Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4880-4893.doi: 10.3864/j.issn.0578-1752.2021.22.014

• HORTICULTURE • Previous Articles     Next Articles

Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape

CHEN DouDou(),GUAN LiPing,HE LiangLiang,SONG YinHua,ZHANG Peng,LIU SanJun()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
  • Received:2021-01-25 Accepted:2021-04-08 Online:2021-11-16 Published:2021-11-19
  • Contact: SanJun LIU E-mail:chendoudou21@163.com;liusanjun@caas.cn

Abstract:

【Objective】Seedlessness is an important agronomic trait in table grape breeding studies. The accuracy of molecular markers linked to seedless genes will substantially influence the early selection of seedless grapes. In this study, five previously reported seedless molecular markers against 183 genotypes were assessed to determine their efficacy for the selection of seedless plants and to provide alternative strategies for the breeding of seedless grapevines based on marker-assisted selection. 【Method】 Leaf samples for DNA extraction were obtained from 96 grape cultivars (63 seedless and 33 seeded cultivars) and 87 F1 hybrids (61 seedless and 26 seeded hybrids) from a cross between ‘Red Globe’ and ‘Dawn Seedless’. The previously reported primer pairs for five markers (SCF27-2000, GSLP1-569, VMC7f2, p3_VvAGL11, and 5U_VviAGL11) were used for PCR amplification. The presence of markers in cultivars and hybrid genotypes was detected by running the PCR products on 1.5% agarose gels, 8% polyacrylamide gels, or by fluorescence capillary electrophoresis. 【Result】 The primer for the SCAR marker GSLP1-569 amplified a 569-bp segment in the 96 grape cultivars, which showed 40.6% accuracy and 63.6% efficiency in the detection of seedless cultivars. The primers for the SCAR marker SCF27-2000 amplified a 2000-bp segment in the 96 grape cultivars and 87 F1 hybrids, with an accuracy of 71.9% and an efficiency of 76.54% for detection of the seedless trait in the 96 cultivars, and an accuracy of 70.5% and efficiency of 78.5% in the 87 F1 hybrids. Among the 96 assessed cultivars, the SSR marker VMC7f2 identified eight alleles, a 189-bp allele of which was found to be most significantly associated with seedlessness based on a Chi-square (χ2) independence test, and detected seedless genotypes with an accuracy of 85.4% and an efficiency of 85.5%. Among the 96 cultivars, the SSR marker p3_VvAGL11 identified seven alleles, among which, a 187-bp allele was found to be most significantly associated with seedlessness and detected seedless genotypes with an accuracy of 89.6% and efficiency of 90.7%. Among the F1 hybrids, the accuracy and efficiency of this marker were 87.65% and 91.1%, respectively, whereas it showed false-positive and false-negative rates of 6.17% and 6.17%, respectively. Among the 96 grape cultivars, the SSR marker 5U_VviAGL11 identified 17 alleles, of which, a 306-bp allele was found to be most significantly associated with the detection of seedlessness, identifying seedless genotypes with an accuracy of 88.5% and an efficiency of 90.6%. Among the F1 hybrids, the accuracy and efficiency of 5U_VviAGL11 were 88.89% and 92.7%, respectively, with false-positive and false-negative rates of 4.94% and 6.17%, respectively. 【Conclusion】 The SSR markers 5U_VviAGL11 and p3_VvAGL11 showed higher accuracy and efficiency with respect to the detection of grape germplasm and genetic population. These markers should be given priority for future molecular marker-assisted selection based on seedless genes in the grapevine.

