Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4229-4242.doi: 10.3864/j.issn.0578-1752.2021.19.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue

YU BaoJun1(),DENG ZhanZhao2,XIN GuoSheng3,CAI ZhengYun1,GU YaLing1,ZHANG Juan1()   

  1. 1College of Agriculture, Ningxia University, Yinchuan 750021
    2Pengyang County Animal Husbandry Technology Promotion Service Center, Guyuan 756000, Ningxia
    3School of Life Science, Ningxia University/Ningxia Feed Engineering Technology Research Center, Yinchuan 750021
  • Received:2020-07-27 Accepted:2020-10-30 Online:2021-10-01 Published:2021-10-12
  • Contact: Juan ZHANG E-mail:yubaojunb@163.com;zhangjkathy@126.com

Abstract:

【Objective】The aim of this study was to explore the regulatory role of key regulatory factors in the process of inosine monophosphate deposition in the muscle tissue of Jingyuan chickens, and to use lncRNA-miRNA-mRNA association analysis to identify LNC_003828, gga-miR-107-3p and MINPP1 related to inosine monophosphate specific deposition, so as to provide a theoretical basis for molecular-assisted breeding to improve chicken muscle quality.【Method】 The inosine monophosphate content of the breast and leg muscles of 15 Jingyuan chickens was determined, and three samples of the breast muscles with high inosine monophosphate content and the leg muscles with low inosine monophosphate content were screened to extract total RNA. The cDNA library was constructed after passing the quality test, and PCR amplification test was carried out. Then, the cDNA library quality was evaluated by using Agilent 2100, which was sent the library to the Illumina-Hiseq platform for transcriptome sequencing. Using bioinformatics methods, the differentially expressed MINPP1, gga-miR-107-3p and LNC_003828 in different parts of the muscle tissue of Jingyuan chicken were screened out, and GO annotation and protein interaction network was used to analyze the function of MINPP1. The qRT-PCR method was used to detect the expression of LNC_003828, gga-miR-107-3p and MINPP1 in the breast and leg muscles of Jingyuan chickens, and the correlation between them and the content of inosine monophosphate was analyzed. 【Result】 R2, the correlation of gene expression levels between sequenced samples, was greater than 0.9, that is, gene expression between experimental samples could be used for subsequent differential gene analysis. Three differentially expressed genes, including MINPP1, PKM, and ALDH9A1, were detected in the glycolysis/gluconeogenesis pathway involving in the synthesis and metabolism of inosine monophosphate. Interaction analysis found that there were 17 miRNAs (9 up-regulated, 8 down-regulated), 44 mRNAs (16 up-regulated, 28 down-regulated), and 155 lncRNAs (68 up-regulated, 87 down-regulated) in the lncRNA-miRNA-mRNA network diagram, of which the target gene of the core node gga-miR-107-3p interaction was MINPP1, and the target lncRNA was LNC_003828. GO enrichment analysis found that the MINPP1 gene had functions such as phosphatase activity and bisphosphoglycerate phosphatase activity; the MINPP1 gene in the protein interaction network were all interact with PGAM1 and ENO1, which were involved in glycolysis/gluconeogenesis and amino acid biosynthesis pathways BPGM genes. The results of qRT-PCR showed that the relative expression of LNC_003828 and gga-miR-107-3p in breast muscle of Jingyuan chicken was lower than that of leg muscle, but the difference was not significant; the relative expression of MINPP1 in breast muscle was significantly lower than that of leg muscle (P<0.05). The expression of gga-miR-107-3p in the breast and leg muscle tissues of Jingyuan chicken was positively correlated with the expression of LNC_003828 and negatively correlated with the expression of MINPP1. The expression of LNC_003828 and gga-miR-107-3p in breast and leg muscle tissues were positively correlated with inosine monophosphate content, and the difference was not significant; the expression of breast muscle MINPP1 was negatively correlated with inosine monophosphate content and the expression of leg muscle MINPP1. The amount was significantly negatively correlated with the content of inosine monophosphate (P<0.05). In summary, it was speculated that gga-miR-107-3p in the muscle tissue of Jingyuan chicken was used as a core regulator to adsorb LNC_003828, which affected the MINPP1 gene to regulate the specific deposition of muscle inosine monophosphate, thereby improving meat quality. 【Conclusion】 LNC_003828, gga-miR-107-3p, and MINPP1 were selected as candidate regulatory factors affecting the specific deposition of inosine monophosphate.

