Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1512-1524.doi: 10.3864/j.issn.0578-1752.2021.07.015

• EFFICIENT UTILIZATION OF FERTILIZER AND WATER • Previous Articles     Next Articles

Effects of Irrigation Management on Grain Yield and Quality of High-Quality Eating Late-Season Indica Rice in South China

XIONG RuoYu1,XIE JiaXin1,TAN XueMing1,YANG TaoTao1,PAN XiaoHua1,ZENG YongJun1,SHI QingHua1,ZHANG Jun2,CAI Shuo3,ZENG YanHua1()   

  1. 1Jiangxi Agricultural University/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/ Innovation Center for the Modernization Production of Double Cropping Rice, Nanchang 330045
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    3Jiangxi Central Station of Irrigation Experiment, Nanchang 330201
  • Received:2020-09-29 Accepted:2020-11-12 Online:2021-04-01 Published:2021-04-22
  • Contact: YanHua ZENG E-mail:zyh74049501@163.com

Abstract:

【Objective】The aim of this study was to probe the response characteristics of the grain yield and quality of southern high-quality eating late indica rice to irrigation management.【Method】 Field experiments irrigation were conducted at Shanggao Experimental Base of Jiangxi Agricultural University in 2018 and 2019. The different irrigation management of the field treatments was conducted as follows: conventional irrigation (CK), constant flooding irrigation (CFI) and alternate wetting and drying (AWD). The two indica rice cultivars, including Taiyou 871 for good-quality eating rice and Rongyouhuazhan for common eating quality rice, were used to analyze and determine water use efficiency, grain yield and rice quality. 【Result】 Different irrigation managements had a significant effects on the grain yield components quality of the two indica rice cultivars, and the trend was consistent over the two years, but there were differences among the cultivars. Compared with CK and CFI, the total water use efficiency under AWD in two years was increased by 18.2%-62.5% and 41.2%-91.7%, respectively. Compared with CK, AWD and CFI showed a trend to increase grain yield of the two cultivars, but the grain yield had no significant change in the high-quality eating indica rice cultivars. Only in 2018, the yield of the common indica rice cultivars increased significantly under AWD treatment, mainly because the number of grains per ear increased significantly. AWD was beneficial to the rice processing quality. Compared with CK and AWD, CFI significantly reduced the chalky rate and chalkiness, which was beneficial to the improvement of the rice appearance quality. There were annual differences in the amylose content of the different eating quality cultivars under different irrigation managements. In 2019, compared with CFI, AWD significantly increased the amylose content of the two cultivars, at the same time, AWD also significantly increased gel consistency, peak viscosity and breakdown, decreased setback, and improved the palatability of the two cultivars in two years. Compared with CK, CFI significantly increased protein content of the two cultivars. However, the effects of irrigation management on amylose, nutritional quality and RVA characteristics of high-quality eating indica rice cultivars were higher than those of common eating quality indica rice cultivars. 【Conclusion】 Alternate wetting and drying improved water use efficiency of two cultivars, which was beneficial to increase high-quality eating late-season indica rice yield and improve processing quality, but was not conducive to the improvement of appearance quality. At the same time, alternate wetting and drying could reduce setback and protein content, increase gel consistency, peak viscosity, trough viscosity and breakdown to improve the palatability of cooked rice, but constant flooding irrigation was beneficial to improving the appearance quality of rice. Alternate wetting and drying could be used as a high-quality and high-efficiency water-saving irrigation model for high-quality eating late-season indica rice in South China.

