Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (8): 1677-1687.doi: 10.3864/j.issn.0578-1752.2020.08.016
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua(),ZHONG JinCheng(
)
[1] | TEKIN D, DURSUN A D, XI L . Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacologica Sinica, 2010,31(9):1085-1094. |
[2] | SEMENZA G L . Hypoxia-inducible factors in physiology and medicine. Cell, 2012,148(3):399-408. |
[3] | BARTEL D P . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297. |
[4] | HE M, LU Y, XU S, MAO L, ZHANG L, DUAN W, LIU C, PI H, ZHANG Y, ZHONG M, YU Z, ZHOU Z . MiRNA-210 modulates a nickel-induced cellular energy metabolism shift by repressing the iron-sulfur cluster assembly proteins ISCU1/2 in Neuro-2a cells. Cell Death Disease, 2014, 5(2):e1090. |
[5] | CONTI A, ROMEO S G, CAMA A, LATORRE D, BARRESI V, PEZZINO G, TOMASELLO C, CARDALI S, ANGILERI F F, POLITO F, FERLAZZO G, DIGIORGIO R, GERMANO A, AGUENNOUZ M . MiRNA expression profiling in human gliomas: upregulated miR-363 increases cell survival and proliferation. Tumour Biology 2016, 37(10):14035-14048. |
[6] | PANDEY R K, SUNDAR S, PRAJAPAATI V K . Differential expression of miRNA regulates T Cell differentiation and plasticity during visceral leishmaniasis infection. Frontiers in Microbiology, 2016, 7(25):206-215. |
[7] | FULLAONDO A, LEE S Y . Identification of putative miRNA involved in Drosophila melanogaster immune response. Developmental and Comparative Immunology, 2012,36(2):267-273. |
[8] | FU X, MENG Z, LIANG W, TIAN Y, WANG X, HAN W, LOU G, WANG X, LOU F, YEN Y, YU H, JOVE R, HUANG W . MiR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene, 2014,33(34):4296-4306. |
[9] | CHENG Y, XIANG G, MENG Y, DONG R . MiRNA-183-5p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting the PDCD4. Reproductive Biology, 2016, 16(3): 225-233. |
[10] | HESSAM S, SAND M, SKRYGAN M, GAMBICHLER T, BECHARA F G . Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the Inflammatory Pathway of hidradenitis suppurativa. Inflammation, 2017,40(2):464-472. |
[11] | MAL C, AFTABUDDIN M, KUNDU S . IIKmTA: Inter and intra kingdom miRNA-target analyzer. Interdisciplinary Sciences, Computational Life Sciences, 2018,10(3):538-543. |
[12] | JONAS S, LZAURRALDE E . Towards a molecular understanding of microRNA-mediated gene silencing. Nature Reviews Genetics, 2015,16(7):421-433. |
[13] | FENG B, CHAKRABARTI S . MiR-320 regulates glucose-induced gene expression in diabetes. ISRN Endocrinology, 2012, 6(7):1-7. |
[14] | CIMMINO A, CALIN GA, FABBRI M, LORIO M V, FERRACIN M, SHIMIZU M, WOJCIK S E, AQEILAN R I, ZUPO S, DONO M, RASSENTI L, ALDER H, VOLINIA S, LIU C G, KIPPS T J, NEGRINI M, CROCE C M . MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39):13944-13949. |
[15] | NALLAMSHETTY S, CHAN S Y, LOSCALZO J . Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radical Biology Medicine, 2013,64:20-30. |
[16] | YAO M, WANG X, TANG Y, ZHANG W, Cui B, Liu Q, Xing L . Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. American Journal of Physiology-Lung Cellular Physiology, 2014,307(11):829-837. |
[17] | XU X, LIU C, BAO J . Hypoxia-induced hsa-miR-101 promotes glycolysis by targeting TIGAR mRNA in clear cell renal cell carcinoma. Molecular Medicine Reports, 2017,15(3):1373-1378. |
[18] | ZHANG G, YIN S, MAO J, LIANG F, ZHAO C, LI P, ZHOU G, CHEN S, TANG Z . Integrated analysis of mRNA-seq and miRNA-seq in the liver of Pelteobagrus vachelli in response to hypoxia. Scientific Reports, 2016,10(6):22907. |