Key words: jingyuan chicken, inosine monophosphate, gga-miR-107-3p, MINPP1 gene, lncRNA-miRNA-mRNA interaction

Table 1

Determination of inosine and IMP"

性别
Gender
组织
Tissue
肌苷酸含量
IMP content (g·kg-1)
肌苷含量
Inosine content (g·kg-1)
母鸡
Hen
胸肌Chest 1.525±0.294A 0.327±0.067A
腿肌Leg 1.200±0.213B 0.181±0.063B
胸肌和腿肌
Chest and leg
1.362±0.157 0.254±0.035

Table 2

Detection of RNA purity and concentration"

样本名称
Sample name
纯度
Purity (A260/A280)
浓度
Concentration (ng·μL-1)
胸1 Chest1 2.05 1257.4
胸2 Chest2 1.99 1337.2
胸3 Chest3 2.05 803.7
腿1 Leg1 2.05 736.7
腿2 Leg2 1.99 623.1
腿3 Leg3 1.97 1038.1

Table 3

Primer information"

引物名称
Primer name
序列
Sequence (5'→3')
退火温度
Tm (℃)
LNC_003828-F
LNC_003828-R
CCACATACAACCAGTCTCT
CCACCATACATCCACTCT
58
MINPP1-F GTGGATGAGAGCAGAAGT 58
MINPP1-R AGAAGTGGCTGAAGTGTT
β-actin-F
β-actin-R
ATGGACTCTGGTGATGGTGTTAC
TCGGCTGTGGTGGTGAAG
58
gga-miR-107-3p-F
gga-miR-107-3p-R
U6-F
U6-R
CGCGCGAGCTTCTTTACAG CAGTGCAGGGTCCGAGGTAT
CTCGCTTCGGCAGCACATATACT ACGCTTCACGAATTTGCGTGTC

Table 4

Fluorescence quantitative PCR program"

步骤
Step
温度
Temperature (℃)
时间
Time
循环数
Number of cycles
预变性Initial denaturation 95 3min 1
变性Denaturation 95 10s 39
退火Annealing 58 30s
溶解曲线分析
Melt curve analysis
60-95 4s 1

Table 5

Fluorescence quantitative PCR system"

成分
Components
终浓度
Final concentration
加样量
Loading volume (μL)
2×SYBR® Green Supermix 5
Forward primer 200 nmol·L-1 0.5
Reverse primer 200 nmol·L-1 0.5
cDNA N/A 1
ddH2O N/A 3

Fig. 1

Correlation between transcriptome sequencing samples In the figure, X represents the breast muscle and T represents the leg muscle; R2: The square of Pearson’s correlation coefficient"

Table 6

Glycolysis /Gluconeogenesis pathway"

条目
Term
样本数
Sample number
背景数
Background number
P
P value
矫正P
Corrected P value
功能基因
Unigenes
KO编号
KO number
糖酵解/糖异生Glycolysis/Gluconeogenesis 3 51 0.4171921 0.5953754 ENSGALG00000001992
ENSGALG00000003695* ENSGALG00000003495
gga:396456 gga:395356 gga:424405

Fig. 2

Differentially expressed genes in the Glycolysis /Gluconeogenesis pathway"

Fig. 3

lncRNA-miRNA-mRNA regulatory network"

Table 7

Results of the MINPP1 GO annotation analysis"

GO号 GO accession 描述 Description 条目类型 Term type 物种 Species
GO:0016791 磷酸酶活性 Phosphatase activity 分子功能 Molecular_function 原鸡 Gallus gallus
GO:0034416 双磷酸甘油酸酯磷酸酶活性 Bisphosphoglycerate Phosphatase activity 分子功能 Molecular_function 原鸡 Gallus gallus
GO:0005783 内质网 Endoplasmic reticulum 细胞组分 Cell component 原鸡 Gallus gallus

Fig. 4

Differential gene MINPP1 protein network interaction In the figure, the circles (nodes) represent differentially expressed proteins, the circles with illustrations indicate that the gene has a related protein structure, and the empty circles indicate that the protein structure of the gene has not been determined"

