Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4229-4242.doi: 10.3864/j.issn.0578-1752.2021.19.017
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
YU BaoJun1(),DENG ZhanZhao2,XIN GuoSheng3,CAI ZhengYun1,GU YaLing1,ZHANG Juan1()
[1] |
BLONDE G D, SPECTOR A C. An examination of the role of L-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor. Chemical Senses, 2017, 42(5):393-404.
doi: 10.1093/chemse/bjx015 |
[2] | 徐英, 李石友, 李琦华, 段刚, 杨国荣, 梁应海. 蛋白质水平对牛肉肌苷酸含量的影响. 西南农业学报, 2011, 24(1):294-296. |
XU Y, LI S Y, LI Q H, DUAN G, YANG G R, LIANG Y H. Effect of protein levels on beef inosine acid content. Southwest China Journal of Agricultural Sciences, 2011, 24(1):294-296. (in Chinese) | |
[3] | 母童, 张娟, 赵平, 顾亚玲, 刘丽元, 杨彦军, 安克龙, 王有. 静原鸡ELOVL2和ELOVL5基因表达的组织特异性研究. 浙江农业学报, 2017, 29(8):1290-1296. |
MU T, ZHANG J A, ZHAO P, GU Y L, LIU L Y, YANG Y J, AN K L, WANG Y. Tissue-specific expression analysis of ELOVL2 and ELOVL5 genes in Jingyuan chicken. Acta Agriculturae Zhejiangensis, 2017, 29(8):1290-1296.(in Chinese) | |
[4] |
MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 2009, 10(3):155-159.
doi: 10.1038/nrg2521 |
[5] | 郑伟. LncRNA-miRNA-mRNA相互作用初步研究[D]. 北京: 中国人民解放军军事医学科学院, 2017. |
ZHENG W. Preliminary study of LncRNA-miRNA-mRNA interaction[D]. Beijing: Chinese Academy of Military Medical Sciences, 2017. (in Chinese) | |
[6] |
BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2):281-297.
doi: 10.1016/S0092-8674(04)00045-5 |
[7] |
SPIZZO R, ALMEIDA M I, COLOMBATTI A, CALIN G A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene, 2012, 31(43):4577-4587.
doi: 10.1038/onc.2011.621 |
[8] |
BERNSTEIN E, ALLIS C D. RNA meets chromatin. Genes & Development, 2005, 19(14):1635.
doi: 10.1101/gad.1324305 |
[9] |
EBERT M S, NEILSON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 2007, 4(9):721-726.
doi: 10.1038/nmeth1079 |
[10] |
CARETTI G, SCHILTZ R L, DILWORTH F J, DI PADOVA M, ZHAO P, OGRYZKO V, FULLER-PACE F V, HOFFMAN E P, TAPSCOTT S J, SARTORELLI V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Developmental Cell, 2006, 11(4):547-560.
doi: 10.1016/j.devcel.2006.08.003 |
[11] |
CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2):358-369.
doi: 10.1016/j.cell.2011.09.028 |
[12] |
HUANG W L, ZHANG X X, LI A, XIE L L, MIAO X Y. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget, 2017, 8(50):87539-87553.
doi: 10.18632/oncotarget.v8i50 |
[13] |
ZOU C, LI S, DENG L L, GUAN Y, CHEN D, YUAN X K, XIA T R, HE X L, SHAN Y W, LI C C. Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between Yorkshire and Wannanhua pig. Genes, 2017, 8(8):203.
doi: 10.3390/genes8080203 |
[14] |
SHEN L Y, CHEN L, ZHANG S H, ZHANG Y, WANG J Y, ZHU L. MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality. Meat Science, 2016, 116:201-206.
doi: 10.1016/j.meatsci.2016.02.023 |
[15] | CASIRO A, VELEZ-IRIZARRY D, BATES R O, ERNST C W, STEIBEL J P. 030 Genomewide association study for meat quality traits in an F2 Duroc × Piétrain population. Journal of Animal Science, 2016, 94(2):14-15. |
[16] | LIU G, UPDIKE M S. miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle. Journal of Animal Science and Biotechnology, 2012(2):60-67. |
[17] |
HONG J S, NOH S H, LEE J S, KIM J M, HONG K C, LEE Y S. Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fiber type composition and miR-1 expression. Gene, 2012, 506(1):211-216.
