Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 51-60.doi: 10.3864/j.issn.0578-1752.2022.01.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area

DENG AiXing1(),LIU YouHong2(),MENG Ying2,CHEN ChangQing3,DONG WenJun2,LI GeXing1,ZHANG Jun1(),ZHANG WeiJian1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086
    3Nanjing Agricultural University, Nanjing 210095
  • Received:2021-03-07 Accepted:2021-06-03 Online:2022-01-01 Published:2022-01-07
  • Contact: Jun ZHANG E-mail:dengaixing@caas.cn;liuyouhong1011@126.com;zhangjun@caas.cn

Abstract:

【Background】 Rice (Oryza sativa L.) is the most important cereal crop in China. An importance rice cultivation location in high latitude in China is Northeast region due to its superior production area. This region accounts for over 50% high quality japonica rice production in China. However, for nearly half a century, the annual average temperature of this region has increased by 1.1℃, making it the most obvious region of climate warming in China. 【Objective】 To ensure the continuous production of high-yielding and good quality japonica rice, it is of great significance to assess the impact of climate warming on rice yield and grain quality in the Northeast region of China. 【Method】 A 2-year field warming experiment (1.5℃) with two japonica rice cultivars (Longdao 5 and Longdao 18) employed under a free air temperature increase (FATI) facility was conducted in Harbin city, Heilongjiang province. The aim of this study was to evaluate the effects of elevated temperature (ET) on rice growth period, grain yield, milled quality, appearance quality, nutrient and cooking quality. 【Result】 The results of the study showed that the growth duration of rice under ET was reduced by 6-7 days and 4-5 days when compared with CK in 2017 and 2018, respectively. This was as a result of the shortened duration from the transplanting stage to heading stage. The average yield of Longdao 5 and Longdao 18 for the two-year increased by 5.8% and 14.4%, respectively, mainly due to the increase in effective panicle number per unit area. The ET significantly decreased amylose content in the rice grain, but varied slightly in-terms of brown rice rate, milled rice rate, head rice rate and protein content. The peak viscosity, hot paste viscosity and cool paste viscosity increased under ET, while consistence viscosity decreased. There was no significant influence of elevated temperature on setback viscosity in both Longdao 5 and Longdao 18. 【Conclusion】 Based on the lower background air temperature, increasing temperature by 1.5℃ in the high latitude region of Northeast promoted japonica rice yield and cooking quality, however, the continued warming would increase the uncertainties of rice quality variation in the future.

Key words: Oryza sativa L., climate warming, free air temperature increase facility, high quality, yield, high latitude japonica rice planting area

Fig. 1

Change of canopy temperature during rice growth ET: Elevated temperature; CK: Control"

Table 1

Elevated temperature effects of different periods of rice growth (℃)"

年份
Year
处理Treatment 移栽至成熟
Transplanting to maturity
移栽至抽穗
Transplanting to heading stage
抽穗至成熟
Heading stage to maturity
日均
Daily
白天
Daytime
夜间 Nighttime 日均
Daily
白天
Daytime
夜间 Nighttime 日均
Daily
白天
Daytime
夜间 Nighttime
2017 ET 23.6 26.9 20.5 24.2 27.0 21.2 23.1 26.8 19.7
CK 22.0 25.9 18.2 23.2 26.4 19.8 21.0 25.4 16.7
ΔT 1.6 1.0 2.3 1.0 0.6 1.4 2.1 1.4 3.0
2018 ET 22.8 24.8 20.7 24.7 25.7 21.7 22.8 23.7 19.3
CK 21.5 23.8 19.2 23.7 24.9 20.3 21.4 22.4 17.9
ΔT 1.3 1.0 1.4 1.0 0.8 1.4 1.4 1.3 1.4

Table 2

Effects of elevated temperature on japonica rice growth progress in high latitude planting area"