Fig. 5

The melting curves of LNC_003828, gga-miR-107-3p, MINPP1, 5S and β-actin"

Table 8

The correlation between gga-miR-107-3p and LNC_003828 and MINPP1 at different Part"

部位Part 基因Gene LNC_003828 gga-miR-107-3p MINPP1
胸肌Chest gga-miR-107-3p 0.8788 1.0000 -0.6495
腿肌Leg gga-miR-107-3p 0.9857 1.0000 -0.3895

Fig. 6

The expression levels of LNC_003828, gga-miR-107-3p and MINPP1 in chest and leg muscles of chicken *Indicating significant difference (P<0. 05)"

Table 9

The correlation between LNC_003828, gga-miR-107- 3p, MINPP1 expression and the content of inosine and IMP"

部位
Part
项目
Project
LNC_003828 gga-miR-107-3p MINPP1
胸肌Chest

腿肌Leg
IMP
Inosine
IMP
Inosine
0.8017
0.5327
0.2093
-0.0976
0.4192
0.8720
0.3723
0.0729
-0.9626
-0.1943
-0.9998*
-0.9470
[1] BLONDE G D, SPECTOR A C. An examination of the role of L-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor. Chemical Senses, 2017, 42(5):393-404.
doi: 10.1093/chemse/bjx015
[2] 徐英, 李石友, 李琦华, 段刚, 杨国荣, 梁应海. 蛋白质水平对牛肉肌苷酸含量的影响. 西南农业学报, 2011, 24(1):294-296.
XU Y, LI S Y, LI Q H, DUAN G, YANG G R, LIANG Y H. Effect of protein levels on beef inosine acid content. Southwest China Journal of Agricultural Sciences, 2011, 24(1):294-296. (in Chinese)
[3] 母童, 张娟, 赵平, 顾亚玲, 刘丽元, 杨彦军, 安克龙, 王有. 静原鸡ELOVL2和ELOVL5基因表达的组织特异性研究. 浙江农业学报, 2017, 29(8):1290-1296.
MU T, ZHANG J A, ZHAO P, GU Y L, LIU L Y, YANG Y J, AN K L, WANG Y. Tissue-specific expression analysis of ELOVL2 and ELOVL5 genes in Jingyuan chicken. Acta Agriculturae Zhejiangensis, 2017, 29(8):1290-1296.(in Chinese)
[4] MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 2009, 10(3):155-159.
doi: 10.1038/nrg2521
[5] 郑伟. LncRNA-miRNA-mRNA相互作用初步研究[D]. 北京: 中国人民解放军军事医学科学院, 2017.
ZHENG W. Preliminary study of LncRNA-miRNA-mRNA interaction[D]. Beijing: Chinese Academy of Military Medical Sciences, 2017. (in Chinese)
[6] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2):281-297.
doi: 10.1016/S0092-8674(04)00045-5
[7] SPIZZO R, ALMEIDA M I, COLOMBATTI A, CALIN G A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene, 2012, 31(43):4577-4587.
doi: 10.1038/onc.2011.621
[8] BERNSTEIN E, ALLIS C D. RNA meets chromatin. Genes & Development, 2005, 19(14):1635.
doi: 10.1101/gad.1324305
[9] EBERT M S, NEILSON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 2007, 4(9):721-726.
doi: 10.1038/nmeth1079
[10] CARETTI G, SCHILTZ R L, DILWORTH F J, DI PADOVA M, ZHAO P, OGRYZKO V, FULLER-PACE F V, HOFFMAN E P, TAPSCOTT S J, SARTORELLI V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Developmental Cell, 2006, 11(4):547-560.
doi: 10.1016/j.devcel.2006.08.003
[11] CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2):358-369.
doi: 10.1016/j.cell.2011.09.028
[12] HUANG W L, ZHANG X X, LI A, XIE L L, MIAO X Y. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget, 2017, 8(50):87539-87553.
doi: 10.18632/oncotarget.v8i50
[13] ZOU C, LI S, DENG L L, GUAN Y, CHEN D, YUAN X K, XIA T R, HE X L, SHAN Y W, LI C C. Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between Yorkshire and Wannanhua pig. Genes, 2017, 8(8):203.
doi: 10.3390/genes8080203
[14] SHEN L Y, CHEN L, ZHANG S H, ZHANG Y, WANG J Y, ZHU L. MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality. Meat Science, 2016, 116:201-206.
doi: 10.1016/j.meatsci.2016.02.023