Key words: Vitis vinifera L., seedlessness, molecular marker, commonality, identification

Table 1

Phenotypic identification of the F1 hybrids of Red Globe × Dawn Seedless"

序号
No.
亲本及F1单株
Parents and F1 individual
种子性状
Seed trait
SCF27-2000 5U_Vvi
AGL11
p3_Vv
AGL11
序号
No.
亲本及F1单株
Parents and F1 individual
种子性状
Seed trait
SCF27-2000 5U_Vvi
AGL11
p3_Vv
AGL11
红地球Red Globe SD 0 294:298 177:177 44 9-8-1 RS 1 298:306 177:187
黎明无核
Dawn Seedless
SL 1 270:306 163:187 45 9-8-2 SL 1 294:306 177:187
1 7-1-2 RS - - - 46 9-10-4 RS 0 298:306 177:187
2 7-1-4 SD 1 270:298:306 163:177:187 47 9-11-1 SL 1 298:306 177:187
3 7-3-3 SL 1 298:306 177:187 48 9-11-4 SL 1 298:306 177:187
4 7-4-2 SL 1 294:306 177:187 49 9-14-4 SD 1 270:294 163:177
5 7-7-3 RS 1 298:306 177:187 50 9-14-3 RS 1 270:298 163:177
6 7-7-5 RS 1 298:306 177:187 51 9-16-3 SL 1 294:306 177:187
7 7-8-2 RS - - - 52 9-18-1 RS 1 294:306 177:187
8 7-9-2 SL 1 298:306 177:187 53 6-1-1 SD 1 294:306 177:187
9 7-10-1 RS 1 294:306 177:187 54 6-2-1 SD 1 270:294 177:187
10 7-10-3 RS 1 294:306 177:187 55 6-3-1 SD 0 270:294 163:177
序号
No.
亲本及F1单株
Parents and F1 individual
种子性状
Seed trait
SCF27-2000 5U_Vvi
AGL11
p3_Vv
AGL11
序号
No.
亲本及F1单株
Parents and F1 individual
种子性状
Seed trait
SCF27-2000 5U_Vvi
AGL11
p3_Vv
AGL11
11 7-11-1 RS 1 298:306 177:187 56 6-2-2 RS 1 294:306 177:187
12 7-11-5 RS 1 294:306 177:187 57 6-2-3 SL 1 298:306 177:187
13 7-12-3 RS 1 298:306 177:187 58 6-3-2 RS 1 298:306 177:187
14 7-12-5 RS 1 298:306 177:187 59 6-4-1 SD 0 270:294 163:177
15 7-13-4 SL - - - 60 6-5-3 RS - - -
16 7-14-1 RS 1 298:306 177:187 61 6-7-2 RS 0 270:294 163:177
17 7-14-3 RS 1 294:306 177:187 62 6-7-4 RS 0 270:294 163:177
18 7-16-1 SD 1 270:294 163:177 63 6-8-2 SL 1 294:306 177:187
19 7-17-1 SD 0 270:294 163:177 64 6-9-1 SD 1 270:294 163:177
20 7-17-2 SD 0 270:294 163:177 65 6-9-2 SD 0 270:294 163:177
21 7-17-3 SD 1 270:294 163:177 66 6-10-1 SD 0 270:294 163:177
22 7-18-3 RS 1 294:306 177:187 67 6-10-2 SD 0 270:298 163:177
23 8-1-2 SL 0 294:306 177:187 68 6-10-3 SD 1 298:306 177:187
24 8-3-5 SL 0 294:306 177:187 69 6-11-1 SD 1 270:294 163:177
25 8-4-4 SL 1 294:306 177:187 70 6-11-2 SD 0 270:298 163:177
26 8-7-2 SL 1 270:294:306 163:177:187 71 6-11-3 SD 0 270:294 163:177
27 8-9-1 SL 1 298:306 177:187 72 6-13-1 RS 1 298:306 177:187
28 8-9-3 SL 1 298:306 177:187 73 6-13-2 RS 1 298:306 177:187
29 8-10-1 SL 1 298:306 177:187 74 6-13-3 RS 1 294:306 177:187
30 8-11-4 SL 1 298:306 177:187 75 6-14-1 SD 0 270:298 163:177
31 8-11-5 RS 1 294:306 177:187 76 6-14-4 SD 1 270:294 163:177
32 8-12-3 RS 1 298:306 177:187 77 6-14-2 SD - - -
33 8-13-3 SL 1 294:306 177:187 78 6-14-3 RS 1 298:306 177:187
34 8-14-3 SL - - - 79 6-15-2 RS 1 294:306 177:187
35 8-15-2 SL 1 298:306 177:187 80 6-15-3 RS 1 298:306 177:187
36 8-16-4 SL 1 270:294 163:177 81 6-15-4 SD 0 270:298 163:177
37 8-17-1 RS 1 294:306 177:187 82 6-16-1 SD 1 270:294 163:177
38 8-17-3 RS 1 298:306 177:187 83 6-17-1 SD 1 270:294 163:177
39 8-13-2 RS 1 294:306 177:187 84 6-17-2 RS 1 298:306 177:187
40 8-18-3 RS 1 294:306 177:187 85 6-18-1 SD 1 294:306 177:187
41 9-1-3 RS 1 298:306 177:187 86 6-18-3 SD 1 270:294 163:177
42 9-3-3 RS 1 294:306 177:187 87 6-18-2 RS 1 270:294 163:177
43 9-4-2 SL 1 294:306 177:187