Key words: high-quality eating indica rice, water-saving irrigation, yield, water use efficiency, rice quality

Fig. 1

Changes on field microclimate precipitation and temperature meteorological date during rice growth period"

Fig. 2

Soil water potential under different irrigation managements"

Table 1

Changes on water use efficiency under different irrigation managements in high quality eating late-season indica rice"

年份
Year
品种
Cultivar
灌溉方式
Irrigation management
灌水量
Irrigation amount
(m3·hm-2)
总用水量
Total water amount
(m3·hm-2)
灌溉水分利用率
Irrigation WUE
(kg·m-2)
总水分利用率
Total WUE
(kg·m-2)
2018 荣优华占
RYHZ
CK 5300±443.8b 8790±443.8b 1.9±0.1b 1.1±0.1b
CFI 8192±596.2a 11682±596.2a 1.3±0.1c 0.9±0.1c
AWD 4191±211.5c 7681±211.5c 2.6±0.2a 1.4±0.1a
泰优871
TY 871
CK 5300±443.8b 8790±443.8b 1.7±0.3b 1.1±0.1b
CFI 8192±596.2a 11682±596.2a 1.2±0.1c 0.8±0.1c
AWD 4191±211.5c 7681±211.5c 2.4±0.1a 1.3±0.1a
2019 荣优华占
RYHZ
CK 5283±104.2b 5815±104.2b 1.9±0.1b 1.7±0.1b
CFI 7401±529.2a 7933±529.2a 1.4±0.2c 1.3±0.1b
AWD 3600±173.1c 4132±173.1c 2.8±0.3a 2.4±0.2a
泰优871
TY 871
CK 5283±104.2b 5815±104.2b 1.7±0.2b 1.6±0.1b
CFI 7401±529.2a 7933±529.2a 1.3±0.1c 1.2±0.1c
AWD 3600±173.1c 4132±173.1c 2.6±0.1a 2.3±0.1a
F
F value
年份 Year (Y) 5.662* 305.211** 3.733 297.252**
品种 Cultivar (C) 7.034* 7.747*
灌溉方式 Irrigation management (IM) 135.565** 135.565** 193.928** 148.865**
年份×品种 Y×C 0.066 0.079
年份×灌溉方式 Y×IM 1.405 1.405 1.704 24.453**
品种×灌溉方式 C×IM 0.548 0.493
年份×品种×灌溉方式 Y×C×IM 0.012 0.110

Table 2

Yield and its components under different irrigation managements in high quality eating late-season indica rice"

年份
Year
品种
Cultivar
灌溉方式
Irrigation management
有效穗数
Effective panicle
(×104 hm-2)
每穗粒数
Spikelets
per panicle
结实率
Grain
filling (%)
千粒重
1000-grain
weight (g)
产量
Yield
(t·hm-2)
2018 荣优华占
RYHZ
CK 314.1±2.6a 123.4±2.8b 86.3±1.1a 27.4±1.2a 10.0±0.4b
CFI 316.5±1.9a 150.6±3.0a 82.6±0.7b 25.4±0.5b 10.6±0.3ab
AWD 304.1±3.0b 147.6±8.7a 87.8±0.5a 26.7±0.3ab 10.8±0.3a
泰优871
TY 871
CK 336.0±3.1a 123.3±4.1b 84.3±6.0ab 27.6±1.7a 9.1±0.5a
CFI 339.7±5.5a 145.8±8.2a 80.3±0.7b 26.1±0.7a 9.8±0.5a
AWD 325.0±3.5b 131.6±2.5b 89.9±1.0a 27.2±0.6a 9.9±0.4a
2019 荣优华占
RYHZ
CK 321.4±6.1a 131.6±9.1a 90.3±4.0a 26.9±0.6a 9.8±0.5a
CFI 330.6±6.4a 142.9±3.0a 84.9±3.4a 26.8±0.2a 10.2±0.5a
AWD 311.0±3.3b 139.8±8.6a 91.4±0.8a 26.8±0.2a 10.1±0.6a
泰优871
TY 871
CK 308.6±10.1ab 135.4±3.0b 88.7±3.9ab 26.0±0.5a 9.2±0.9a
CFI 314.8±2.1a 159.1±8.1a 85.4±0.4b 25.6±0.1a 9.8±0.1a
AWD 302.6±4.7b 138.6±4.8b 91.7±1.1a 25.7±0.1a 9.3±0.3a
F
F value
年份 Year (Y) 24.928** 7932.935** 3.097 4927.965** 3.800
品种 Cultivar (C) 9.266** 10.293** 42.462** 4.205 18.811**
灌溉方式 Irrigation management (IM) 36.111** 33.584** 22.500** 8.151** 5.487*
年份×品种 Y×C 134.710** 5.614* 38.873** 3.198 0.644
年份×灌溉方式 Y×IM 0.845 34.939** 0.283 12.166** 1.112
品种×灌溉方式 C×IM 0.131 3.654* 1.161 2.598 0.167
年份×品种×灌溉方式 Y×C×IM 0.531 3.559* 0.655 2.421 0.061

