-308.
[28] VAN DEN ENDE W, VALLURU R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: Scavenging and salvaging? Journal of Experimental Botany, 2008, 60(1): 9-18. doi: 10.1093/jxb/ern297.
doi: 10.1093/jxb/ern297
[29] BOLOURI-MOGHADDAM M R, LE ROY K, XIANG L, ROLLAND F, VAN DEN ENDE W. Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal, 2010, 277(9): 2022-2037. doi: 10.1111/j.1742-4658.2010.07633.x.
doi: 10.1111/j.1742-4658.2010.07633.x
[30] KEUNEN E, PESHEV D, VANGRONSVELD J, VAN DEN ENDE W, CUYPERS A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant, Cell & Environment, 2013, 36(7): 1242-1255. doi: 10.1111/pce.12061.
doi: 10.1111/pce.12061
[31] SPERDOULI I, MOUSTAKAS M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 2012, 169(6): 577-585. doi: 10.1016/j.jplph.2011.12.015.
doi: 10.1016/j.jplph.2011.12.015
[32] CUI P, LI Y, CUI C, HUO Y, LU G, YANG H. Proteomic and metabolic profile analysis of low-temperature storage responses in Ipomoea batata Lam. tuberous roots. BMC Plant Biology, 2020, 20(1): 435. doi: 10.1186/s12870-020-02642-7.
doi: 10.1186/s12870-020-02642-7
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[6] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[7] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[8] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[9] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[10] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[11] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[12] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[13] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[14] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[15] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!