doi: 10.1016/j.gene.2012.06.050 |
[18] |
SHEN L Y, DU J J, XIA Y D, TAN Z D, FU Y H, YANG Q, LI X W, TANG G Q, JIANG Y Z, WANG J Y, LI M Z, ZHANG S H, ZHU L. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Scientific Reports, 2016, 6:32186.
doi: 10.1038/srep32186 |
[19] |
MA J D, WANG H M, LIU R, JIN L, TANG Q Z, WANG X, JIANG A A, HU Y D, LI Z W, ZHU L, LI R Q, LI M Z, LI X W. The miRNA transcriptome directly reflects the physiological and biochemical differences between red, white, and intermediate muscle fiber types. International Journal of Molecular Sciences, 2015, 16(5):9635-9653.
doi: 10.3390/ijms16059635 |
[20] |
WANG Q, QI R L, WANG J, HUANG W M, WU Y J, HUANG X F, YANG F Y, HUANG J X. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene, 2017, 618:49-56.
doi: 10.1016/j.gene.2017.04.013 |
[21] |
CAI Z W, ZHANG L F, JIANG X L, SHENG Y F, XU N Y. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Research in Veterinary Science, 2015, 99:99-104.
doi: 10.1016/j.rvsc.2014.12.012 |
[22] |
CHI H, TILLER G E, DASOUKI M J, ROMANO P R, WANG J, O'KEEFE R J, PUZAS J E, ROSIER R N, REYNOLDS P R. Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. Genomics, 1999, 56(3):324-336.
doi: 10.1006/geno.1998.5736 |
[23] |
CAFFREY J J, HIDAKA K, MATSUDA M, HIRATA M, SHEARS S B. The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification. FEBS Letters, 1999, 442(1):99-104.
doi: 10.1016/S0014-5793(98)01636-6 |
[24] |
MOURELATOS Z, DOSTIE J, PAUSHKIN S, SHARMA A, CHARROUX B, ABEL L, RAPPSILBER J, MANN M, DREYFUSS G. miRNAs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes & Development, 2002, 16(6):720-728.
doi: 10.1101/gad.974702 |
[25] |
FINNERTY J R, WANG W X, HEBERT S S, WILFRED B R, MAO G G, NELSON P T. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. Journal of Molecular Biology, 2010, 402(3):491-509.
doi: 10.1016/j.jmb.2010.07.051 |
[26] | 虎红红, 母童, 马正旭, 冯小芳, 蔡正云, 黄增文, 顾亚玲, 辛国省, 张娟. 基于RNA-seq技术对静原鸡不同部位肉质相关差异基因的筛选. 基因组学与应用生物学, 2019.(网络首发). |
HU H H, MU T, MA Z X, FENG X F, CAI Z Y, HUANG Z W, GU Y L, XIN G S, ZHANG J. Screening of differentially expressed genes related to meat quality in different parts of jingyuan chicken based on RNA-Seq technology. Genomics and Applied Biology, 2019. (in Chinese)(Network starting) | |
[27] | ZHANG H J, PAN J, LIANG J, XIA X X. High-pressure effects on the mechanism of accumulated inosine 5 '-monophosphate. Innovative Food Science & Emerging Technologies, 2018, 45:330-334. |
[28] |
RUDOLPH F B. The biochemistry and physiology of nucleotides. Journal of Nutrition, 1994, 124(suppl_1):124S-127S.
doi: 10.1093/jn/124.suppl_1.124S |
[29] |
HAMANO Y. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens. British Poultry Science, 2016, 57(4):501-514.
doi: 10.1080/00071668.2016.1184227 |
[30] |
MATSUISHI M, TSUJI M, YAMAGUCHI M, KITAMURA N, TANAKA S, NAKAMURA Y, OKITANI A. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle. Animal Science Journal, 2016, 87(11):1407-1412.