Table 3

Changes on grain processing quality under different irrigation managements in high quality eating late-season indica rice"

年份
Year
品种
Cultivar
灌溉方式
Irrigation management
糙米率
Brown rice rate (%)
精米率
Milled rice rate (%)
整精米率
Head rice rate (%)
2018 荣优华占
RYHZ
CK 81.2±0.2ab 68.7±0.8a 45.7±0.6a
CFI 80.9±0.4b 68.1±0.8a 45.5±0.4a
AWD 81.4±0.1a 68.8±0.7a 46.1±0.7a
泰优871
TY 871
CK 80.7±0.4a 67.1±0.9a 41.9±0.8a
CFI 80.8±0.4a 67.1±0.2a 40.7±0.2b
AWD 80.9±0.2a 67.5±0.3a 40.7±0.4b
2019 荣优华占
RYHZ
CK 82.3±0.4a 70.4±0.7ab 49.9±0.8a
CFI 81.5±0.7a 68.3±0.8b 47.5±0.1b
AWD 83.3±1.0a 71.3±1.5a 51.2±1.0a
泰优871
TY 871
CK 79.5±0.3ab 65.7±0.1b 44.0±1.4a
CFI 78.4±0.3b 66.0±0.1b 43.9±0.4a
AWD 79.9±0.7a 66.8±0.2a 44.9±0.7a
F
F value
年份 Year (Y) 0.930 0.641 225.894**
品种 Cultivar (C) 100.339** 110.461** 462.209**
灌溉方式 Irrigation management (IM) 10.993** 8.137** 12.067**
年份×品种 Y×C 62.466** 26.982** 1.810
年份×灌溉方式 Y×IM 5.097* 2.703 6.866**
品种×灌溉方式 C×IM 0.603 3.593* 4.224*
年份×品种×灌溉方式 Y×C×IM 0.374 1.486 4.248*

Table 4

Changes on grain appearance quality under different irrigation managements in high quality eating late-season indica rice"

年份
Year
品种
Cultivar
灌溉方式
Irrigation management
垩白率
Chalky rate (%)
垩白度
Chalky degree (%)
2018 荣优华占
RYHZ
CK 20.6±0.2a 6.9±0.1a
CFI 14.8±0.6b 5.2±0.4b
AWD 19.8±1.0a 6.5±0.8ab
泰优871
TY 871
CK 13.5±0.3a 4.4±0.3ab
CFI 11.4±0.1b 4.0±0.2b
AWD 14.7±0.9a 4.6±0.1a
2019 荣优华占
RYHZ
CK 22.5±0.5a 5.7±0.1a
CFI 16.4±0.5c 4.0±0.3b
AWD 21.0±0.7b 5.3±0.6a
泰优871
TY 871
CK 14.7±0.5a 3.1±0.1ab
CFI 12.7±0.4b 2.8±0.2b
AWD 15.0±0.4a 3.3±0.2a
F
F value
年份 Year (Y) 40.214** 108.083**
品种 Cultivar (C) 784.296** 260.340**
灌溉方式 Irrigation management (IM) 174.669** 29.693**
年份×品种 Y×C 2.806 0.039
年份×灌溉方式 Y×IM 1.646 0.023
品种×灌溉方式 C×IM 32.685** 10.736**
年份×品种×灌溉方式 Y×C×IM 0.078 0.010

Table 5

Changes on grain eating and nutritional quality under different irrigation managements in high quality eating late-season indica rice"

