Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2436-2446.doi: 10.3864/j.issn.0578-1752.2022.12.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Identification of Cashmere Dermal Papilla Cells Based on Single- Cell RNA Sequencing Technology

ZHANG WeiDong(),ZHENG YuJie,GE Wei,ZHANG YueLang,LI Fang,WANG Xin()   

  1. College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2021-04-30 Accepted:2021-10-29 Online:2022-06-16 Published:2022-06-23
  • Contact: Xin WANG E-mail:a913213845@163.com;wxwza@126.com

Abstract:

【Objective】 Based on single-cell RNA sequencing, this article aims to explore the marker genes of cashmere dermal papilla cells, and to optimize the methods to identify dermal papilla cells in vitro, thereby laying a cell model for future pertinent research in cashmere hair follicle development. 【Methods】 The single-cell transcriptional data from the skin tissues of Shanbei white cashmere embryonic stage (E60, E90 and E120) were analyzed with Seurat package. After quality control, filter and normalization of raw data, the dimension reduction analysis and cell cluster identification were performed by uniform manifold approximation and projection (UMAP). Moreover, depending on cluster-specific expressed gene expression, the principal cell lineage information was identified. The type-specific marker genes of the dermal papilla were obtained after gene expression analysis. The immunofluorescence staining was used to validate the expression position of marker protein to identify the dermal papilla specific protein in goat skin. Whole hair follicles were isolated mechanically under stereoscope, and combined with enzyme detach, cashmere dermal papilla region was isolated and cultured in vitro until cell separation. The dermal papilla cells were purified by different-speed adherence methods. When the cells were highly pure, the expression of candidate marker protein was verified by immunofluorescence assay. 【Result】 In current study, the key transcription information of goat hair follicle cells was analyzed at single cell level. Information of 17 subsets of cells in cashmere goat skin structure was obtained successfully including dermal cell lineage, epidermal cell lineage, dermal papilla cell, hair stem cell and inner root sheath cell, as well as other functional cell groups such as pericyte cell, macrophage and muscle cell. 427 specific markers of dermal papilla cells including SOX2, FGF7, APOD, BMP3, HHIP, HEY2 and SPON1 were screened. By comparison, the expression of these marker genes in cashmere dermal papilla cells was much higher than that in other cell types, which could be confirmed as the specific genes of hair papilla cells. Immunofluorescence result further proved that SOX2, FGF7 and APOD were specifically expressed in the dermal papilla region, and could be used to trace the dermal papilla cells in vivo. In addition, in current study, the single cashmere goat secondary hair follicle was separated successfully, and the adherent culture of dermal papilla was realized. A large number of cells were observed migrating from the hair papilla area. Immunofluorescence assay showed that SOX2, FGF7 and APOD were all expressed in goat dermal papilla cells, and about 76% of cells were SOX2 positive, while more than 98% of cells were FGF7 and APOD positive. Combined with the immunofluorescence results, SOX2, FGF7 and APOD genes factually could be used to identify the cultured goat dermal papilla cells in vitro. 【Conclusion】 In this study, single cell RNA sequencing technology was used to describe the main transcriptome information of cells in cashmere goat skin, and the specific marker genes of dermal papilla cells were sifted out successfully. And it proved that single-cell sequencing based method was simple and efficient to identify marker genes further identified by immunofluorescence. The discovering of SOX2, FGF7 and APOD not only provided the markers for the localization of hair papilla cells in vivo, but also provided the possibility for the identification of dermal papilla cells with multiple markers, which laid the foundation for further study of the gene functions in regulating hair follicle development.

Key words: single-cell RNA sequencing, cashmere, dermal papilla cells, marker gene, identification

Table 1

Marker genes used for cell cluster identification"

类群ID
Cluster ID
分子标记
Marker
细胞类型
Cell type
参考文献
Reference
1, 2, 3, 5, 6 LUM, COL1A1 Dermal [29]
0,7 KRT14, KRT17 Epithelium [30]
4,11 MSX1, LHX2 Hair shaft [31]
8 KRT71, KRT27 IRS [32]
9 KRT14, KRT15 Epithelial [33]
10 KDR, PECAM1 Endothelial [34]
12 SOX2, SOX18 DP [7]
13 TPM2, ACTA2 Pericyte [35]
14, 15 ALF1, RGSI Macrophage [36]
16 CNMD, ARSI Muscle [36]

