Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2710-2723.doi: 10.3864/j.issn.0578-1752.2021.13.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat

TAN ZhaoGuo1,2(),LI YanMei2(),BAI JianFang2,GUO HaoYu2,LI TingTing2,DUAN WenJing2,LIU ZiHan2,YUAN ShaoHua2,ZHANG TianBao2,ZHANG FengTing2,CHEN ZhaoBo2,ZHAO FuYong1(),ZHAO ChangPing2(),ZHANG LiPing1,2()   

  1. 1College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei
    2Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences/The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097
  • Received:2020-11-25 Revised:2021-02-05 Online:2021-07-01 Published:2021-07-12
  • Contact: FuYong ZHAO,ChangPing ZHAO,LiPing ZHANG E-mail:tanzhaoguo@foxmail.com;lymei1013@163.com;fyzhao@yangtzeu.edu.cn;cp_zhao@vip.sohu.com;lpzhang8@126.com

Abstract:

【Objective】 β-glucosidase (BG, 4-β-D-glueosidase) is a kind of hydrolase which hydrolyzes glycosidic bond from glycopolymer or oligosaccharide to release non reducing sugar group, which plays an important role in controlling anther dehiscence. The anthers of the photoperiod-temperature sensitive genic male sterile (PTGMS) wheat line BS366 did not dehiscence in sterile environment, but completely or partially cracked in fertile environment. In order to study the regulatory function of BG gene on anther dehiscence in wheat, the TaBG was cloned from BS366 and its potential function in anther dehiscence was analyzed, which provided theoretical basis for further analysis of molecular mechanism of abnormal anther dehiscence in photoperiod thermo sensitive male sterile line of wheat.【Method】TaBG was cloned from the anther of PTGMS line BS366, and the primary structure, secondary structure, tertiary structure of TaBG protein were predicted. In addition, the cis-acting elements in promoter region prediction, phylogenetic tree construction with other species, interaction between miRNA and TaBG were performed using bioinformatics software. The expression levels of TaBG and the interacted tae-miR395a in anthers and glumes under MeJA and SA treatment were determined. 【Result】 The total length of TaBG is 1 473 bp, which encoded 490 amino acids, and the theoretical pI is 8.12, belonging to the glycosylhydrolase superfamily. The results showed that TaBG may be regulated by stress resistance-related miRNAs, such as miR169and miR395a. Based on the prediction of protein interaction, it was found that TaBG might interact with glucose-methanol-choline oxidoreductase (GMC) and endoglucanase (EG). TaBG is located in the liquid bubble of the wheat proton. The qPCR results showed that the expression of TaBG in Bilocular stage (stage 13), Dehiscence (stage14) and Senescence (stage15) showed an upward and then downward trend. TaBG was the highest expression in Dehiscence, and the expression of TaBG in no dehiscence of anther was 2.8 times higher than that of complete dehiscence of anther. After treatment of MeJA, the expression ofTaBG in anther and glume showed downward. The tae-miR395a expression pattern was the opposite.【Conclusion】 TaBGmight be involved in anther dehiscence with stress tolerance related miRNA such as miR169andmiR395a. High expression of TaBG could increase the content of soluble sugar in the anther under the sterile environment, and then increase the osmotic potential in the anther, so as to slow down the dehydration of anther dehiscence. This study will lay a foundation for elucidating the biological function of BG in regulating anther dehiscence.

Key words: wheat, 4-β-D-glueosidase, miRNA, anther dehiscence

Table 1

Primer sequences used in this study"

引物名称 Primer name 引物序列 Primer sequence (5'-3') 用途 Usage
TaBG-F CTCCACTATGGAGCTCCTCCG 基因扩增Gene amplification
TaBG-R TATTCACCCATCTGGCACCACT
TaBG-CF ATGGAGCTCCTCCGCG 蛋白编码区克隆 CDS cloning
TaBG-CR TCAGTACTCCTCGCTCTT
TaBG-DF TATCTCTAGAGGATCCATGGAGCTCCTCCGCG 亚细胞定位 Subcellular localization
TaBG-DR TGCTCACCATGGATCCGTACTCCTCGCTCTTGATCAC
TaBG-QF CCTCACGCGCTCTACGACACC 实时荧光定量PCR qPCR
TaBG-QR CCATGCGAAGTAGCCCGTCACC
β-Actin-QF TACTCCCTCACAACAACCG 内参基因 Reference gene
β-Actin-QR AGAACCTCCACTGAGAACAA
tae-miR395a-QF GTGAAGTGTTTGGGGGAACTC 实时荧光定量PCR qPCR
tae-miR395a-QR AGAACTTCACAGTGGTCTTA
U6snRNA-QF CAAGGATGACACGCAAATTCG 内参基因 Reference gene
U6snRNA-QR GTGCAGGGTCCGAGGT

Fig. 1

Anther dehiscence morphology of BS366 at senescence A: Complete dehiscence (Beijing); B: Incomplete dehiscence (Beijing); C: No dehiscence (Dengzhou, Henan)"

Fig. 2

PCR amplification and sequence analysis of TaBG A: Cloning of TaBG, M: DL 2000 maker; 1: TaBG PCR product. B: Sequence analysis of TaBG "

Fig. 3

Prediction of signal peptide and conserved domain of TaBG A: Signal peptide; B: Conservative domain"

Table 2

Analysis of promoter element"

上游启动子元件 Upstream promoter elements 功能 Function
CAAT-box、TATA-box 核心启动子元件 Core promoter element
ABRE 脱落酸响应元件 Abscisic acid responsiveness element
CGTCA-motif、TGACG-motif 茉莉酸甲酯响应元件 MeJA-responsiveness responsiveness element
TCA-element 水杨酸响应元件 Salicylic acid responsiveness element
G-box、TCT-motif 光响应元件 Light responsiveness element
CAT-box 分生组织表达相关元件 Related to meristem expression element