年份
Year
品种
Cultivar
灌溉方式
Irrigation management
蒸煮食味品质 Cooking and eating quality 营养品质 Nutrition quality
直链淀粉
Amylose content (%)
胶稠度
Gel consistency (mm)
蛋白质
Protein content (%)
2018 荣优华占
RYHZ
CK 20.4±0.4a 55.8±0.5b 6.2±0.3b
CFI 20.0±0.1a 54.6±0.5c 7.0±0.1a
AWD 20.7±0.5a 58.2±0.3a 6.0±0.1b
泰优871
TY 871
CK 16.4±0.3a 72.6±0.4b 6.9±0.1b
CFI 16.2±0.5a 68.1±0.4c 7.7±0.3a
AWD 16.9±0.1a 74.2±0.6a 6.8±0.1b
2019 荣优华占
RYHZ
CK 20.0±0.2a 55.6±0.6a 6.4±0.4b
CFI 18.0±0.7b 51.8±1.2b 7.2±0.3a
AWD 20.1±0.3a 56.9±1.3a 6.1±0.1b
泰优871
TY 871
CK 15.7±0.2b 71.4±0.4a 7.0±0.4b
CFI 14.5±0.3c 69.9±0.6b 7.8±0.3a
AWD 16.4±0.2a 71.6±0.2a 6.3±0.1c
F
F value
年份 Year (Y) 63.416** 20.400** 0.188
品种 Cultivar (C) 1000.709** 4777.567** 61.695**
灌溉方式 Irrigation management (IM) 42.040** 110.768** 85.980**
年份×品种 Y×C 0.043 2.655 4.188
年份×灌溉方式 Y×IM 12.978** 3.998* 2.236
品种×灌溉方式 C×IM 1.689 1.126 0.924
年份×品种×灌溉方式 Y×C×IM 0.501 17.086** 1.241

Table 6

Rice starch RVA under different irrigation managements in high quality eating late-season indica rice"