Table 2

Molecular marker correspond to primer name and its information"

引物编号
Primer No.
引物名称
Primer name
引物序列(5′-3′)
Primer sequences (5′-3′)
退火温度
Annealing temperature (℃)
产物预期大小
Fragment size (bp)
参考文献
Reference
P1 SCF27 F: CAGGTGGGAGTAGTGGAATG
R: CAGGTGGGAGTAAGATTTGT
60 2000 [11]
P2 GSLP1 CCAGTTCGCCCGTAAATG 32 569 [12]
P3 VMC7f2 F: AAGAAAGTTTGCAGTTTATGGTG
R: AAGATGACAATAGCGAGAGAGAA
61 198
[13]
P4 p3_VvAGL11 F: CTCCCTTTCCCTCTCCCTCT
R: AAACGCGTATCCCAATGAAG
58 194 [1]
P5 5U_VviAGL11 F: CGCCCATTCTCTCTCGCTAT
R: GTGCAAAAACGCGTATCCCA
60 319 [16]

Fig. 1

PCR system optimization for SSR marker A: The performance of p3_VvAGL11 in grape at annealing temperature of 58℃; B: The performance of 5U_VviAGL11 in grape at annealing temperature of 60℃; C: The performance of VMC7f2 in grape at annealing temperature of 61℃"

Fig. 2

Validation of SCAR marker GSLP1-569 for 96 grape cultivars"

Fig. 3

Validation of SCAR marker SCF27-2000 for 96 grape cultivars"

Table 3

Correlation between microsatellite allele distribution and seedlessness trait in collected grape cultivars"

SSR标记
SSR marker
等位基因 Allele 种子 Seed 相关性 Correlation SSR标记
SSR marker
等位基因 Allele 种子 Seed 相关性 Correlation
bp 频率Freq. - + χ2 P bp 频率 Freq. - + χ2 P
p3_VvAGL11 163 0.03 2 1 0.339 0.561 5U_VviAGL11 260 0.03 2 1 0.339 0.561
165 0.07 1 6 3.707 0.054 262 0.03 1 2 0.339 0.561
173 0.01 0 1 1.005 0.316 266 0.01 0 1 1.005 0.316
177 0.81 49 29 8.637 0.003** 270 0.04 4 0 4.085 0.043*
179 0.04 1 3 1.021 0.312 272 0.02 1 1 0.000 1
181 0.06 4 2 0.688 0.407 278 0.04 0 4 4.085 0.043*
185 0.02 0 2 2.021 0.155 280 0.02 1 1 0.000 1
187 0.68 59 6 65.333 6.32E-16** 282 0.02 0 2 2.021 0.155
288 0.04 1 3 1.021 0.312
294 0.34 18 15 0.329 0.566
VMC7f2 187 0.10 6 4 0.422 0.516 296 0.06 1 5 2.753 0.097
189 0.72 59 10 54.317 1.71E-13** 298 0.36 25 10 7.862 0.005**
191 0.70 49 18 22.031 0.000003** 302 0.09 5 4 0.117 0.733
193 0.05 3 2 0.205 0.65 304 0.01 1 0 1.005 0.316
195 0.07 2 5 1.334 0.248 306 0.67 58 6 63.375 1.71E-15**
197 0.03 2 1 0.339 0.561 308 0.11 5 6 0.096 0.756
201 0.01 0 1 1.005 0.316 312 0.02 0 2 2.021 0.155

