Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3169-3179.doi: 10.3864/j.issn.0578-1752.2020.15.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Prediction and Verification of MicroRNAs Targeting Porcine Endoplasmic Reticulum Stress Pathway

ZHU JingJing(),ZHOU XiaoLong,WANG Han,LI XiangChen,ZHAO AYong,YANG SongBai()   

  1. College of Animal Science and Technology, Zhejiang A&F University/Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin'an 311300, Zhejiang
  • Received:2019-08-30 Accepted:2020-03-11 Online:2020-08-01 Published:2020-08-06
  • Contact: SongBai YANG E-mail:2018120012009@stu.zafu.edu.cn;sbyang@zafu.edu.cn

Abstract:

【Objective】 This study was aimed to predict and validate microRNAs (miRNAs) that targeting key genes in the porcine endoplasmic reticulum (ER) stress pathway, so as to provide a theoretical basis for regulation of porcine ER stress signaling pathway by miRNAs. 【Method】 Firstly, the differential expression of miRNAs in PRV-infected PK15 cells in porcine ER were determined by high-throughput sequencing. TargetScan was used to predict miRNAs that targeting the genes ATF6, IRE1, PERK, GRP78, and XBP1 of ER stress pathways. Recombinant plasmids were constructed, including candidate miRNA target sites, and the regulation of ATF6, IRE1, PERK, GRP78, and XBP1 by candidate miRNAs was validated by co-transfecting dual-luciferase reporter gene vector construct with miRNA-mimics into BHK-21 cells. Then, the candidate miRNAs were over-expressed in PK15 cells, and then fluorescent quantitative PCR and Western blot were used to detect the effect of miRNAs on key genes expression at mRNA and protein levels. 【Result】 MiRNA sequencing results showed that 35 differential expression of miRNAs were determined in PRV-infected PK15 cells. The results of TargetScan prediction showed that the intersection of miRNAs targeting four or more genes of ATF6, IRE1, PERK, GRP78, and XBP1 were miR-142-5p, miR-145-5p, miR-150, and miR-199a-5p, and these intersections of miRNAs were selected as candidate miRNAs. The dual-luciferase reporter plasmids psiCHECK-2-ATF6-m142-3'UTR, psiCHECK- 2-ATF6-m145-3'UTR, psiCHECK-2-ATF6-m150-3'UTR, psiCHECK-2-ATF6-m199-3'UTR, psiCHECK-2-IRE1-m150-3'UTR, psiCHECK-2-IRE1-m142/145/199-3'UTR, psiCHECK-2-PERK-m145/150-3'UTR, psiCHECK-2-XBP1-m142/145/150/199- 3'UTR, psiCHECK-2-GRP78-m145/199-3'UTR were successfully constructed. The luciferase assay experiments showed that miR-142-5p mimics could significantly inhibit luciferase activity of psiCHECK-2-ATF6-m142-3'UTR dual-luciferase reporter recombinant vector. psiCHECK-2-IRE1-m142/145/199-3'UTR was co-transfected with miR-142-5p mimics, miR-145-5p mimics, and miR-199a-5p mimics, respectively. The luciferase activity of the over-expressing group were significantly lower than the negative control group. In addition, psiCHECK-2-XBP1-m142/145/150/199-3'UTR was co-transfected with miR-142-5p mimics and miR-199a-5p mimics, respectively, and the luciferase activity of the over-expressing group were also significantly lower than the negative control group. The luciferase assay experiments showed that miR-145-5p mimics could significantly inhibit luciferase activity of psiCHECK-2- PERK-m145/150-3'UTR dual-luciferase reporter recombinant vector. The results indicated that miR-142-5p, miR-145-5p and miR-199a-5p might targeted the genes ATF6, IRE1, and XBP1. Among them, miR-142-5p might target these three key genes to regulate the ER signaling pathway. Overexpression of miR-142-5p significantly down-regulated the levels of mRNA and protein by qRT-PCR and Western blot methods. The results showed that miR-142-5p might participate in the regulation of ER signaling pathway by targeting ATF6.【Conclusion】 In this study, miR-142-5p was validated to target the key gene ATF6 of the porcine ER stress pathway. Thereby, these results laid a foundation for further study of regulation of ER stress pathway through miR-142- 5p-ATF6 gene axis.