年份
Year
品种
Cultivar
灌溉方式
Irrigation management
峰值黏度
PV (cP)
热浆黏度
TV (cP)
最终黏度
FV (cP)
崩解值
BD (cP)
消减值
SB (cP)
糊化温度
PT(℃)
2018 荣优华占
RYHZ
CK 2825±2.7a 1799±18.4ab 3275±17.5a 1026±11.7a 450±5.5b 78.5±0.5b
CFI 2760±28.5b 1787±3.2b 3231±9.1b 973±4.6b 471±3.0a 80.3±0.1a
AWD 2833±13.3a 1818±3.2a 3267±11.5a 1016±18.2a 433±3.5c 79.3±0.9ab
泰优871
TY 871
CK 2891±12.3a 1573±20.6a 2813±5.3a 1318±15.0b -78±43.6b 83.2±8.0a
CFI 2687±41.1b 1532±28.0b 2728±11.0b 1155±5.5c 41±2.9a 83.8±8.6a
AWD 2895±26.9a 1551±17.0ab 2809±4.9a 1344±14.0a -86±43.7b 78.5±7.8b
2019 荣优华占
RYHZ
CK 2946±7.8a 1838±10.6b 3350±24.0a 1108±21.0a 404±2.6b 79.8±0.9a
CFI 2760±28.5b 1751±30.7c 3261±13.3b 1009±7.9b 500±7.2a 80.3±0.1a
AWD 2999±42.4a 1893±40.9a 3358±42.8a 1106±51.5a 359±22.9c 80.3±0.1a
泰优871
TY 871
CK 3169±52.7b 1677±27.5b 3011±25.7ab 1492±8.0b -158±36.2b 75.1±0.9a
CFI 3044±23.1c 1604±27.1c 2941±18.0b 1441±45.1c -103±22.9a 75.5±0.1a
AWD 3260±44.1a 1742±14.0a 3046±53.6a 1518±30.2a -214±20.1c 75.6±0.1a
F
F value
年份 Year (Y) 441.653** 96.142** 316.439** 39.784** 28.017** 4.029
品种 Cultivar (C) 180.427** 709.539** 2556.655** 1493.413** 3750.199** 0.657
灌溉方式 Irrigation management (IM) 120.088** 40.616** 41.203** 165.089** 75.658** 0.414
年份×品种 Y×C 136.209** 40.517** 90.920** 21.618** 0.085 6.605*
年份×灌溉方式 Y×IM 6.520** 19.385** 2.502 16.043** 7.381** 0.464
品种×灌溉方式 C×IM 2.648 0.374 0.965 5.199* 15.162** 0.356
年份×品种×灌溉方式 Y×C×IM 8.922** 1.088 1.258 9.370** 0.907 0.347
[1] LI Y X, ZHANG W F, MA L, WU L Q, SHEN J B, DAVIES W J, OENEMA O, ZHANG F S, DOU Z X . An analysis of China’s grain production: Looking back and looking forward. Food and Energy Security, 2014,3(1):19-32.
[2] PIAO S L, PHILIPPE C, HUANG Y, SHEN Z H, PENG S S, LI J S, ZHOU L P, LIU H Y, MA Y C, DING Y H, FRIEDLINGSTEIN P, LIU C Z, TAN K, YU Y Q, ZHANG T Y, FANG J Y . The impacts of climate change on water resources and agriculture in China. Nature, 2010,467(7311):43-51.
[3] GU X H, BAI W K, LI J F, KONG D D, LIU J Y, WANG Y . Spatio-temporal changes and their relationship in water resources and agricultural disasters across China. Hydrological Sciences Journal, 2019,64(4):490-505.
[4] 孙星, 金海涛, 徐林文, 余桂香, 李向阳, 曹开勋, 陈世勇, 肖新. 水肥对稻麦轮作农田N2O排放影响及减排的研究进展. 安徽农业科学, 2020,48(5):28-31.
SUN X, JIN H T, XU L W, YU G X, LI X Y, CAO K X, CHEN S Y, XIAO X. Research progress on effects of water and fertilizer on N2O emission and emission reduction in rice-wheat rotation farmland. Anhui Agricultural Science, 2020,48(5):28-31. (in Chinese)
[5] PUNHOON K. 水分提取生物质炭对稻麦轮作下稻田土壤质量、作物产量和温室气体排放的影响[D]. 南京: 南京农业大学, 2018.
PUNHOON K. Biochar effects on soil quality, crop production and greenhouse gas emission from a rice paddy under rice and wheat rotation: role of water extractable pool[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[6] YANG Y, CUI Y L, LUO Y F, LYU X W, TRAORE S, KHAN S, WANG W G . Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts. Agricultural Water Management, 2016,177:329-339.
[7] VORIES E, STEVENS W, RHINE M, STRAATMANN Z . Investigating irrigation scheduling for rice using variable rate irrigation. Agricultural Water Management, 2017,179:314-323.
[8] 梁燕菲, 张潇潇, 李伏生. “薄浅湿晒”灌溉稻田土壤微生物量碳、氮和酶活性研究. 植物营养与肥料学报. 2013,19(6):1403-1410.