Table 4

Correlation between microsatellite genotype distribution and seedlessness trait in collected cultivars"

SSR标记
SSR marker
基因型 Genotype 种子Seed 相关性Correlation SSR标记
SSR marker
基因型Genotype 种子Seed 相关性 Correlation
Alleles 频率Freq. - + χ2 P Alleles 频率Freq. - + χ2 P
p3_VvAGL11 163:177 0.01 0 1 1.005 0.316 5U_VviAGL11 260:298 0.02 1 1 0 1
163:187 0.02 2 0 2.021 0.155 260:306 0.01 1 0 1.005 0.316
165:177 0.06 1 5 2.753 0.097 262:294 0.01 1 0 1.005 0.316
165:181 0.01 0 1 1.005 0.316 262:298 0.02 0 2 2.021 0.155
173:187 0.01 0 1 1.005 0.316 266:294 0.01 0 1 1.005 0.316
177:177 0.20 3 16 9.872 0.002* 270:306 0.04 4 0 4.085 0.043*
177:179 0.02 0 2 2.021 0.155 272:294 0.01 0 1 1.005 0.316
177:185 0.01 0 1 1.005 0.316 272:306 0.01 1 0 1.005 0.316
177:187 0.51 45 4 46.061 1.15E-11* 278:296 0.01 0 1 1.005 0.316
179:185 0.01 0 1 1.005 0.316 278:298 0.02 0 2 2.021 0.155
179:187 0.01 1 0 1.005 0.316 278:308 0.01 0 1 1.005 0.316
181:187 0.05 4 1 1.848 0.174 280:294 0.01 0 1 1.005 0.316
187:187 0.07 7 0 7.265 0.007* 280:298 0.01 1 0 1.005 0.316
282:294 0.01 0 1 1.005 0.316
282:306 0.01 0 1 1.005 0.316
288:302 0.01 0 1 1.005 0.316
288:306 0.01 1 0 1.005 0.316
288:294 0.01 0 1 1.005 0.316
288:312 0.01 0 1 1.005 0.316
VMC7f2 187:187 0.01 0 1 1.005 0.316 294:294 0.01 0 1 1.005 0.316
187:189 0.04 4 0 4.085 0.043* 294:298 0.03 0 3 3.048 0.081
187:191 0.05 2 3 0.205 0.65 294:302 0.02 0 2 2.021 0.155
189:189 0.10 4 6 0.422 0.516 294:304 0.01 1 0 1.005 0.316
189:191 0.49 45 2 52.092 5.30E-13* 294:306 0.18 16 1 14.521 0.0001*
189:193 0.04 3 1 1.021 0.312 294:308 0.02 0 2 2.021 0.155
189:195 0.01 1 0 1.005 0.316 294:312 0.01 0 1 1.005 0.316
189:197 0.02 2 0 2.021 0.155 296:306 0.03 1 2 0.339 0.561
189:201 0.01 0 1 1.005 0.316 296:308 0.02 0 2 2.021 0.155
191:191 0.14 1 12 9.984 0.0016* 298:298 0.01 0 1 1.005 0.316
191:195 0.02 1 1 0 1 298:306 0.25 23 1 23.048 0.000002*
191:197 0.01 0 1 1.005 0.316 302:306 0.05 4 1 1.848 0.174
193:193 0.01 0 1 1.005 0.316 302:308 0.01 1 0 1.005 0.316
195:195 0.04 0 4 4.085 0.043* 306:306 0.03 3 0 3.048 0.081
306:308 0.04 4 0 4.085 0.043*
308:308 0.01 0 1 1.005 0.316

Table 5

Detection results of SCAR marker SCF27-2000 for the progenies of Red Globe × Dawn Seedless"