Fig. 1

Characterization of major cell types in the UMAP plot Cluster 1, 2, 3, 5 and 6 are dermal cells, cluster 0 and 7 are epithelium cells, cluster 4 and 11 are hair shaft cells, cluster 8 are IRS cells, cluster 9 are epithelial cells, cluster 10 are endothelial cells, cluster 12 are DPCs, cluster 13 are pericyte cells, cluster 14 and 15 are macrophage cells, and cluster 16 are muscle cells"

Table 2

Marker genes of DPCs (TOP20)"

基因名称
Gene symbol
P 平均log2倍数
Avg_log2 FC
表达百分比1
Pct.1
表达百分比2
Pct.2
校正P
P_val_adj
APOD 0 2.141965302 0.548 0.028 0
RSPO2 0 1.890455415 0.350 0.005 0
PAPPA2 0 1.309548033 0.494 0.046 0
BMP3 0 1.163114736 0.411 0.024 0
SOX2 0 1.094986265 0.409 0.014 0
PCOLCE2 0 1.080839693 0.272 0.014 0
HEY2 0 1.040877239 0.442 0.026 0
SPON1 0 0.996565048 0.558 0.07 0
HHIP 0 0.986923554 0.411 0.022 0
FGF7 0 2.214535719 0.392 0.078 0
SMOC1 0 0.952556549 0.57 0.069 0
ITGA8 0 0.906779411 0.525 0.051 0
SCUBE3 0 0.818127433 0.307 0.004 0
NRG2 0 0.810698041 0.281 0.012 0
PREX2 2.04E-303 1.000680599 0.584 0.079 3.42E-299
FGFR1 4.44E-281 1.453693627 0.842 0.224 7.44E-277
IGF1 2.89E-274 1.446981853 0.835 0.193 4.84E-270
GAL 1.30E-272 1.230618938 0.286 0.019 2.18E-268
INHBA 4.25E-269 1.55167208 0.780 0.188 7.12E-265

Fig. 2

Discovery and identification of DPCs specific genes A: Dot plot illustrating key gene expression in clusters; B: Scatter plot showing the positions of marker genes in clusters; C: Immunofluorescence verifying the expression position of marker genes in cashmere goat hair follicles, DAPI: Nuclear dye, FITC/CY3: Selected fluorescent labeled molecules, Merge: Merged figures, 100 μm"

Fig. 3

Isolation of DPCs and Identification of marker genes A: A bunch of secondary follicle of cashmere goat; B: Segregated secondary follicle of cashmere goat; C: Cells isolated from the dermal papilla; D: Purified DPCs; E: Immunofluorescence verifying the expression of marker genes in DPCs, 100 μm, positive cell rate was at lower right corner in merge (positive cells/total cells)"