LIANG Y F, ZHANG X X, LI F S. Soil microbial biomass carbon and nitrogen and enzyme activities in paddy soil under “thin-shallow- wet-dry” irrigation method. Journal of Plant Nutrition and Fertilizer, 2013,19(6):1403-1410. (in Chinese)
[9] GAO S K, YU S G, WANG M, MENG J J, TANG S H, DING J H, LI S, MIAO Z M . Improving water productivity and reducing nutrient losses by controlled irrigation and drainage in paddy fields. Polish Journal of Environmental Studies, 2018,27(3):1049-1059.
[10] JIANG X L, ZHANG J G, YUAN Y . Effects of water stresses on grain yield at different rice growth stage. Southwest China Journal of Agricultural Sciences, 2004,24(1):107-128.
[11] XIAO M H, LI Y Y, WANG J W, HU X J, WANG L, MIAO Z M . Study on the law of nitrogen transfer and conversion and use of fertilizer nitrogen in paddy fields under water-saving irrigation mode. Water, 2019,11(2):218.
[12] NORTON G J, SHAFAEI M, TRAVIS A J, DEACON C M, DANKU J, POND D, COCHRANE N, LOCKHART K, SALT D, ZHANG H, DODD I C, HOSSAIN M, ISLAM M R, PRICE A H . Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Research, 2017,205:1-13.
[13] LI Z, LI Z, LETUMA P, ZHAO H, ZHANG Z X, LIN W W, CHEN H F, LIN W X . A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage. Agricultural Water Management, 2018,207(30):26-36.
[14] 吕银斐, 任艳芳, 刘冬, 张艳超, 何俊瑜. 不同水分管理方式对水稻生长、产量及品质的影响. 天津农业科学, 2016,22(1):106-110.
LÜ Y F, REN Y F, LIU D, ZHANG Y C, HE J Y. Effect of different water managements on growth, grain yield and quality of rice. Tianjin Agricultural Sciences, 2016,22(1):106-110. (in Chinese)
[15] 张彩霞, 肖金香, 叶清, 杨晓光, 郭建平. 1951—2010年南方晚稻气候适宜度时空变化特征分析. 江西农业大学学报, 2016,38(4):792-804.
ZHANG C X, XIAO J X, YE Q, YANG X G, GUO J P. Variation characteristics of climate suitability for late rice in southern chain from 1951 to 2010. Acta Agriculturae Universitatis Jiangxiensis, 2016,38(4):792-804. (in Chinese)
[16] 陈梦云. 不同土壤类型下灌溉方式对水稻产量形成、根系形态和品质的影响[D]. 扬州: 扬州大学, 2017.
CHEN M Y. Effect of different irrigation methods on yield and quality of rice under different soil types[D]. Yangzhou: Yangzhou University, 2017. (in Chinese)
[17] 张伟杨. 水分和氮素对水稻颖花发育与籽粒灌浆的调控机制[D]. 扬州: 扬州大学, 2018.
ZHANG W Y. Mechanism underlying water and nitrogen regulating spikelet development and grain filling of rice[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
[18] 唐健, 唐闯, 郭保卫, 张诚信, 张振振, 王科, 张洪程, 陈恒, 孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020,46(1):117-130.
TANG J, TANG C, GUO B W, ZHANG C X, ZHANG Z Z, WANG K, ZHANG H C, CHEN H, SUN M Z. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice. Acta Agronomica Sinica, 2020,46(1):117-130. (in Chinese)
[19] 王文霞, 周燕芝, 曾勇军, 吴自明, 谭雪明, 潘晓华, 石庆华, 曾研华. 不同机直播方式对南方优质晚籼稻产量及抗倒伏特性的影响. 中国水稻科学, 2020,34(1):46-56.
WANG W X, ZHOU Y Z, ZENG Y J, WU Z M, TAN X M, PAN X H, SHI Q H, ZENG Y H. Effects of different mechanical direct seeding patterns on yield and lodging resistance of high-quality late indica rice in south China. Chinese Journal of Rice Science, 2020,34(1):46-56. (in Chinese)
[20] 易艳红, 王文霞, 曾勇军, 谭雪明, 吴自明, 陈雄飞, 潘晓华, 石庆华, 曾研华. 人工模拟机械开沟穴直播提高早籼稻茎秆抗倒伏能力及产量. 中国农业科学, 2019,52(15):2729-2742.