年份
Year
品种
Cultivar
处理
Treatment
播种期
SD (M-D)
移栽期
TS (M-D)
拔节期
BS (M-D)
齐穗期
HS (M-D)
成熟期
MS (M-D)
全生育期
WGD (d)
播种—齐穗
SW to HS (d)
齐穗—成熟
HS to MS (d)
2017 龙稻5号
Longdao 5
ET 04-15 05-17 07-07 07-26 09-10 148 102 46
CK 04-15 05-17 07-10 07-30 09-15 153 106 47
龙稻18
Longdao 18
ET 04-15 05-17 07-04 07-20 09-05 143 96 47
CK 04-15 05-17 07-07 07-26 09-12 150 102 48
2018 龙稻5号
Longdao 5
ET 04-15 05-18 07-06 07-24 09-05 143 100 43
CK 04-15 05-18 07-10 07-27 09-10 148 103 45
龙稻18
Longdao 18
ET 04-15 05-18 07-08 07-27 09-08 146 103 43
CK 04-15 05-18 07-12 07-29 09-12 150 105 45

Table 3

Effects of elevated temperature on japonica rice yield and yield components in high latitude planting area"

年份
Year
品种
Cultivar
处理
Treatment
产量
Yield (t·hm-2)
穗数
Panicles (panicle/m2)
穗粒数
Spikelet per panicle
结实率
Grain setting rate (%)
千粒重
1000-grain weight (g)
2017 龙稻5号
Longdao 5
ET 9.1a 450.0a 97.9a 87.3a 23.8a
CK 9.0a 430.6a 101.4a 84.7a 24.5a
龙稻18
Longdao 18
ET 9.9a 425.0a 114.4a 85.3a 23.9a
CK 8.8a 391.7a 121.1a 75.3b 24.6a
2018 龙稻5号
Longdao 5
ET 8.4a 517.5a 63.6b 95.7a 24.9a
CK 7.6a 438.3b 74.4a 94.7a 23.7a
龙稻18
Longdao 18
ET 7.9a 434.5a 70.3a 94.0a 25.7a
CK 6.8a 430.7a 79.7a 94.7a 24.0b
FF-value
年份Year (Y) 17.1** 6.1* 126.0** 51.8** 1.8
品种Cultivar (C) 0 9.5** 13.6** 4.1 1.8
温度Temperature (T) 2.8 7.3* 5.4* 4.1 2.1
Y×C 0.4 0.3 3.4 2.3 0.8
Y×T 0.1 0.4 0.6 3.7 16.5**
C×T 0 1.5 0 0.8 0.3
Y×C×T 1.8 3.2 0.1 2 0.2

Table 4

Effects of elevated temperature on rice appearance and milling quality"

年份
Year
品种
Cultivar
处理
Treatment
糙米率
Brown rice rate (%)
精米率
Milled rice rate (%)
整精米率
Head rice rate (%)
垩白粒率
Chalkness grain rate (%)
粒长
Grain length (cm)
粒宽
Grain width
(cm)
2017 龙稻5号
Longdao 5
ET 81.2a 72.5a 64.4a 7.5a 4.1a 2.5a
CK 80.7a 70.3a 66.4a 7.9a 4.3a 2.6a
龙稻18
Longdao 18
ET 80.5a 69.9a 64.5a 7.7a 5.1a 2.3a
CK 78.5a 66.8b 62.7a 7.2a 5.2a 2.3a
2018 龙稻5号
Longdao 5
ET 82.9a 73.4a 70.2a 2.3a 4.2a 2.6a
CK 82.9a 73.9a 68.2a 2.3a 4.2a 2.6a
龙稻18
Longdao 18
ET 83.4a 73.2a 70.3a 2.0a 5.2a 2.4a
CK 82.9a 70.9a 68.8a 1.8a 5.1a 2.4a
FF-value
年份Year (Y) 12.2** 8.2* 8.8* 212.5** 0 11.2*
品种Cultivar (C) 0.6 8.2* 2 0.8 335.3** 281.4**
温度Temperature (T) 0.9 1.2 0 0 2.4 2.1
Y×C 1.1 0.1 0 0.1 0 0.8
Y×T 0.4 1.3 0 0 3.1 6.9*
C×T 0.3 1.1 0 0.6 0.2 0.5
Y×C×T 0.1 1.9 2.1 0.2 0 0

Fig. 2

Effects of elevated temperature on grain protein content and amylose content in rice * indicated significant difference between two treatments of same cultivar within same year of the same column at 0.05 level"

Table 5

Effects of elevated temperature on japonica rice RVA properties in high latitude planting area"