亲本基因型
Parental genotype
无核性
Seedlessness
SCF27-2000 SCF27-2000对杂交后代的检测结果 Detection results of SCF27-2000 for progenies
2000-bp 显著性 Significance 携带2000 bp
To keep 2000 bp
无(残)核
SL, RS
假阳性
False positives
假阴性
False negatives
SCF27-2000 种子Seed N (%) 0 2000-bp + - χ2 P
0×1 SL 21(26%) 2 19 19 2 13.419 0.0012
(<0.01)
65
(80.3%)
51
(78.5%)
14
(17.28%)
5
(6.17%)
RS 35(43%) 3 32 32 3
SD 25(31%) 11 14 14 11
总计Total 81 16 65 65 16

Table 6

Detection results of SSR marker p3_VvAGL11 for the progenies of Red Globe × Dawn Seedless"

亲本基因型
Parental genotype
无核性
Seedlessness
p3_VvAGL11基因分型
p3_VvAGL11 genotyping
p3_VvAGL11对杂交后代的检测结果 Detection results of p3_VvAGL11 for progenies
187-bp 显著性 Significance 携带187 bp
To keep 187 bp
无(残)核
SL, RS
假阳性
False positives
假阴性
False negatives
p3_VvAGL11 种子Seed N (%) 163:177 177:187 163:177:187 + - χ2 P
177:177×163:187 SL 21(26%) 1 19 1 20 1 41.188 1.14E-9 (<0.01) 56
(69.1%)
51
(91.0%)
5
(6.17%)
5
(6.17%)
RS 35(43%) 4 31 0 31 4
SD 25(31%) 20 4 1 5 20
总计Total 81 25 54 2 56 25

Table 7

Detection results of SSR marker 5U_VviAGL11 for the progenies of Red Globe × Dawn Seedless"

亲本基因型
Parental genotype
无核性
Seedlessness
5U_VviAGL11基因分型
5U_VviAGL11 genotyping
5U_VviAGL11对杂交后代的检测结果 Detection results of 5U_VviAGL11 for progenies
306-bp 显著性 Significance 携带306 bp
To keep 306 bp
无(残)核
SL, RS
假阳性
False positives
假阴性
False negatives
5U_VviAGL11 种子Seed N (%) 270:294 270:298 294:306 298:306 270:298:306 270:294:306 + - χ2 P
294:298×
270:306
SL 21 (26%) 1 0 9 10 0 1 20 1 44.959 1.73E-10 (<0.01) 55
(67.9%)
51
(92.7%)
4
(4.94%)
5
(6.17%)
RS 35 (43%) 3 1 14 17 0 0 31 4
SD 25 (31%) 17 4 2 1 1 0 4 21
总计Total 81 21 5 25 28 1 1 55 26

Fig. 4

Detection of SSR marker p3_VvAGL11 for the progenies of Red Globe × Dawn Seedless"