Key words: pig, endoplasmic reticulum stress signaling pathway, miRNA, ATF6

Table 1

Primers sequences for luciferase reporter gene vector construct"

名称 Names 引物序列 Primer sequence (5′—3′) 片段长度 Size (bp)
ATF6-m142-3′UTR F:CCGCTCGAGCCGTGGAGTGATTATGTG 413
R:ATTGCGGCCGCCTTCCTGAAACTTTACCCT
ATF6-m145-3′UTR F:CCGCTCGAGCCTGGCTTGAATCTTCCC 301
R:ATTGCGGCCGCGTTGTGAGTTCGATCCCT
ATF6-m150-3′UTR F:CCGCTCGAGTTTTGTCAGTCCTGGGTC 464
R:ATTGCGGCCGCAAGATACCTTTGTCATTC
ATF6-m199a-3′UTR F:CCGCTCGAGTCTTTCTGCCTTCTTGGT 176
R:ATTGCGGCCGCGGAAGATGTAGGGTAATGTG
PERK-m145/150-3′UTR F:CCGCTCGAGCATGGAATAGCCCACCTC 777
R:ATTGCGGCCGCTTGGGAAAGTACCGACCT
IRE1-m142/145/199-3′UTR F:CCGCTCGAGATCGAACCCGAGCCACTG 1006
R:ATTGCGGCCGCAGACGCCATCATCAATCA
IRE1-m150-3′UTR F:CCGCTCGAGAGCCAAGTGCCTTGAGCTG 256
R:ATTGCGGCCGCACAGGCTGACATCAAACAGGA
GRP78-m145/199-3′UTR F:CCGCTCGAGACTGCTCTGCTAGTGTTG 349
R:ATTGCGGCCGCACCAGTGTAAATAACAAA
XBP1-m142/145/150/199-3′UTR F:CCGCTCGAGCTGCTTTCAACCAGCCACT 596
R:ATTGCGGCCGCCCCTCAGGTAGGCATTCT

Table 2

The sequences of qRT-PCR primers"

名称 Names 引物序列 Primer sequence (5′—3′) 退火温度 Annealing temperature (℃) 片段长度 Size (bp)
ATF6 F:CTAAAGCGAGTCCTCTACG 60 241
R:GCCATGCCTGATTTCACA
XBP1 F:GGATTCTGACGGTGTTGA 60 161
R:GGAGGCTGGTAAGGAACT
PERK F:AGGAGCAAACGGAGCACG 60 187
R:GTCGGTGAGGATGAGGATGG
IRE1 F:GGACTGGCGGGAGAACAT 60 272
R:CGTGGTAGTAGGGCTGGAA
GAPDH F:GGACTCATGACCACGGTCCAT 60 220
R:TCAGATCCACAACCGACACGT

Fig. 1

Volcano plot of miRNA-sequencing data from PRV infected PK15 cells"

Fig. 2

The intersection prediction of miRNAs target ATF6, IRE1, PERK, GRP78 and XBP1"

Fig. 3

Identification of luciferase reporter gene vector by XhoⅠ and NotⅠ double digestion"

Fig. 4

Influence of miR-142-5p mimics, miR-145-5p mimics, miR-150 mimics and miR-199a-5p mimics on luciferase expression of recombinant vector"

Fig. 5

The expression of ATF6, IRE1, PERK and XBP1 mRNA after over-expression miRNAs"

Fig. 6

Western blotting analysis of ATF6 in PK15 cells transfected with miR-142-5p mimics A. shows the Western blotting analysis of ATF6 protein in PK15 cells transfected with miR-142-5p mimics; B. shows the expression level of ATF6 protein detected by Western blotting after miR-142-5p mimics transfecting into PK15 cells"