年份
Year
品种
Cultivar
处理
Treatment
峰值黏度
PKV (cP)
热浆黏度
HPV (cP)
崩解值
BDV (cP)
最终黏度
CPV (cP)
回生值
CSV (cP)
消减值
SBV (cP)
起始糊化温度
PaT (℃)
2017 龙稻5号
Longdao 5
ET 2159a 1151a 1002a 2380a 1229a 221b 86.2a
CK 1896b 1075b 820b 2267a 1192a 369a 87.7a
龙稻18
Longdao 18
ET 2407a 1670a 732a 2855a 1185a 445b 89.6a
CK 2196a 1409b 785a 2690a 1281a 492a 89.3a
2018 龙稻5号
Longdao 5
ET 2505a 1215a 1289a 2432a 1217a -72a 73.4a
CK 2412a 1200a 1212a 2412a 1212a 0a 79.3a
龙稻18
Longdao 18
ET 2653a 1576a 1077a 2807a 1230a 154a 75.9a
CK 2623a 1538a 1085a 2798a 1260a 175a 78.4a
FF-value
年份Year (Y) 74.5** 3.2 192.9** 3.3 0.4 208.6** 38.9**
品种Cultivar (C) 26.1** 155.2** 45.6* 137.7** 4.1 72.1** 0.8
温度Temperature (T) 11.2** 9.8** 4.3 4.7* 2.6 10.8** 1.7
Y×C 1.1 1.5 0.1 1.0 0.1 0.4 0.2
Y×T 3.9 5.2 0.4 3.1 0.4 1.3 1.0
C×T 0.4 2.8 11.3** 0.1 10.3** 3.0 0.5
Y×C×T 0.0 1.7 2.5 0.2 3.6 0.3 0.0
[1] IPCC. Summary for policymakers//MASSON-DELMOTTE V, ZHAI P, PÖRTNER H O, ROBERTS D, SKEA J, SHUKLA P R. eds. Global Warming of 1.5°C. Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization, Switzerland, 2018.
[2] 国家统计局. 2019年中国统计年鉴. 北京: 中国统计出版社, 2019.
National Bureau of Statistics. China Statistical Yearbook 2019. Beijing: China Statistics Press, 2019. (in Chinese)
[3] 张卫建, 陈长青, 江瑜, 张俊, 钱浩宇. 气候变暖对我国水稻生产的综合影响及其应对策略. 农业环境科学学报, 2020, 39(4): 805-811.
ZHANG W J, CHEN C Q, JIANG Y, ZHANG J, QIAN H Y. Comprehensive influence of climate warming on rice production and counter measure for food security in China. Journal of Agro-Environment Science, 2020, 39(4): 805-811. (in Chinese)
[4] 王晓煜, 杨晓光, 吕硕, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅻ.气候变暖对黑龙江寒地水稻安全种植区域和冷害风险的影响. 中国农业科学, 2016, 49(10): 1859-1871.
WANG X Y, YANG X G, LÜ S, CHEN F. The possible effects of global warming on cropping systems in China Ⅻ. The possible effects of climate warming on geographical shift in safe planting area of rice in cold areas and the risk analysis of chilling damage. Scientia Agricultura Sinica, 2016, 49(10): 1859-1871. (in Chinese)
[5] 张卫建, 陈金, 徐志宇, 陈长青, 邓艾兴, 钱春荣, 董文军. 东北稻作系统对气候变暖的实际响应与适应. 中国农业科学, 2012, 45(7): 1265-1273.
ZHANG W J, CHEN J, XU Z Y, CHEN C Q, DENG A X, QIAN C R, DONG W J. Actual responses and adaptations of rice cropping system to global warming in Northeast China. Scientia Agricultura Sinica, 2012, 45(7): 1265-1273. (in Chinese)
[6] 张佳华, 张健南, 姚凤梅, 门艳忠, 高西宁. 开放式增温对东北稻田生态系统作物生长与产量的影响. 生态学杂志, 2013, 32(1): 15-21.
ZHANG J H, ZHANG J N, YAO F M, MEN Y Z, GAO X N. Effects of free air temperature increasing on the rice growth and grain yield in Northeast China. Chinese Journal of Ecology, 2013, 32(1): 15-21. (in Chinese)
[7] 徐漫, 贾东, 卢晶晶, 孙雅君, 宋双, 杜晗, 韩雷. 花后开放式增温对水稻生产的影响. 北方水稻, 2018, 48(1): 17-21.
XU M, JIA D, LU J J, SUN Y J, SONG S, DU H, HAN L. Effects of different day and night temperature enhancements on rice production after anthesis under free air controlled condition. North Rice, 2018, 48(1): 17-21. (in Chinese)
[8] 宋晓雯, 王国骄, 孙备, 刘春溪, 宛涛, 李美松, 殷红, 隋明. 开放式增温对不同耐热性粳稻光合作用和产量的影响. 沈阳农业大学学报, 2019, 50(6): 648-655.
SONG X W, WANG G J, SUN B, LIU C X, WAN T, LI M S, YIN H, SUI M. Effects of free air temperature increasing on photosynthesis and yield of japonica rice with different heat-tolerance characteristics. Journal of Shenyang Agricultural University, 2019, 50(6): 648-655. (in Chinese)