[1] MEJÍA N, SOTO B, GUERRERO M, CASANUEVA X, HOUEL C, MICCONO M D L Á, RAMOS R, LE CUNFF L, BOURSIQUOT J M, HINRICHSEN P, ADAM-BLONDON A F. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology, 2011, 11: 57.
doi: 10.1186/1471-2229-11-57
[2] BERGAMINI C, CARDONE M F, ANACLERIO A, PERNIOLA R, PICHIERRI A, GENGHI R, ALBA V, FORLEO L R, CAPUTO A R, MONTEMURRO C, BLANCO A, ANTONACCI D. Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Molecular Biotechnology, 2013, 54(3): 1021-1030.
doi: 10.1007/s12033-013-9654-8
[3] LEDBETTER C A, BURGOS L. Inheritance of stenospermocarpic seedlessness in Vitis vinifera L. Journal of Heredity, 1994, 85(2): 157-160.
doi: 10.1093/oxfordjournals.jhered.a111419
[4] STOUT A B. Progress in breeding for seedless grapes. Proceeding American Society for Horticultural Science, 1939, 37: 627-629.
[5] SANDHU A S, JAWANDA J S, UPPAL D K. Inheritance of seed characters in hybrid population of intercultivar crosses of grapes(Vitis vinifera L.). Journal of Research-Punjab Agricultural University, 1984, 21(1): 39-44.
[6] SATO A, YAMANE H, YAMADA M, YOSHINAGA K. Inheritance of seedlessness in grapes. Journal of the Japanese Society for Horticultural Science, 1994, 63(1): 1-7.
[7] BOUQUET A, DANGLOT Y. Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis, 1996, 35(1): 35-42.
[8] COSTANTINI L, BATTILANA J, LAMAJ F, FANIZZA G, GRANDO M S. Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biology, 2008, 8: 38.
doi: 10.1186/1471-2229-8-38
[9] LAHOGUE F, THIS P, BOUQUET A. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theoretical and Applied Genetics, 1998, 97(5): 950-959.
doi: 10.1007/s001220050976
[10] ROYO C, TORRES-PÉREZ R, MAURI N, DIESTRO N, CABEZAS J A, MARCHAL C, LACOMBE T, IBÁÑEZ J, TORNEL M, CARREÑO J, MARTÍNEZ-ZAPATER J M, CARBONELL-BEJERANO P. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology, 2018, 177(3): 1234-1253.
doi: 10.1104/pp.18.00259
[11] MEJIA N, HINRICHSEN P. A new, highly assertive scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Horticulturae, 2003, 603(603): 559-564.
[12] 王跃进, LAMIKANRA OLUSOLA. 检测葡萄无核基因DNA探针的合成与应用. 西北农林科技大学学报(自然科学版), 2002, 30(3): 42-46.
WANG Y J, OLUSOLA L. Application and synthesis on the DNA probe for detecting seedless genes in grapevine. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2002, 30(3): 42-46. (in Chinese)
[13] PELLERONE F I, EDWARDS K J, THOMAS M R. Grapevine microsatellite repeats: Isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. Vitis Journal of Grapevine Research, 2001, 40(4): 179-186.
[14] MERDINOGLU D, BUTTERLIN G, BEVILACQUA L, CHIQUET V, ADAM-BLONDON A F, DECROOCQ S. Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Molecular Breeding, 2005, 15(4): 349-366.
doi: 10.1007/s11032-004-7651-0
[15] 马亚茹, 冯建灿, 刘崇怀, 樊秀彩, 孙海生, 姜建福, 张颖. 葡萄无核性状的SSR新分子标记开发及应用. 中国农业科学, 2018, 51(13): 2622-2630.
MA Y R, FENG J C, LIU C H, FAN X C, SUN H S, JIANG J F, ZHANG Y. Development and application of SSR new molecular marker for seedless traits in grape. Scientia Agricultura Sinica, 2018, 51(13): 2622-2630. (in Chinese)
[16] OCAREZ N, JIMENEZ N, NUNEZ R, PERNIOLA R, MARSICO A D, CARDONE M F, BERGAMINI C, MEJIA N. Unraveling the deep genetic architecture for seedlessness in grapevine and the development and validation of a new set of markers for VviAGL11-Based Gene-Assisted Selection. Genes, 2020, 11(2): 151.
doi: 10.3390/genes11020151
[17] LI Z Q, LI T M, WANG Y J, XU Y. Breeding new seedless grapes using in ovulo embryo rescue and marker-assisted selection. In Vitro Cellular & Developmental Biology - Plant, 2015, 51(3): 241-248.
[18] LI T M, LI Z Q, YIN X, GUO Y R, WANG Y J, XU Y. Improved in vitro Vitis vinifera L. embryo development of F1 progeny of 'Delight' × 'Ruby seedless' using putrescine and marker-assisted selection. In Vitro Cellular & Developmental Biology-Plant, 2018, 54(3): 291-301.