[1] MA S, WANG Y, ZHOU G X, DING Y, YANG Y X, WANG X L, ZHANG E P, CHEN Y L. Synchronous profiling and analysis of mRNAs and ncRNAs in the dermal papilla cells from cashmere goats. BMC Genomics, 2019, 20(1): 512. doi: 10.1186/s12864-019-5861-4.
doi: 10.1186/s12864-019-5861-4
[2] PAUS R, MÜLLER-RÖVER S, VAN DER VEEN C, MAURER M, EICHMÜLLER S, LING G, HOFMANN U, FOITZIK K, MECKLENBURG L, HANDJISKI B. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. The Journal of Investigative Dermatology, 1999, 113(4): 523-532. doi: 10.1046/j.1523-1747.1999.00740.x.
doi: 10.1046/j.1523-1747.1999.00740.x.
[3] STENN K S, PAUS R. Controls of hair follicle cycling. Physiological Reviews, 2001, 81(1): 449-494. doi: 10.1152/physrev.2001.81.1.449.
doi: 10.1152/physrev.2001.81.1.449
[4] HARSHUK-SHABSO S, DRESSLER H, NIEHRS C, AAMAR E, ENSHELL-SEIJFFERS D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nature Communications, 2020, 11(1): 5114. doi: 10.1038/s41467-020-18643-x.
doi: 10.1038/s41467-020-18643-x
[5] NAMEKATA M, YAMAMOTO M, GOITSUKA R. Nuclear localization of Meis1 in dermal papilla promotes hair matrix cell proliferation in the anagen phase of hair cycle. Biochemical and Biophysical Research Communications, 2019, 519(4): 727-733. doi: 10.1016/j.bbrc.2019.09.060.
doi: 10.1016/j.bbrc.2019.09.060
[6] CHI W, WU E, MORGAN B A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development (Cambridge, England), 2013, 140(8): 1676-1683. doi: 10.1242/dev.090662.
doi: 10.1242/dev.090662
[7] DRISKELL R R, GIANGRECO A, JENSEN K B, MULDER K W, WATT F M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development (Cambridge, England), 2009, 136(16): 2815-2823. doi: 10.1242/dev.038620.
doi: 10.1242/dev.038620
[8] CLAVEL C, GRISANTI L, ZEMLA R, REZZA A, BARROS R, SENNETT R, MAZLOOM A R, CHUNG C Y, CAI X, CAI C L, PEVNY L, NICOLIS S, MA'AYAN A, RENDL M. Sox 2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Developmental Cell, 2012, 23(5): 981-994. doi: 10.1016/j.devcel.2012.10.013.
doi: 10.1016/j.devcel.2012.10.013
[9] REYNOLDS A J, CHAPONNIER C, JAHODA C A, GABBIANI G. A quantitative study of the differential expression of alpha-smooth muscle actin in cell populations of follicular and non-follicular origin. The Journal of Investigative Dermatology, 1993, 101(4): 577-583. doi: 10.1111/1523-1747.ep12366032.
doi: 10.1111/1523-1747.ep12366032
[10] PENNISI D, GARDNER J, CHAMBERS D, HOSKING B, PETERS J, MUSCAT G, ABBOTT C, KOOPMAN P. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nature Genetics, 2000, 24(4): 434-437. doi: 10.1038/74301.
doi: 10.1038/74301
[11] ITO Y, HAMAZAKI T S, OHNUMA K, TAMAKI K, ASASHIMA M, OKOCHI H. Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. The Journal of Investigative Dermatology, 2007, 127(5): 1052-1060. doi: 10.1038/sj.jid.5700665.
doi: 10.1038/sj.jid.5700665
[12] VILLANI R, HODGSON S, LEGRAND J, GREANEY J, WONG H Y, PICHOL-THIEVEND C, ADOLPHE C, WAINWIGHT B, FRANCOIS M, KHOSROTEHRANI K. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types. Development (Cambridge, England), 2017, 144(10): 1887-1895. doi: 10.1242/dev.143917.
doi: 10.1242/dev.143917
[13] ZHOU L, XU M, YANG Y, YANG K, WICKETT R R, ANDL T, MILLAR S E, ZHANG Y. Activation of β-catenin signaling in CD133-positive dermal papilla cells drives postnatal hair growth. PLoS One, 2016, 11(7): e0160425. doi: 10.1371/journal.pone.0160425.
doi: 10.1371/journal.pone.0160425
[14] DRISKELL R R, JUNEJA V R, CONNELLY J T, KRETZSCHMAR K, TAN D W-M, WATT F M. Clonal growth of dermal papilla cells in hydrogels reveals intrinsic differences between Sox2- positive and -negative cells in vitro and in vivo. Journal of Investigative Dermatology, 2012, 132(4), 1084-1093. doi: 10.1038/jid.2011.428.