[9] 刘春溪. 开放式增温对北方粳稻光合特性和产量的影响研究[D]. 沈阳: 沈阳农业大学, 2019.
LIU C X. Effects of open temperature increasing on photosynthetic characteristics and yield of japonica rice in North of China[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese)
[10] CHEN C Q, VAN GROENIGEN K J, YANG H Y, HUNGATE B A, YANG B, TIAN Y L, CHEN J, DONG W J, HUANG S, DENG A X, JIANG Y, ZHANG W J. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security, 2020, 24: 100359.
doi: 10.1016/j.gfs.2020.100359
[11] 程方民, 胡东维, 丁元树. 人工控温条件下稻米垩白形成变化及胚乳扫描结构观察. 中国水稻科学, 2000, 14(2): 83-87.
CHENG F M, HU D W, DING Y S. Dynamic change of chalkiness and observation of grain endosperm structure with scanning electron microscope under controlled temperature condition. Chinese Journal of Rice Science, 2000, 14(2) :83-87. (in Chinese)
[12] ARSHAD M S, FAROOQ M, ASCH F, KRISHNA J S V, PRASAD P V V, SIDDIQUE K H M. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 2017, 115: 57-72.
doi: 10.1016/j.plaphy.2017.03.011
[13] 张敬奇. 花后开放式增温对水稻产量与品质的影响研究[D]. 南京: 南京农业大学, 2012.
ZHANG J Q. Effect of temperature free-air controlled enhancement after flowering on rice yield and quality[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[14] SIDDIK M A, ZHANG J, CHEN J, QIAN H Y, JIANG Y, RAHEEM A K, DENG A X, SONG Z W, ZHENG C Y, ZHANG W J. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. European Journal of Agronomy, 2019, 106: 30-38.
doi: 10.1016/j.eja.2019.03.004
[15] 窦志. 灌浆期开放式增温对水稻籽粒灌浆和品质的影响及氮素粒肥的调控效应[D]. 南京: 南京农业大学, 2017.
DOU Z. Effects of free-air warming during grain filling stage on rice grain filling and quality and the regulation effects of nitrogen spikelet fertilizer[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[16] 杨陶陶, 胡启星, 黄山, 曾研华, 谭雪明, 曾勇军, 潘晓华, 石庆华, 张俊. 双季优质稻产量和品质形成对开放式主动增温的响应. 中国水稻科学, 2018, 32(6): 572-580.
YANG T T, HU Q X, HUANG S, ZENG Y H, TAN X M, ZENG Y J, PAN X H, SHI Q H, ZHANG J. Response of yield and quality of double-cropping high quality rice cultivars under free-air temperature increasing. Chinese Journal of Rice Science, 2018, 32(6): 572-580. (in Chinese)
[17] 董文军, 邓艾兴, 张彬, 田云录, 陈金, 杨飞, 张卫建. 开放式昼夜不同增温对单季稻影响的试验研究. 生态学报, 2011, 31(8): 2169-2177.
DONG W J, DENG A X, ZHANG B, TIAN Y L, CHEN J, YANG F, ZHANG W J. An experimental study on the effects of different diurnal warming regimes on single cropping rice with Free Air Temperature Increased (FATI) facility. Acta Ecologica Sinica, 2011, 31(8): 2169-2177.
[18] KIM J, SHON J, LEE C K, YANG W, YOON Y, YANG W H, KIM Y G, LEE B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Research, 2011, 122: 207-213.
doi: 10.1016/j.fcr.2011.03.014
[19] SHI W J, MUTHURAJAN R, RAHMAN H, SELVAM J, PENG S B, ZOU Y B, JAGADISH K S V. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytologist, 2013, 197(3): 825-837.
doi: 10.1111/nph.2013.197.issue-3
[20] 杨陶陶, 双季籼稻产量和稻米品质对增温的响应特征及其机理[D]. 南昌: 江西农业大学, 2020.
YANG T T. Response of indica grain yield and grain quality to experimental warming in a double rice cropping system and its mechanism[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese)