[15] CASIRO A, VELEZ-IRIZARRY D, BATES R O, ERNST C W, STEIBEL J P. 030 Genomewide association study for meat quality traits in an F2 Duroc × Piétrain population. Journal of Animal Science, 2016, 94(2):14-15.
[16] LIU G, UPDIKE M S. miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle. Journal of Animal Science and Biotechnology, 2012(2):60-67.
[17] HONG J S, NOH S H, LEE J S, KIM J M, HONG K C, LEE Y S. Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fiber type composition and miR-1 expression. Gene, 2012, 506(1):211-216.
doi: 10.1016/j.gene.2012.06.050
[18] SHEN L Y, DU J J, XIA Y D, TAN Z D, FU Y H, YANG Q, LI X W, TANG G Q, JIANG Y Z, WANG J Y, LI M Z, ZHANG S H, ZHU L. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Scientific Reports, 2016, 6:32186.
doi: 10.1038/srep32186
[19] MA J D, WANG H M, LIU R, JIN L, TANG Q Z, WANG X, JIANG A A, HU Y D, LI Z W, ZHU L, LI R Q, LI M Z, LI X W. The miRNA transcriptome directly reflects the physiological and biochemical differences between red, white, and intermediate muscle fiber types. International Journal of Molecular Sciences, 2015, 16(5):9635-9653.
doi: 10.3390/ijms16059635
[20] WANG Q, QI R L, WANG J, HUANG W M, WU Y J, HUANG X F, YANG F Y, HUANG J X. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene, 2017, 618:49-56.
doi: 10.1016/j.gene.2017.04.013
[21] CAI Z W, ZHANG L F, JIANG X L, SHENG Y F, XU N Y. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Research in Veterinary Science, 2015, 99:99-104.
doi: 10.1016/j.rvsc.2014.12.012
[22] CHI H, TILLER G E, DASOUKI M J, ROMANO P R, WANG J, O'KEEFE R J, PUZAS J E, ROSIER R N, REYNOLDS P R. Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. Genomics, 1999, 56(3):324-336.
doi: 10.1006/geno.1998.5736
[23] CAFFREY J J, HIDAKA K, MATSUDA M, HIRATA M, SHEARS S B. The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification. FEBS Letters, 1999, 442(1):99-104.
doi: 10.1016/S0014-5793(98)01636-6
[24] MOURELATOS Z, DOSTIE J, PAUSHKIN S, SHARMA A, CHARROUX B, ABEL L, RAPPSILBER J, MANN M, DREYFUSS G. miRNAs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes & Development, 2002, 16(6):720-728.
doi: 10.1101/gad.974702
[25] FINNERTY J R, WANG W X, HEBERT S S, WILFRED B R, MAO G G, NELSON P T. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. Journal of Molecular Biology, 2010, 402(3):491-509.
doi: 10.1016/j.jmb.2010.07.051
[26] 虎红红, 母童, 马正旭, 冯小芳, 蔡正云, 黄增文, 顾亚玲, 辛国省, 张娟. 基于RNA-seq技术对静原鸡不同部位肉质相关差异基因的筛选. 基因组学与应用生物学, 2019.(网络首发).
HU H H, MU T, MA Z X, FENG X F, CAI Z Y, HUANG Z W, GU Y L, XIN G S, ZHANG J. Screening of differentially expressed genes related to meat quality in different parts of jingyuan chicken based on RNA-Seq technology. Genomics and Applied Biology, 2019. (in Chinese)(Network starting)
[27] ZHANG H J, PAN J, LIANG J, XIA X X. High-pressure effects on the mechanism of accumulated inosine 5 '-monophosphate. Innovative Food Science & Emerging Technologies, 2018, 45:330-334.
[28] RUDOLPH F B. The biochemistry and physiology of nucleotides. Journal of Nutrition, 1994, 124(suppl_1):124S-127S.
doi: 10.1093/jn/124.suppl_1.124S
[29] HAMANO Y. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens. British Poultry Science, 2016, 57(4):501-514.
doi: 10.1080/00071668.2016.1184227