[1] FAGONE P, JACKOWSKI S. Membrane phospholipid synthesis and endoplasmic reticulum function. Journal of Lipid Research, 2009, 50 Suppl(50 Suppl):S311. DOI: 10.1194/jlr.R800049-JLR200.
doi: 10.1194/jlr.R800049-JLR200
[2] BRAAKMAN I, HEBERT D N. Protein folding in the endoplasmic reticulum. Cold Spring Harbor Perspectives in Biology, 2013,5(5):a013201-a013201. DOI: 10.1101/cshperspect.a013201.
pmid: 23637286
[3] WANG M, KAUFMAN R J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature, 2016,529(7586):326-335. DOI: 10.1038/nature17041.
doi: 10.1038/nature17041 pmid: 26791723
[4] BOHNERT K R, MCMILLAN J D, KUMAR A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. Journal of Cellular Physiology, 2017. DOI: 10.1002/jcp.25852.
pmid: 32725819
[5] HETZ C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology, 2012,13:H2410-H2418. DOI: 10.1038/nrm3270.
[6] WALTER P, RON D. The unfolded protein response: From stress pathway to homeostatic regulation. Science, 2011,334(6059):1081-1086. DOI: 10.1126/science.1209038.
doi: 10.1126/science.1209038 pmid: 22116877
[7] BERTOLOTTI A, ZHANG Y H, HENDERSHOT L M, HARDING H P, RON D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein respons. Nature Cell Biology, 2000,2(6):326-332. DOI: 10.1038/35014014.
pmid: 10854322
[8] HETZ C, PAPA F R. The unfolded protein response and cell fate control. Molecular Cell, 2017,69(2). DOI: 10.1016/j.molcel.2017.06.017.
doi: 10.1016/j.molcel.2017.06.017 pmid: 29107536
[9] LEE A H, IWAKOSHI N N, GLIMCHER L H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology, 2003,23(21):7448-7459. DOI: 10.1128/MCB.23.21.7448-7459.2003.
doi: 10.1128/mcb.23.21.7448-7459.2003 pmid: 14559994
[10] 王镜淇, 龚国清. 内质网应激与炎症反应的研究进展. 药学研究, 2017,36(5):279-282. DOI: 10.13506/j.cnki.jpr.2017.05.009.
WANG J Q, GONG G Q. Research progress on endoplasmic reticulum stress and inflammatory response. Journal of Pharmaceutical Research, 2017,36(5):279-282. DOI: 10.13506/j.cnki.jpr.2017.05.009. (in Chinese)
[11] DING W X, NI H M, GAO W T, HOU Y F, MELAN M A, CHEN X划 Y, STOLZ D B, SHAO Z M, YIN X M. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. Journal of Biological Chemistry, 2007,282(7):4702-4710. DOI: 10.1074/jbc.m609267200.
pmid: 17135238
[12] HERBERT T P, LAYBUTT D R. A reevaluation of the role of the unfolded protein response in islet dysfunction: maladaptation or a failure to Adapt? Diabetes, 2016,65(6):1472-1480. DOI: 10.2337/db15-1633.
pmid: 27222391
[13] 徐静尊, 鲁敏. 内质网应激与自噬及其交互作用影响内皮细胞凋亡. 中国生物化学与分子生物学报, 2019,35(3). DOI: 10.13865/j.cnki.cjbmb.2019.03.02.
XU J Z, LU M. Effects of endoplasmic reticulum stress and autophagy on endothelial cell apoptosis. Chinese Journal of Biochemistry and Molecular Biology, 2019,35(3). DOI: 10.13865/j.cnki.cjbmb.2019.03.02.(in Chinese)
[14] ZHOU Y S, GU Y X, QI B Z, ZHANG Y K, LI X L, FANG W H. Porcine circovirus type 2 capsid protein induces unfolded protein response with subsequent activation of apoptosis. Journal of Zhejiang University-SCIENCE B, 2017,18(4):316-323. DOI: 10.1631/jzus.B1600208.
doi: 10.1631/jzus.B1600208 pmid: 28378569
[15] HE W C, XU H L, GOU H C, YUAN J, LIAO J D, CHEN Y M, FAN S Q, XIE B M, DENG S F, ZHANG Y Y, CHEN J D, ZHAO M Q. CSFV Infection up-regulates the unfolded protein response to promote its replication. Frontiers in Microbiology, 2017,8:2129. DOI: 10.3389/fmicb.2017.02129.
doi: 10.3389/fmicb.2017.02129 pmid: 29163417
[16] YANG S B, PEI Y, ZHAO A Y. iTRAQ-based proteomic analysis of porcine kidney Epithelial PK15 cells infected with Pseudorabies virus. Scientific Reports, 2017,7:45922. DOI: 10.1038/srep45922.
doi: 10.1038/srep45922 pmid: 28374783
[17] YANG S B, ZHU J J, ZHOU X L, WANG H, LI X C, ZHAO A Y. Induction of the unfolded protein response (UPR) during pseudorabies virus infection. Veterinary Microbiology, 2019,239. DOI: 10.1016/j.vetmic.2019.108485.
pmid: 31767081