[19] LI S S, LI Z Y, ZHAO Y N, ZHAO J, LUO Q W, WANG Y J. New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers. 3 Biotech, 2019, 10(1): 4.
doi: 10.1007/s13205-019-1993-0
[20] KORPAS A, BARÁNEK M, PIDRA M, HRADLÍK J. Behaviour of two SCAR markers for seedlessness within Central European varieties of grapevine. Vitis, 2009, 48(1): 33-42.
[21] KUBOTA S, LIU Q, KESSUWAN K, OKAMOTO N, SAKAMOTO T, NAKAMURA Y, SHIGENOBU Y, SUGAYA T, SANO M, UJI S, NOMURA K, OZAKI A. High-throughput simple sequence repeat (SSR) markers development for the kelp grouper (Epinephelus bruneus) and cross-species amplifications for Epinephelinae species. Advances in Bioscience and Biotechnology, 2014, 5(2): 117-130.
doi: 10.4236/abb.2014.52016
[22] CABEZAS J A, CERVERA M T, RUIZ-GARCÍA L, CARREÑO J, MARTÍNEZ-ZAPATER J M. A genetic analysis of seed and berry weight in grapevine. Genome, 2006, 49(12): 1572-1585.
doi: 10.1139/g06-122
[23] KARAAGAC E, ALBA M, VARGAS, ANDRES M T D, CARRENO I, IBANEZ J, CARRENO J, MARTINEZ-ZAPATER J M, CABEZAS J A. Marker assisted selection for seedlessness in table grape breeding. Tree Genetics & Genomes, 2012, 8(5): 1003-1015.
[24] AKKURT M, ÇAKıR A, SHIDFAR M, ÇELIKKOL B P, SÖYLEMEZOĞLU G. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection. Genetics and Molecular Research, 2012, 11(3): 2288-2294.
doi: 10.4238/2012.August.13.2
[25] BENNICI S, DI GUARDO M, DISTEFANO G, LA MALFA S, PUGLISI D, ARCIDIACONO F, FERLITO F, DENG Z N, GENTILE A, NICOLOSI E. Influence of the genetic background on the performance of molecular markers linked to seedlessness in table grapes. Scientia Horticulturae, 2019, 252: 316-323.
doi: 10.1016/j.scienta.2019.03.060
[26] VIHINEN M. How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics, 2012, 13(4): S2.
[27] BALDI P, BRUNAK S, CHAUVIN Y, ANDERSEN C A F, NIELSEN H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 2000, 16(5): 412-424.
doi: 10.1093/bioinformatics/16.5.412
[28] REVERS L F, WELTER L J, IRALA P B, SILVA D, GARRIDO L R. Co-localization of QTLS for seedlessness and downy mildew resistance in grapevine. Acta Horticulturae, 2014, 1046: 449-456.
[29] GUO D L, ZHAO H L, LI Q, ZHANG G H, JIANG J F, LIU C H, YU Y H. Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Horticulture Research, 2019, 6: 11.
doi: 10.1038/s41438-018-0089-z
[30] 屈田田, 张剑侠, 骆强伟, 王跃进. 无核葡萄抗寒抗病胚挽救育种应用研究. 果树学报, 2017, 34(2): 157-165.
QU T T, ZHANG J X, LUO Q W, WANG Y J. A study on the application of seedless grapevine breeding for cold-hardness and disease-resistance using embryo rescue. Journal of Fruit Science, 2017, 34(2): 157-165.(in Chinese)
[31] MEJIA N, GEBAUER M, MUNOZ L, HEWSTONE N, MUNOZ C, HINRICHSEN P. Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. American Journal of Enology & Viticulture, 2007, 58(4): 499-507.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[4] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[5] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[6] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[7] YANG JingYa,HU Qiong,WEI HaoDong,CAI ZhiWen,ZHANG XinYu,SONG Qian,XU BaoDong. Consistency Analysis of Classification Results for Single and Double Cropping Rice in Southern China Based on Sentinel-1/2 Imagery [J]. Scientia Agricultura Sinica, 2022, 55(16): 3093-3109.
[8] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[9] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[10] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[11] ZHANG WeiDong,ZHENG YuJie,GE Wei,ZHANG YueLang,LI Fang,WANG Xin. Identification of Cashmere Dermal Papilla Cells Based on Single- Cell RNA Sequencing Technology [J]. Scientia Agricultura Sinica, 2022, 55(12): 2436-2446.
[12] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[15] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!