YI Y H, WANG W X, ZENG Y J, TAN X M, WU Z M, CHEN X F, PAN X H, SHI Q H, ZENG Y H. Artificial simulation of hill-drop drilling mechanical technology to improve yield and lodging resistance of early season indica rice. Scientia Agricultura Sinica, 2019,52(15):2729-2742. (in Chinese)
[21] BELDER P, BOUMAN B A M, CABANGON R, LU G A, QUILANG E J P, LI Y H, SPIERTA J H J, TUONG T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Manage, 2004,65(3):193-210.
[22] JONG G W, JANG S C, SEUNG P L, SEUNG H S, SANG O C . Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science, 2005,8(4):487-492.
[23] JUN L, OOKAWA T, HIRASAWA T . The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant and Soil, 2000,223(1/2):207-216.
[24] 徐春梅, 袁立伦, 陈松, 褚光, 叶为发, 丁玉华, 王丹英, 章秀福. 长江下游不同生态区双季优质晚稻生长特性和温光利用差异. 中国水稻科学, 2020,34(5):457-469.
XU C M, YUAN L L, CHEN S, CHU G, YE W F, DING Y H, WANG D Y, ZHANG X F. Difference in growth characteristics, utilization of temperature and illumination of double-cropping high quality late rice in different ecological regions of the lower reaches of the Yangtze river. Chinese Journal of Rice Science, 2020,34(5):457-469. (in Chinese)
[25] 熊洪, 唐玉明, 任道群, 李兴莲, 程开禄, 姚万春, 周兴兵. 不同土壤类型、不同气候条件与水稻产量的关系. 西南农业学报, 2004,17(3):305-309.
XIONG H, TANG Y M, REN D Q, LI X L, CHENG K L, YAO W C, ZHOU X B. Studies on relationships between different soil types and climate condition and grains yield of rice. Southwest China Journal of Agricultural Sciences, 2004,17(3):305-309. (in Chinese)
[26] 周欢, 原保忠, 柯传勇, 彭俊杰, 骆雪姣, 陈宇眺, 熊昊, 程建平. 灌溉水量对水稻生长和产量的影响. 灌溉排水学报, 2010,29(2):99-101.
ZHOU H, YUAN B Z, KE C Y, PENG J J, LUO X J, CHEN Y Z, XIONG H, CHENG J P. Effects of different irrigation quota on growth and yield of rice. Journal of Irrigation and Drainage, 2010,29(2):99-101. (in Chinese)
[27] 程建平, 曹凑贵, 蔡明历, 汪金平, 原保忠, 王建漳, 郑传举. 不同灌溉方式对水稻生物学特性与水分利用效率的影响. 应用生态学报, 2006,17(10):1859-1865.
CHENG J P, CAO C G, CAI M L, WANG J P, YUAN B Z, WANG J Z, ZHENG C J. Effects of different irrigation modes on biological characteristics and water use efficiency of paddy rice. Chinese Journal of Applied Ecology, 2006,17(10):1859-1865. (in Chinese)
[28] 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 土壤水分胁迫对水稻产量和品质的影响. 作物学报, 2006,32(1):131-137.
WANG C Y, WANG B L, ZHANG W X, ZHAO L, ZHAO X Z, GAO L W. Effects of water stress of soil on rice yield and quality. Acta Agronomica Sinica, 2006,32(1):131-137. (in Chinese)
[29] 陈新红, 徐国伟, 孙华山, 王志琴, 杨建昌. 结实期土壤水分与氮素营养对水稻产量与米质的影响. 扬州大学学报, 2003,24(3):37-41.
CHEN X H, XU G W, SUN H S, WANG Z Q, YANG J C. Effects of soil moisture and nitrogen nutrition during grain filling on the grain yield and quality of rice. Journal of Yangzhou University, 2003,24(3):37-41. (in Chinese)
[30] 蔡一霞. 土壤水分对稻米品质形成的影响及其机理[D]. 扬州: 扬州大学, 2004.
CAI Y X. Effect of soil moisture on the development of rice quality and its mechanism[D]. Yangzhou: Yangzhou University, 2004. (in Chinese)
[31] 刘凯, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008,34(2):268-276.
LIU K, ZHANG H, ZHANG S F, WANG Z Q, YANG J C. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism. Acta Agronomica Sinica, 2018,34(2):268-276. (in Chinese)
[32] 张慎凤. 干湿交替灌溉对水稻生长发育、产量与品质的影响[D]. 扬州: 扬州大学, 2009.