doi: 10.1111/asj.2016.87.issue-11 |
[31] | 野崎义孝, 南基哲, 蒋国文. 鸡肉的鲜度与K值(上). 国外畜牧科技, 1994(3):31-32. |
YE Q, NAN J Z, JIANG G W. The freshness and K value of chicken (up). Animal Science Abroad, 1994(3):31-32.(in Chinese) | |
[32] | 王述柏. 鸡肉肌苷酸沉积规律及营养调控研究[D]. 北京: 中国农业科学院, 2004. |
WANG S B. Studies on the deposition of 5'-inosinic acid in chicken meat and its modification by nutrition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese) | |
[33] | 陈继兰. 鸡肉肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究[D]. 北京: 中国农业大学, 2004. |
CHEN J L. Studies on inheritance and candidate genes of inosine-5'- monophosphate and intramuscular fat contents in chicken meat[D]. Beijing: China Agricultural University, 2004. (in Chinese) | |
[34] | 刘望夷, 竺来发, 翁志发, 沈洪民. 肉用鸡肌肉中肌苷酸含量的比较. 中国农业科学, 1980(4):79-83. |
LIU W Y, ZHU L F, WENG Z F, SHEN H M. A comparative study of inosinic acid contents in chicken muscle. Scientia Agricultura Sinica, 1980(4):79-83. (in Chinese) | |
[35] | 苏淑贞, 朱汉炎, 刘建樑, 李民. 鹌鹑、鸡、鸽子肌肉中肌苷酸含量的比较. 中国家禽, 1987(2):32-33+35. |
SU S Z, ZHU H Y, LIU J L, LI M. Comparison of inosinic acid content in muscle of quail, chicken and pigeon. China Poultry, 1987(2):32-33+35. (in Chinese) | |
[36] | 姬舒云. 基于转录组学和代谢组学研究苏氨酸水平对肉鸡肠道的影响[D]. 杨凌: 西北农林科技大学, 2019. |
JI S Y. Effects of threonine levels on broilers intestinal based on teanscriptology and metabomics[D]. Yangling: Northwest A & F University, 2019. (in Chinese) | |
[37] | PANASYUK G, ESPEILLAC C, CHAUVIN C, PRADELLI L A, HORIE Y, SUZUKI A, ANNICOTTE J S, LLUIS-FAJAS, FORETZ M, VERDEGUER F, PONTOGLIO M, FERRE P, SCOAZEC J Y, BIRNBAUM M, RICCI J E, PENDE M. PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3(1). |
[38] |
PRESEK P, REINACHER M, EIGENBRODT E. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by rous sarcoma virus. FEBS Letters, 1988, 242(1):194-198.
doi: 10.1016/0014-5793(88)81014-7 |
[39] |
ALI N, CRAXTON A, SHEARS S B. Hepatic Ins(1, 3, 4, 5)P4 3-phosphatase is compartmentalized inside endoplasmic Reticulum. The Journal of Biological Chemistry, 1993, 268(9):6161-6167.
doi: 10.1016/S0021-9258(18)53233-6 |
[40] |
KILAPARTY S P, AGARWAL R, SINGH P, KANNAN K, ALI N. Endoplasmic Reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): A possible role for Minpp1 in cellular stress response. Cell Stress and Chaperones, 2016, 21(4):593-608.
doi: 10.1007/s12192-016-0684-6 |
[41] | CHO J, KING J S, QIAN X, HARWOOD A J, SHEARS S B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the rapoport-luebering glycolytic shunt. Proceedings of the National academy of Sciences of the United States of America, 2008, 105(16):5998-6003. |
[42] |
BALLESTER M, AMILLS M, GONZÁLEZ-RODRÍGUEZ O, CARDOSO T F, PASCUAL M, GONZÁLEZ-PRENDES R, PANELLA-RIERA N, DÍAZ I, TIBAU J, QUINTANILLA R. Role of AMPK signalling pathway during compensatory growth in pigs. BMC Genomics, 2018, 19(1):682.
doi: 10.1186/s12864-018-5071-5 |
[43] |
OUYANG H J, HE X M, LI G H, XU H P, JIA X Z, NIE Q H, ZHANG X Q. Deep sequencing analysis of miRNA expression in breast muscle of fast-growing and slow-growing broilers. International Journal of Molecular Sciences, 2015, 16(7):16242-16262.