[19] | 张阳阳 . miR-378在牛前体脂肪细胞分化的作用与机制[D]. 长春: 吉林大学, 2014. |
ZHANG Y Y . Effect and mechanism of bovine miR-378 in preadipocyte differention[D]. Changchun: Jilin University, 2014. (in Chinese) | |
[20] | LI H J, LIU M, YE S, YANG F . De novo assembly, gene annotation, and molecular marker development using Illumina paired-end transcriptome sequencing in the clam Saxidomus purpuratus. Genes & Genomics, 2017,39(6):675-685. |
[21] | 郭胜祥, 刘永年 . 高原适应动物牦牛与普通黄牛肺血管反应性的比较研究. 中国病理生理杂志, 1995, 11(3):230-233. |
GUO S X, LIU Y N . Comparative study on pulmonary vascular reactivity of plateau adapted animal Yak and common cattle. Chinese Journal of Pathophysiology, 1995,11(3):230-233. (in Chinese) | |
[22] | 金澄艳, 吕晓阳, 高雯, 王悦, 陈炜昊, 盛水兴, 陈玲, 林杰, 孙伟 . 湖羊羔皮毛囊候选miRNA在不同花纹间的表达与毛囊发育特性关联的研究. 中国农业科学, 2018,51(14):2814-2824. |
JIN C Y, LÜ X Y, GAO W, WANG Y, CHEN W H, SHEN S X, CHEN L, LIN J, SUN W . Study on the relationship between the expression of candidate miRNAs and the developmental characteristics in different patterns in Hu Sheep Lambskin. Scientia Agricultura Sinica, 2018,51(14):2814-2824. (in Chinese) | |
[23] | NALLAMSHETTY S, CHAN S Y, LOSCALZO J . Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radical Biology & Medicine, 2013,64:20-30. |
[24] | BURNSIDE J, OUYANG M, ANDERSON A, BERNBERG E, LU C, MEYERS B C, GREEN P J, MARKIS M, ISAACS G, HUANG E, MORGAN R W . Deep sequencing of chicken microRNAs. BMC Genomics, 2008,9(1):185. |
[25] | LORENZO F R, HUFF C, MYLLYMAKI M, OLENCHOCK B, SWIERCZEK S, TASHI T, GORDEUK V, WUREN T, RI-LI G, MCCLAIN D A, KHAN T M, KOUL P A, GUCHHAIT P, SALAMA M E, XING J, SEMENZA G L, LIBERZON E, WILSON A, SIMONSON T S, JORDE L B, KAELIN W G J, KOIVUNEN P, PRCHAL J T . A genetic mechanism for Tibetan high-altitude adaptation. Nature Genetics, 2014,46(9):951-956. |
[26] | QU Y, ZHAO H, HAN N, ZHOU G, SONG G, GAO B, TIAN S, ZHANG J, ZHANG R, MENG X, ZHANG Y, ZHANG Y, ZHU X, WANG W, LAMBERT D, ERICSON P G, SUBRAMANIAN S, YEUNG C, ZHU H, JIANG Z, LI R, LEI F . Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nature Communications, 2013,4:2071. |
[27] | VASUDEVAN S, TONG Y, STEITZ J A . Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007, 318(5858):1931-1934. |
[28] | 贺大芳 . 牦牛和黄牛心脏、肺脏组织microRNA转录组的鉴定与差异表达分析[D]. 成都:四川农业大学, 2017. |
HE D F . Identification and differential expression analysis of microRNAs in heart and lung tissues between yak and cattle[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese) | |
[29] | ZHANG Q, GOU W, WANG X, ZHANG Y, MA J, ZHANG H, ZHANG Y, ZHANG H . Genome resequencing identifies unique adaptations of Tibetan Chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. Genome Biology and Evolution, 2016,8(3):765-776. |
[30] | 刘杰, 李景东 . 哺乳动物雷帕霉素靶蛋白信号通路在心脏发育和重构中作用的研究进展. 心血管病学进展, 2018(06):911-915. |
LIU J, LI J D . Research progress of mTOR signaling pathway effect in cardiac development and reconstruction. Advances in Cardiovascular Diseases, 2018(06):911-915. (in Chinese) | |
[31] | SCIARRETTA S, ZHAI P, MAEJIMA Y, DEL R D P, NAGARAJAN N, YEE D, LIU T, MAGNUSON M A, VOLPE M, FRATI G, LI H, SADOSHIMA J . mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Reports, 2015,11(1):125-136. |
[32] | VERMA P, SHARMA A, SODHI M, THAKUR K, KATERIA R S, NIRANJAN S K, BHARTI V K, KUMAR P, GIRI A, KALIA S, MUKESH M . Transcriptome analysis of circulating pbmcs to understand mechanism of high altitude adaptation in native cattle of ladakh region. Scientific Reports, 2018,8(1):7681. |