doi: 10.1038/jid.2011.428
[15] TSAI S Y, CLAVEL C, KIM S, ANG Y S, GRISANTI L, LEE D F, KELLEY K, RENDL M. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells, 2010, 28(2):221-228. doi: 10.1002/stem.281.
doi: 10.1002/stem.281
[16] WANG Y, MACK J A, MAYTIN E V. CD 44 inhibits α-SMA gene expression via a novel G-actin/MRTF-mediated pathway that intersects with TGFβR/p38MAPK signaling in murine skin fibroblasts. The Journal of Biological Chemistry, 2019, 294(34): 12779-12794. doi: 10.1074/jbc.ra119.007834.
doi: 10.1074/jbc.ra119.007834
[17] SOLDANO S, MONTAGNA P, BRIZZOLARAR. AB 0238 Effects of endothelin A/B receptor antagonist (bosentan) on alpha-smooth muscle actin (α-SMA) and extracellular matrix protein synthesis in primary cultures of systemic sclerosis skin fibroblasts. Annals of the Rheumatic Diseases, 2013, 71: 651. doi: 10.4081/reumatismo.2012.326.
doi: 10.4081/reumatismo.2012.326
[18] HAM S A, HWANG J S, YOO T, LEE W J, PAEK K S, OH J W, PARK C K, KIM J H, DO J T, KIM J H, SFO H G. Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: a potential role for PPARδ in wound healing. Journal of Dermatological Science, 2015, 80(3): 186-195. doi: 10.1016/j.jdermsci.2015.10.005.
doi: 10.1016/j.jdermsci.2015.10.005
[19] HE X L, CHAO Y, ZHOU G X, CHEN Y L. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats. Gene, 2016, 575(2 pt 2): 393-398. doi: 10.1016/j.gene.2015.09.034.
doi: 10.1016/j.gene.2015.09.034
[20] ZHU B, XU T, YUAN J, GUO X, LIU D. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the cashmere goat (Capra hircus). 2013, 46(3):104-111. doi: 10.1371/journal.pone.0076282.
doi: 10.1371/journal.pone.0076282
[21] MA S, ZHOU G, CHEN Y. Effects of all-trans retinoic acid on goat dermal papilla cells cultured in vitro. Electronic Journal of Biotechnology, 2018, 34: 43-50. doi: 10.1016/j.ejbt.2018.05.004.
doi: 10.1016/j.ejbt.2018.05.004
[22] JAHO DA C A, REYNOLDS A J, CHAPONNIER C, FORESTER J. C, GABBIANI G. Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. Journal of Cell Science, 1991, 99 (Pt 3)(2):627. doi: 10.1242/jcs.99.3.627.
doi: 10.1242/jcs.99.3.627
[23] ZHU B, GUO Z L, JIN M Z, BAI Y J, YANG W L, HUI L H. Establishment of dermal sheath cell line from Cashmere goat and characterizing cytokeratin 13 as its novel biomarker. Biotechnology Letters, 2018, 40(5): 765-772. doi: 10.1007/s10529-018-2532-5.
doi: 10.1007/s10529-018-2532-5
[24] JOOST S, ZEISEL A, JACOB T, SUN X, LA MANNO G, LÖNNERBERG P, LINNARSSON S, KASPER M. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Systems, 2016, 3(3): 221-237.e9. doi: 10.1016/j.cels.2016.08.010.
doi: 10.1016/j.cels.2016.08.010
[25] JAITIN D A, KENIGSBERG E, KEREN-SHAUL H, ELEFANT N, PAUL F, ZARETSKY I, MILDNER A, COHEN N, JUNG S, TANAY A, AMIT I. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science, 2014, 343(6172): 776-779. doi: 10.1126/science.1247651.
doi: 10.1126/science.1247651
[26] GE W, TAN S J, WANG S H, LI L, SUN X F, SHEN W, WANG X. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development. Theranostics, 2020, 10(17): 7581-7598. doi: 10.7150/thno.44306.
doi: 10.7150/thno.44306
[27] GUPTA K, LEVINSOHN J, LINDERMAN G, CHEN D, SUN T Y, DONG D, TAKETO M M, BOSENBERG M, KLUGER Y, CHOATE K. Single-cell analysis reveals a hair follicle dermal niche molecular differentiation trajectory that begins prior to morphogenesis. Developmental Cell, 2019, 48(1):17-31. doi: 10.1016/j.devcel.2018.11.032.
doi: 10.1016/j.devcel.2018.11.032