ZHANG S F. Effect of alternate wetting and drying on the growth and development, grain yield and quality of rice[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
[33] 刘贺. 全生育期轻度干湿交替灌溉对水稻产量和土壤性状的影响[D]. 扬州: 扬州大学, 2016.
LIU H. Effect of alternative wetting and moderate drying irrigation during whole growth period on grain yield and soil properties in rice[D]. Yangzhou: Yangzhou University, 2016. (in Chinese)
[34] 柯传勇. 不同水分处理对水稻生长、产量及品质的影响[D]. 武汉: 华中农业大学, 2010.
KE C Y. Effect of different water treatment on rice growth, yield and quality[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)
[35] 许更文. 灌溉方式与施氮量对水稻产量影响的互作效应及其生理基础[D]. 扬州: 扬州大学, 2017.
XU G W. Interaction between irrigation regimes and nitrogen rates on grain yield of rice and its physiological basis[D]. Yangzhou: Yangzhou University, 2017. (in Chinese)
[36] 赵宏亮, 王麒, 孙羽, 曾宪楠, 张小明, 王萍, 王曼力, 冯延江. 秸秆还田下灌溉方式对水稻产量及水分利用率的影响. 核农学报, 2018,32(5):959-969.
ZHAO H L, WANG L, SUN Y, ZENG X N, ZHANG X M, WANG P, WANG M L, FENG Y J. Effect of different irrigation regimes on rice yield and water use efficiency under straw returning to field. Journal of Nuclear Agricultural Sciences, 2018,32(5):959-969. (in Chinese)
[37] 王秋菊, 李明贤, 迟力勇, 赵宏亮, 姜辉. 控水灌溉对水稻产量及品质的影响. 东北农业大学学报, 2009,40(10):5-8.
WANG Q J, LI M X, CHI L Y, ZHAO H L, JIANG H. Effect of control irrigation on rice yield and quality. Journal of Northeast Agricultural University, 2009,40(10):5-8. (in Chinese)
[38] GRAHAM A S, SIEBENMORGEN T J, REBA M, MASSEY J, MAUROMOUSTAKOS A, ADVIENTO A B, JANUARY R, BURGOS R, BALTZ G J . Impact of alternative irrigation practices on rice quality. Cereal Chemistry, 2019,96(5):1-9.
[39] ZHAO X Q, FITZGERALD M . Climate change: Implications for the yield of edible rice. PLoS ONE, 2013,8(6):e66218.
[40] LANNING S B, SIEBENMORGEN T J, AMBARDEKAR A A, COUNCE P A, BRYANT R J . Effects of nighttime air temperature during kernel development of field-grown rice on physicochemical and functional properties. Cereal Chemistry, 2012,89(3):168-175.
[41] YANG H, WEN Z R, HUANG T Q, LU W P, LU D L . Effects of waterlogging at grain formation stage on starch structure and functionality of waxy maize. Food Chemistry, 2019,294(1):187-193.
[42] AHMED N, TETLOW Ⅰ J, NAWAZ S, LQBAL A, MUBIN M, NAWAZ R, MUHAMMAD S, BUTT A, LIGHTFOOT D A, MAEKAWA M . Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science of Food and Agriculture, 2015,95(11):2237-2243.
[43] 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012,26(1):77-84.
LIU L J, LI H W, ZHAO B H, WANG Z Q, YANG J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chinese Journal of Rice Science, 2012,26(1):77-84. (in Chinese)
[44] PANDEY A, KUMAR A, PANDEY D S, THONGBAM P D . Rice quality under water stress. Indian Journal of Advances in Plant Research, 2014,1(2):23-26.
[45] LIM S J, LEE S K, KIM D U, SOHN J K . Varietal variation of amylogram properties and its relationship with other eating quality characteristics in rice. Japanese Journal of Crop Science, 1995,27(3):268-275.
[46] BHAT F M, RIAR C S. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. International Journal of Biological Macromolecules Structure Function & Interactions, 2016,92:637-644.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!