[30] MATSUISHI M, TSUJI M, YAMAGUCHI M, KITAMURA N, TANAKA S, NAKAMURA Y, OKITANI A. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle. Animal Science Journal, 2016, 87(11):1407-1412.
doi: 10.1111/asj.2016.87.issue-11
[31] 野崎义孝, 南基哲, 蒋国文. 鸡肉的鲜度与K值(上). 国外畜牧科技, 1994(3):31-32.
YE Q, NAN J Z, JIANG G W. The freshness and K value of chicken (up). Animal Science Abroad, 1994(3):31-32.(in Chinese)
[32] 王述柏. 鸡肉肌苷酸沉积规律及营养调控研究[D]. 北京: 中国农业科学院, 2004.
WANG S B. Studies on the deposition of 5'-inosinic acid in chicken meat and its modification by nutrition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese)
[33] 陈继兰. 鸡肉肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究[D]. 北京: 中国农业大学, 2004.
CHEN J L. Studies on inheritance and candidate genes of inosine-5'- monophosphate and intramuscular fat contents in chicken meat[D]. Beijing: China Agricultural University, 2004. (in Chinese)
[34] 刘望夷, 竺来发, 翁志发, 沈洪民. 肉用鸡肌肉中肌苷酸含量的比较. 中国农业科学, 1980(4):79-83.
LIU W Y, ZHU L F, WENG Z F, SHEN H M. A comparative study of inosinic acid contents in chicken muscle. Scientia Agricultura Sinica, 1980(4):79-83. (in Chinese)
[35] 苏淑贞, 朱汉炎, 刘建樑, 李民. 鹌鹑、鸡、鸽子肌肉中肌苷酸含量的比较. 中国家禽, 1987(2):32-33+35.
SU S Z, ZHU H Y, LIU J L, LI M. Comparison of inosinic acid content in muscle of quail, chicken and pigeon. China Poultry, 1987(2):32-33+35. (in Chinese)
[36] 姬舒云. 基于转录组学和代谢组学研究苏氨酸水平对肉鸡肠道的影响[D]. 杨凌: 西北农林科技大学, 2019.
JI S Y. Effects of threonine levels on broilers intestinal based on teanscriptology and metabomics[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[37] PANASYUK G, ESPEILLAC C, CHAUVIN C, PRADELLI L A, HORIE Y, SUZUKI A, ANNICOTTE J S, LLUIS-FAJAS, FORETZ M, VERDEGUER F, PONTOGLIO M, FERRE P, SCOAZEC J Y, BIRNBAUM M, RICCI J E, PENDE M. PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3(1).
[38] PRESEK P, REINACHER M, EIGENBRODT E. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by rous sarcoma virus. FEBS Letters, 1988, 242(1):194-198.
doi: 10.1016/0014-5793(88)81014-7
[39] ALI N, CRAXTON A, SHEARS S B. Hepatic Ins(1, 3, 4, 5)P4 3-phosphatase is compartmentalized inside endoplasmic Reticulum. The Journal of Biological Chemistry, 1993, 268(9):6161-6167.
doi: 10.1016/S0021-9258(18)53233-6
[40] KILAPARTY S P, AGARWAL R, SINGH P, KANNAN K, ALI N. Endoplasmic Reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): A possible role for Minpp1 in cellular stress response. Cell Stress and Chaperones, 2016, 21(4):593-608.
doi: 10.1007/s12192-016-0684-6
[41] CHO J, KING J S, QIAN X, HARWOOD A J, SHEARS S B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the rapoport-luebering glycolytic shunt. Proceedings of the National academy of Sciences of the United States of America, 2008, 105(16):5998-6003.
[42] BALLESTER M, AMILLS M, GONZÁLEZ-RODRÍGUEZ O, CARDOSO T F, PASCUAL M, GONZÁLEZ-PRENDES R, PANELLA-RIERA N, DÍAZ I, TIBAU J, QUINTANILLA R. Role of AMPK signalling pathway during compensatory growth in pigs. BMC Genomics, 2018, 19(1):682.
doi: 10.1186/s12864-018-5071-5
[43] OUYANG H J, HE X M, LI G H, XU H P, JIA X Z, NIE Q H, ZHANG X Q. Deep sequencing analysis of miRNA expression in breast muscle of fast-growing and slow-growing broilers. International Journal of Molecular Sciences, 2015, 16(7):16242-16262.
doi: 10.3390/ijms160716242