doi: 10.3390/ijms160716242 |
[44] |
WU N, GAUR U, ZHU Q, CHEN B, XU Z, ZHAO X, YANG M, LI D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Animal Genetics, 2017, 48(2):205-216.
doi: 10.1111/age.2017.48.issue-2 |
[45] |
HE J, WANG W Q, LU L Z, TIAN Y, NIU D, REN J D, DONG L Y, SUN S W, ZHAO Y, CHEN L, SHEN J L, LI X H. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver. Scientific Reports, 2016, 6:27418.
doi: 10.1038/srep27418 |
[46] |
LI H, WANG S H, YAN F B, LIU X J, JIANG R R, HAN R L, LI Z J, LI G X, TIAN Y D, KANG X T, SUN G R. Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken. Gene, 2015, 566(1):8-12.
doi: 10.1016/j.gene.2015.03.037 |
[47] | 魏雪锋. miR-378a-3p、miR-107和相关circRNA调控牛肌细胞发育的机制研究[D]. 杨凌: 西北农林科技大学, 2017. |
WEI X F. Mechanism study on miR-378a-3p, miR-107 and related circRNA regulating bovine myoblasts development[D]. Yangling: Northwest A & F University, 2017. (in Chinese) | |
[48] | ZHANG J J, WANG C Y, HUA L, YAO K H, CHEN J T, HU J H. miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. International Journal of Clinical and Experimental Pathology, 2015, 8(5):5168-5174. |
[49] |
CHEN H Y, LIN Y M, CHUNG H C, LANG Y D, LIN C J, HUANG J, WANG W C, LIN F M, CHEN Z, HUANG H D, SHYY J Y J, LIANG J T, CHEN R H. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Research, 2012, 72(14):3631-3641.
doi: 10.1158/0008-5472.CAN-12-0667 |
[50] | WANG P, WU T Y, ZHOU H, JIN Q Q, HE G Q, YU H Y, XUAN L J, WANG X, TIAN L L, SUN Y N, LIU M, QU L M. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. Journal of Experimental & Clinical Cancer Research, 2016, 35:22. |
[51] |
CHEN L, LI Z Y, XU S Y, ZHANG X J, ZHANG Y A, LUO K, LI W P. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression. Cellular and Molecular Neurobiology, 2016, 36(1):113-120.
doi: 10.1007/s10571-015-0225-3 |
[52] |
HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441):384-388.
doi: 10.1038/nature11993 |
[53] | PARASKEVOPOULOU M D, HATZIGEORGIOU A G. Analyzing MiRNA-LncRNA interactions. Methods in Molecular Biology (Clifton, N J), 2016, 1402(1):271-286. |
[54] |
WEI N, WANG Y, XU R X, WANG G Q, XIONG Y, YU T Y, YANG G S, PANG W J. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics, 2015, 46(2):133-140.
doi: 10.1111/age.2015.46.issue-2 |
[55] | 姜修英, 武春艳, 董翔宇, 高卓然, 李辉, 杜志强. 鸡PPARγ基因相关长链非编码RNA的鉴定及其转录调控. 农业生物技术学报, 2018, 26(11):1909-1918. |
JIANG X Y, WU C Y, DONG X Y, GAO Z R, LI H, DU Z Q. Identification of a long non-coding RNA related to PPARγ gene and study on its transcriptional regulation in chicken(Gallus gallus). Journal of Agricultural Biotechnology, 2018, 26(11):1909-1918. (in Chinese) | |
[56] | ZHANG T, ZHANG X Q, HAN K P, ZHANG G X, WANG J Y, XIE K Z, XUE Q A. Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken. G3 (Bethesda, Md), 2017, 7(3):953-966. |
[57] | LIU F Q, CHEN Q, CHEN F, WANG J, GONG R J, HE B C. The lncRNA ENST00000608794 acts as a competing endogenous RNA to regulate PDK4 expression by sponging miR-15b-5p in dexamethasone induced steatosis. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2019, 1864(10):1449-1457. |
[58] |
CHEN X, TAN X R, LI S J, ZHANG X X. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ ROCK1 in nonalcoholic fatty liver disease. Life Sciences, 2019, 235:116829.
doi: 10.1016/j.lfs.2019.116829 |
No related articles found! |
|