[28] CHOVATIYA G, GHUWALEWALA S, WALTER L D, COSGROVE B D, TUMBAR T. High resolution single cell transcriptomics reveals heterogeneity of self‐renewing hair follicle stem cells. Experimental Dermatology, 2020, 30(4): 457-471. doi: 10.1111/exd.14262.
doi: 10.1111/exd.14262
[29] GUPTA K, LEVINSOHN J, LINDERMAN G, CHEN D, SUN T Y, DONG D, TAKETO M M, BOSENBERG M, KLUGER Y, CHOATE K, MYUNG P. Single-cell analysis reveals a hair follicle dermal niche molecular differentiation trajectory that begins prior to morphogenesis. Developmental Cell, 2019, 48(1): 17-31.e6. doi: 10.1016/j.devcel.2018.11.032.
doi: 10.1016/j.devcel.2018.11.032
[30] GU L H, COULOMBE P A. Keratin function in skin epithelia: a broadening palette with surprising shades. Current Opinion in Cell Biology, 2007, 19(1): 13-23. doi: 10.1016/j.ceb.2006.12.007.
doi: 10.1016/j.ceb.2006.12.007
[31] YANG H, ADAM R C, GE Y, HUA Z L, FUCHS E. Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell, 2017, 169(3): 483-496.e13. doi: 10.1016/j.cell.2017.03.038.
doi: 10.1016/j.cell.2017.03.038
[32] HAREL S, CHRISTIANO A M. Keratin 71 mutations: from water dogs to woolly hair. Journal of Investigative Dermatology, 2012, 132(10):2315-2317. doi: 10.1038/jid.2012.291.
doi: 10.1038/jid.2012.291
[33] TAI G, RANJZAD P, MARRIAGE F, REHMAN S, DENLEY H, DIXON J, MITCHELL K, DAY P J, WOOLF A S. Cytokeratin 15 marks basal epithelia in developing ureters and is upregulated in a subset of urothelial cell carcinomas. PLoS One, 2013, 8(11): e81167. doi: 10.1371/journal.pone.0081167.
doi: 10.1371/journal.pone.0081167
[34] DETMAR M, BROWN L F, SCHÖN M P, ELICKER B M, VELASCO P, RICHARD L, FUKUMURA D, MONSKY W, CLAFFEY K P, JAIN R K. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. The Journal of Investigative Dermatology, 1998, 111(1): 1-6. doi: 10.1046/j.1523-1747.1998.00262.x.
doi: 10.1046/j.1523-1747.1998.00262.x.
[35] PAQUET-FIFIELD S, SCHLUTER H, LI A, AITKEN T, GANGATIRKAR P, BLASHKI D, KOELMEYER R, POULIOT N, PALATSIDES M, ELLIS S, et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. Journal of Clinical Investigation, 2009, 119(9):2795-2806. doi: 10.1172/JCI38535.
doi: 10.1172/JCI38535
[36] LEE S B, SHIM S, KIM M J, SHIN H Y, JANG W S, LEE S J, JIN Y W, LEE S S, PARK S. Identification of a distinct subpopulation of fibroblasts from murine dermis: CD73 (-) CD105(+) as potential marker of dermal fibroblasts subset with multipotency. Cell Biology International, 2016, 40(9): 1008-1016. doi: 10.1002/cbin.10623.
doi: 10.1002/cbin.10623
[37] SARI A R, RUFAUT N W, JONES L N, SINCLAIR R D. Characterization of ovine dermal papilla cell aggregation. International Journal of Trichology, 2016, 8(3): 121-129. doi: 10.4103/0974-7753.188966.
doi: 10.4103/0974-7753.188966
[38] SAXENA N, MOK K W, RENDL M. An updated classification of hair follicle morphogenesis. Experimental Dermatology, 2019, 28(4): 332-344. doi: 10.1111/exd.13913.
doi: 10.1111/exd.13913
[39] RAHMANI W, ABBASI S, HAGNER A, RAHARJO E, KUMAR R, HOTTA A, MAGNESS S, METZGER D, BIERNASKIE J. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Developmental Cell, 2014, 31(5): 543-558. doi: 10.1016/j.devcel.2014.10.022.
doi: 10.1016/j.devcel.2014.10.022
[40] MILLAR S E. Molecular mechanisms regulating hair follicle development. The Journal of Investigative Dermatology, 2002, 118(2): 216-225. doi: 10.1046/j.0022-202x.2001.01670.x.
doi: 10.1046/j.0022-202x.2001.01670.x.
[41] MESSENGER A G. The culture of dermal papilla cells from human hair follicles. British Journal of Dermatology, 1984, 110(6): 685-689. doi: 10.1111/j.1365-2133.1984.tb04705.x.
doi: 10.1111/j.1365-2133.1984.tb04705.x.