[33] | VERMA P, SHARMA A, SODHI M, THAKUR K, BHARTI V K, KUMAR P, GIRI A, KALIA S, SWAMI S K, MUKESH M . Overexpression of genes associated with hypoxia in cattle adapted to trans himalayan region of Ladakh. Cell Biology International, 2018,42(9):1141-1148. |
[34] | TAGUCHI A, YANAGISAWA K, TANAKA M, CAO K, MATSUYAMA Y, GOTO H, TAKAHASHI T . Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Research, 2008, 68(14):5540-5545. |
[35] | GIATROMANOLAKI A, BAI M, MARGARITIS D, BOURANTAS K L, KOUKOURAKIS M I, SIVRIDIS E, GATTER K C . Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Research, 2010,30(7):2831-2836. |
[36] | BEFANI C D, VLACHOSTERRGIOS P J, HATZIDAKI E, PATRIKIDOU A, BONANOU S, SIMOS G, PAPANDREOU C N, LIAKOS P . Bortezomib represses HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. Journal of Molecular Medicine, 2012,90(1):45-54. |
[37] | MAJMUNDARR A J, WONG W J, SIMON M C . Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 2010,40(2):294-309. |
[38] | TAGUCHI A, YANAGISAWA K, TANAK A M, CAO K, MATSUYAMA Y, GOTO H, TAKAHASHI T . Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Research, 2008,68(14):5540-5545. |
[39] | CASCIO S, D'ANDREA A, FERLA R, SURMACZ E, GULOTTA E, AMODEO V, BAZAN V, GEBBIA N, RUSSO A . MiR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. Journal of Cellular Physiology, 2010,224(1):242-249. |
[40] | 岳莹, 吕风华, 陈玉磊, 王卓, 司澳洋 . miR-499对缺氧/复氧诱导的心肌细胞凋亡的影响. 郑州大学学报(医学版), 2018,53(04):503-507. |
YUE Y, LÜ F H, CHEN Y L, WANG Z, SI A Y . Effect of miR-499 on apoptosis of primary cardiomyocytes induced by anoxia-reoxygenation. Journal of Zhengzhou University(Medical Sciences), 2018,53(04):503-507. (in Chinese) | |
[41] | 赵欣 . MicroRNA-101a通过靶向调控心脏成纤维细胞TGFβRI的表达抑制缺氧诱导的心肌纤维化[D]. 武汉:华中科技大学, 2015. |
ZHAO X . MicroRNA-101a inhibits hypoxia-induced myocardial fibrosis by targeting regulation of cardiac fibroblast TGFβRI expression[D]. Wuhan:Huazhong University of Science and Technology, 2015. (in Chinese) | |
[42] | XI T Y, JIN F, ZHU Y, WANG J, TANG L, WANG Y, LIEBESKKIND D S, HE Z . MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochemical and Biophysical Research Communications, 2017,494(1-2):144-151. |
[1] | WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666. |
[2] | MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882. |
[3] | DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876. |
[4] | WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674. |
[5] | SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584. |
[6] | CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676. |
[7] | YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242. |
[8] | HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032. |
[9] | TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723. |
[10] | ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682. |
[11] | ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605. |
[12] | CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619. |
[13] | ZHU JingJing,ZHOU XiaoLong,WANG Han,LI XiangChen,ZHAO AYong,YANG SongBai. Prediction and Verification of MicroRNAs Targeting Porcine Endoplasmic Reticulum Stress Pathway [J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179. |
[14] | GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204. |
[15] | DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526. |
|