[21] DONG W J, CHEN J, ZHANG B, TIAN Y L, ZHANG W J. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Research, 2011, 123(3): 259-265.
doi: 10.1016/j.fcr.2011.05.024
[22] CAI C, YIN X Y, HE S Q, JIANG W Y, SI C F, STRUIK P C, LUO W H, LI G, XIE Y T, XIONG Y, PAN G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016, 22(2): 856-874.
doi: 10.1111/gcb.13065
[23] 沈直, 唐设, 张海祥, 陈文珠, 丁艳锋, 王绍华. 灌浆期开放式增温对水稻强势粒和弱势粒淀粉代谢关键酶相关基因表达水平的影响. 南京农业大学学报, 2016, 39(6): 898-906.
SHEN Z, TANG S, ZHANG H X, CHEN W Z, DING Y F, WANG S H. Effect of T-FACE high temperature on genes expression level of key enzymes involved in starch metabolism in superior spikelets and inferior spikelets of rice during grain filling period. Journal of Nanjing Agricultural University, 2016, 39(6): 898-906. (in Chinese)
[24] DOU Z, TANG S, CHEN W Z, ZHANG H X, LI G H, LIU Z H, DING C Q, CHEN L, WANG S H, ZHANG H C, DING Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. Journal of Cereal Science, 2018, 81: 118-126.
doi: 10.1016/j.jcs.2018.04.004
[25] 杨志远. 增温对水稻生长发育、产量以及稻米品质的影响[D]. 武汉: 华中农业大学, 2018.
YANG Z Y. Effects of warming treatments on the growth and development, yield and quality of rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[26] YANG T T, TAN X M, HUANG S, PAN X H, SHI Q H, ZENG Y J, ZHANG J, ZENG Y H. Effects of experimental warming on physicochemical properties of indica rice starch in a double rice cropping system. Food Chemistry, 2020, 310: 125981.
doi: 10.1016/j.foodchem.2019.125981
[27] XIONG W, HOLMAN I P, YOU L Z, YANG J, WU W. Impacts of observed growing-season warming trends since 1980 on crop yields in China. Regional Environmental Change, 2014, 14(1): 7-16.
doi: 10.1007/s10113-013-0418-6
[28] TAO F L, ZHANG Z, SHI W J, LIU Y J, XIAO D P, ZHANG S, ZHU Z, WANG M, LIU F S. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Global Change Biology, 2013, 19(10): 3200-3209.
doi: 10.1111/gcb.2013.19.issue-10
[29] 程方民, 张嵩午. 水稻籽粒灌浆过程中稻米品质动态变化及温度影响效应. 浙江大学学报(农业与生命科学版), 1999(4): 7-10.
CHENG F M, ZHANG S W. The dynamic change of rice quality during the grain filling stage and effects of temperature upon it. Journal of Zhejiang University (Agriculture & Life Science), 1999(4): 7-10. (in Chinese)
[30] TANG S, CHEN W Z, LIU W Z, ZHOU Q Y, ZHANG H X, WANG S H, DING Y F. Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice. Journal of Cereal Science, 2018, 84: 20-29.
doi: 10.1016/j.jcs.2018.09.013
[31] LYMAN N B, JAGADISH K S, NALLEY L L, DIXON B L, SIBENMORGEN T. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS ONE, 2013, 8(8): 1-12.
[32] CHEN J L, TANG L, SHI P H, YANG B H, SUN T, CAO W X, ZHU Y. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma, 2017, 254(2): 935-943.
doi: 10.1007/s00709-016-1002-y
[33] 张桂莲, 张顺堂, 王力, 肖应辉, 唐文帮, 陈光辉, 陈立云. 抽穗结实期不同时段高温对稻米品质的影响. 中国农业科学, 2013, 46(14): 2869-2879.
ZHANG G L, ZHANG S T, WANG L, XIAO Y H, TANG W B, CHEN G H, CHEN L Y. Effects of high temperature at different times during heading and filling periods on rice quality. Scientia Agricultura Sinica, 2013, 46(14): 2869-2879. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!