[42] WITHERS A P, JAHODA C A B, RYDER M L, OLIVER R F. Culture of wool follicle dermal papilla cells from two breeds of sheep. Archives of Dermatological Research, 1986, 279(2): 140-142. doi: 10.1007/BF00417536.
doi: 10.1007/BF00417536
[43] GUO H, XING Y, ZHANG Y, HE L, DENG F, MA X, LI Y. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy. PeerJ, 2018, 6: e4306. doi: 10.7717/peerj.4306.
doi: 10.7717/peerj.4306
[44] HIGGINS C A, RICHARDSON G D, FERDINANDO D, WESTGATE G E, JAHODA C A. Modelling the hair follicle dermal papilla using spheroid cell cultures. Experimental Dermatology, 2010, 19(6): 546-548. doi: 10.1111/j.1600-0625.2009.01007.x.
doi: 10.1111/j.1600-0625.2009.01007.x.
[45] OSADA A, KOBAYASHI K, MASUI S, HAMAZAKI T S, YASUDA K, OKOCHI H. Cloned cells from the murine dermal papilla have hair-inducing ability. Journal of Dermatological Science, 2009, 54(2): 129-131. doi: 10.1016/j.jdermsci.2008.12.002.
doi: 10.1016/j.jdermsci.2008.12.002
[46] JAMES K, HOSKING B, GARDNER J, MUSCAT G E, KOOPMAN P. Sox 18 mutations in the ragged mouse alleles ragged-like and opossum. Genesis (New York, N Y), 2003, 36(1): 1-6. doi: 10.1002/gene.10190.
doi: 10.1002/gene.10190
[47] SEO H S, LEE D J, CHUNG J H, LEE C H, KIM H R, KIM J E, KIM B J, JUNG M H, HA K T, JEONG H S. Hominis Placenta facilitates hair re-growth by upregulating cellular proliferation and expression of fibroblast growth factor-7. BMC Complementary and Alternative Medicine, 2016, 16(1): 187. doi: 10.1186/s12906-016-1180-3,
doi: 10.1186/s12906-016-1180-3
[48] MESLER A L, VENIAMINOVA N A, LULL M V, WONG S Y. Hair follicle terminal differentiation is orchestrated by distinct early and late matrix progenitors. Cell Reports, 2017, 19(4): 809-821. doi: 10.1016/j.celrep.2017.03.077.
doi: 10.1016/j.celrep.2017.03.077
[49] PLEASANTINE M, RONG M, HONG F, MARINA G, KIM PETER C W, DLUGOSZ ANDRZEJ A, CHI-CHUNG H. Sonic hedgehog- dependent activation of Gli2 is essential for embryonic hair follicle development. Genes & Development, 2007(2): 282. doi: 10.1101/gad.1038103.
doi: 10.1101/gad.1038103
[50] WOO W M, ZHEN H H, ORO A E. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes & Development, 2012, 26(11): 1235-1246. doi: 10.1101/gad.187401.112.
doi: 10.1101/gad.187401.112
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[4] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[5] YANG JingYa,HU Qiong,WEI HaoDong,CAI ZhiWen,ZHANG XinYu,SONG Qian,XU BaoDong. Consistency Analysis of Classification Results for Single and Double Cropping Rice in Southern China Based on Sentinel-1/2 Imagery [J]. Scientia Agricultura Sinica, 2022, 55(16): 3093-3109.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[10] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[11] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[12] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[13] YAO Qing,YAO Bo,LÜ Jun,TANG Jian,FENG Jin,ZHU XuHua. Research on Fine-Grained Image Recognition of Agricultural Light- Trap Pests Based on Bilinear Attention Network [J]. Scientia Agricultura Sinica, 2021, 54(21): 4562-4572.
[14] WANG ChengLi,YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi. Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(16): 3440-3450.
[15] GUO ZhiXiong,SUN LengXue,ZHENG JiaMin,CAI CanJun,WANG Bei,LI KaiTuo,PAN TengFei,SHE WenQin,CHEN GuiXin,PAN DongMing. Purification, Characterization and Expression of Ionically Bound Peroxidase in Litchi Pericarp during Coloration and Maturation of Fruit [J]. Scientia Agricultura Sinica, 2021, 54(16): 3502-3513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!