[18] SU S F, CHANG Y W, ANDREU-VIEYRA C, FANG J Y, YANG Z, HAN B, LEE A S, LIANG G. miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene, 2013,32(39):4694-4701. DOI: 10.1038/onc.2012.483.
pmid: 23085757
[19] OGLESBY I K, AGRAWAL R, MALL M A, MCELVANEY N G, GREENE C M. miRNA-221 is elevated in cystic fibrosis airway epithelial cells and regulates expression of ATF6. Molecular and Cellular Pediatrics, 2015,2(1):1. DOI: 10.1186/s40348-014-0012-0.
pmid: 26542291
[20] ZHANG W G, CHEN L, DONG Q, HE J, ZHAO H D, LI F L, LI H. Mmu-miR-702 functions as an anti-apoptotic mirtron by mediating ATF6 inhibition in mice. Gene, 2013,531(2):235-242. DOI: 10.1016/j.gene.2013.09.005.
doi: 10.1016/j.gene.2013.09.005 pmid: 24035931
[21] YANG F, ZHANG L, WANG F, WANG Y, HUO X S, YIN Y X, WANG Y Q, ZHANG L, SUN S H. Modulation of the unfolded protein response is the core of microrna-122-involved sensitivity to chemotherapy in hepatocellular carcinoma. Neoplasia, 2011,13(7):590. DOI: 10.1593/neo.11422.
pmid: 21750653
[22] BYRD A E, ARAGON I V, BREWER J W. MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. Journal of Cell Biology, 2012,196(6):689-698. DOI: 10.1083/jcb.201201077.
pmid: 22431749
[23] LIU F, ZHENG H, TONG W, LI G X, TIAN Q, LIANG C, LI L W, ZHENG X C, TONG G Z. Identification and analysis of novel viral and host dysregulated micrornas in variant pseudorabies virus-infected PK15 cells. PLoS ONE, 2016,11(3):e0151546. DOI: 10.1371/journal. pone.0151546.
pmid: 26998839
[24] 邓少锋, 叶佐东, 范双旗, 陈金顶, 张静远, 朱梦娇, 赵明秋. PK-15细胞中与CSFV感染相关的microRNAs筛选及miR-214的功能研究. 中国农业科学, 2018,51(21):156-167. DOI: 10.3864/j.issn.0578-1752.2018.21.014.
DENG S F, YE Z D, FAN S Q, CHEN J D, ZHANG J Y, ZHU M J, ZHAO M Q. Screen of micrornas in classical swine fever virus-infected pk-15 cells and the regulation of virus replication by miR-214. Scientia Agricultura Sinica, 2018,51(21):156-167. DOI: 10.3864/j.issn.0578-1752.2018.21.014.(in Chinese)
[25] HEINDRYCKX F, BINET F, PONTICOS M, ROMBOUTS K, LAU J, KREUGER J, GERWINS P. Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing. EMBO Molecular Medicine, 2016,8. DOI: 10.15252/emmm.201505925.
pmid: 27621275
[26] YU J, LIU F H, YIN P, ZHU X Y, CHENG G L, WANG N, LU A, LUAN W L, ZHANG N W, LI J F, GUO K J, YIN Y L, WANG H C, XU J Q. Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine. Functional & Integrative Genomics, 2011,11(2):203-213. DOI: 10.1007/s10142-010-0198-8.
pmid: 21057845
[27] LIU X Y, ZHANG Y, WANG S, LIU G Y, RUAN L M. Loss of miR-143 and miR-145 in condyloma acuminatum promotes cellular proliferation and inhibits apoptosis by targeting NRAS. Royal Society Open Science, 2018. DOI: 10.1098/rsos.172376.
pmid: 32742688
[28] AHMADI A, KHANSARINEJAD B, HOSSEINKHANI S, GHANEI M, MOWLA S J. miR-199a-5p and miR-495 target GRP78 within UPR pathway of lung cancer. Gene, 2017,620:15-22. DOI: 10.1016/j.gene.2017.03.032.
pmid: 28363780
[29] GUPTA A, HOSSAIN M M, READ D E, HETZ C, SAMALI A, GUPTA S. PERK regulated miR-424(322)-503 cluster fine-tunes activation of IRE1 and ATF6 during Unfolded Protein Response. Scientific Reports, 2016,5(1):18304. DOI: 10.1038/srep18304.
doi: 10.1038/srep18304
[30] ADACHI Y, YAMAMOTO K, OKADA T, YOSHIDA H, HARADA A, MORI K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Structure and Function, 2008,33(1):75-89. DOI: 10.1247/csf.07044.
doi: 10.1247/csf.07044 pmid: 18360008
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[5] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[6] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[7] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[8] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[9] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[10] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[11] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[12] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[15] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!