[44] WU N, GAUR U, ZHU Q, CHEN B, XU Z, ZHAO X, YANG M, LI D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Animal Genetics, 2017, 48(2):205-216.
doi: 10.1111/age.2017.48.issue-2
[45] HE J, WANG W Q, LU L Z, TIAN Y, NIU D, REN J D, DONG L Y, SUN S W, ZHAO Y, CHEN L, SHEN J L, LI X H. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver. Scientific Reports, 2016, 6:27418.
doi: 10.1038/srep27418
[46] LI H, WANG S H, YAN F B, LIU X J, JIANG R R, HAN R L, LI Z J, LI G X, TIAN Y D, KANG X T, SUN G R. Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken. Gene, 2015, 566(1):8-12.
doi: 10.1016/j.gene.2015.03.037
[47] 魏雪锋. miR-378a-3p、miR-107和相关circRNA调控牛肌细胞发育的机制研究[D]. 杨凌: 西北农林科技大学, 2017.
WEI X F. Mechanism study on miR-378a-3p, miR-107 and related circRNA regulating bovine myoblasts development[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[48] ZHANG J J, WANG C Y, HUA L, YAO K H, CHEN J T, HU J H. miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. International Journal of Clinical and Experimental Pathology, 2015, 8(5):5168-5174.
[49] CHEN H Y, LIN Y M, CHUNG H C, LANG Y D, LIN C J, HUANG J, WANG W C, LIN F M, CHEN Z, HUANG H D, SHYY J Y J, LIANG J T, CHEN R H. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Research, 2012, 72(14):3631-3641.
doi: 10.1158/0008-5472.CAN-12-0667
[50] WANG P, WU T Y, ZHOU H, JIN Q Q, HE G Q, YU H Y, XUAN L J, WANG X, TIAN L L, SUN Y N, LIU M, QU L M. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. Journal of Experimental & Clinical Cancer Research, 2016, 35:22.
[51] CHEN L, LI Z Y, XU S Y, ZHANG X J, ZHANG Y A, LUO K, LI W P. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression. Cellular and Molecular Neurobiology, 2016, 36(1):113-120.
doi: 10.1007/s10571-015-0225-3
[52] HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441):384-388.
doi: 10.1038/nature11993
[53] PARASKEVOPOULOU M D, HATZIGEORGIOU A G. Analyzing MiRNA-LncRNA interactions. Methods in Molecular Biology (Clifton, N J), 2016, 1402(1):271-286.
[54] WEI N, WANG Y, XU R X, WANG G Q, XIONG Y, YU T Y, YANG G S, PANG W J. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics, 2015, 46(2):133-140.
doi: 10.1111/age.2015.46.issue-2
[55] 姜修英, 武春艳, 董翔宇, 高卓然, 李辉, 杜志强. 鸡PPARγ基因相关长链非编码RNA的鉴定及其转录调控. 农业生物技术学报, 2018, 26(11):1909-1918.
JIANG X Y, WU C Y, DONG X Y, GAO Z R, LI H, DU Z Q. Identification of a long non-coding RNA related to PPARγ gene and study on its transcriptional regulation in chicken(Gallus gallus). Journal of Agricultural Biotechnology, 2018, 26(11):1909-1918. (in Chinese)
[56] ZHANG T, ZHANG X Q, HAN K P, ZHANG G X, WANG J Y, XIE K Z, XUE Q A. Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken. G3 (Bethesda, Md), 2017, 7(3):953-966.
[57] LIU F Q, CHEN Q, CHEN F, WANG J, GONG R J, HE B C. The lncRNA ENST00000608794 acts as a competing endogenous RNA to regulate PDK4 expression by sponging miR-15b-5p in dexamethasone induced steatosis. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2019, 1864(10):1449-1457.
[58] CHEN X, TAN X R, LI S J, ZHANG X X. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ ROCK1 in nonalcoholic fatty liver disease. Life Sciences, 2019, 235:116829.
doi: 10.1016/j.lfs.2019.116829
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!