Fig. 4

Amino acid sequence alignment of TaBG with other species homologous proteins"

Fig. 5

Phylogenetic tree analysis of TaBG and BG in other species and their corresponding motif prediction Different color parts in the evolutionary tree represents different groups. XP_020155850.1: Aegilops tauschiiCoss.; XP_020155849.1: Aegilops tauschiiCoss.; XP_020166122.1: Aegilops tauschiiCoss.; VAI78197.1: Triticum turgidumL.var.durumDesf. Yan. ex P. C.; EMS63424.1: Triticum aestivum L.; VAI90324.1: Triticum turgidum L. var. durum Desf. Yan. ex P. C.; KAE8767126.1: Hordeum vulgare L.; XP_010237292.1: Brachypodium distachyon L. Beauv.; XP_006664007.1: Oryza rufipogon Griff.; KAF0922613.1:Oryza rufipogonGriff.; EEC69164.1: Oryza rufipogonGriff.; XP_015620634.1: Oryza sativa L.; KAB8117340.1: Oryza sativa L.; TVU50559.1: Eragrostis curvula Schrad Nees.; PWZ23263.1: Zea mays L.; XP_020393252.1: Zea maysL.; XP_021304604.1: Sorghum bicolor L.; RLN3116: Panicum miliaceumvar.Compactrm; RLM98073.1: Panicum miliaceumvar. Compactrm; PUZ66950.1: Panicum miliaceumvar. Compactrm; XP_025809448.1: Panicum miliaceum var. Compactrm; RLN31163.1: Panicum miliaceumvar. Compactrm; TVU50559.1: Eragrostis curvulaSchrad. Nees; RLM98073.1: Panicum miliaceumvar.Compactrm; XP_021304604.1: Sorghum bicolorL.; PWZ23263.1: Zea maysL.; XP_004963948.1: Setaria italica L. Beauv. var. germanicaMill. Schrad.; XP_020393252.1:Zea mays L.; XP_006490742.1: Citrus sinensis "

Table 3

Motif sequences of TaBG"

基序 Motif 基序序列 Motif sequence
Motif 1 DFCFKTYGDRVKNWFTINEPRMMAWHGYGDGFFPPGRCTGC
Motif 2 CIWDTFLKYPGATPDNATANVTVDEYHRYMDDVDNMVRVGFDAYRFSISW
Motif 3 DGARVTGYFAWSLLDNFEWRLGFTSKFGJVYVDRKTFTRYPKDSTRWFRK
Motif 4 GKIGILLDFVWYEPLTYSVEDEYAAHRAREFTLGWFLHPITYGHYPETMZ
Motif 5 SRIFPSGIGRINKDGVDYYHRLIBYMLANNITPYVVLYHYDLPZVLNBQY
Motif 6 ERNGVPIGKQAYSDWLYVVPWGFYKAVMHVKEKFNBPVILIGENGIDQSG
Motif 7 KJVGGRLPNFTFEQSKMVKGSADYIAINHYTTYYVSHHVNLTHMSYANDW
Motif 8 LLANGEHTBLTRDSFPPGFVFGTASSAYQVEGNALKYGRGP
Motif 9 NSATEPYIAGHHLLLAHAAAVKVYRDKYQ
Motif 10 NDTLPHALYDTFRIDYFDQYLHELKRAIA

Fig. 6

Interaction analysis ofTaBG with miRNA and protein interaction prediction of TaBG A: TaBGand miRNA interaction; B: miRNA hairpin of tae-miR395a; C: Network diagram of TaBG protein interaction "

Fig. 7

Subcellular localization of TaBG-GFP fusion in wheat protoplasts "

Fig. 8

Relative expression pattern of TaBG gene in different anther development stages and tissues of wheat "

Fig. 9

Expression pattern of TaBG and tae-miR395a in anther and glumes under the stresses of MeJA and SA Expression profiling of TaBG and tae-miR395a in anthers (A and B) and glumes (C and D) treated with MeJA (0, 0.5, 2, and 4 mmol·L-1) and SA (10 mmol·L-1). MeJA: Spikelets were treated with MeJA (0, 0.5, 2, and 4 mmol·L-1). MeJA+SA: Treatment of spikelets with different concentration of MeJA (0, 0.5, 2, and 4 mmol·L-1) and than application of SA (10 mmol·L-1) "

[1] WILSON Z A, SONG J, TAYLOR B, YANG C. The final split: The regulation of anther dehiscence. Journal of Experimental Botany, 2011, 62(5):1633-1649.
doi: 10.1093/jxb/err014
[2] BROWNE R G, IACUONE S, LI S F, DOLFERUS R, PARISH R W. Anther morphological development and stage determination in Triticum aestivum. Front Plant Science, 2018, 9(2):228.
doi: 10.3389/fpls.2018.00228
[3] SANDERS P M, BUI A Q, WETERINGS K, MCINTIRE K N, HSU Y C, LEE P Y. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, 11:297-322.
doi: 10.1007/s004970050158
[4] REUVENI M, SAGI Z, EVNOR D, HETZRONI A. β-Glucosidase activity is involved in scent production in Narcissus flowers. Plant Science, 1991, 147(1):19-24.
doi: 10.1016/S0168-9452(99)00097-7
[5] XUE L J, ZHANG J J, XUE H W. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS ONE, 2012, 7(2):e31081.
doi: 10.1371/journal.pone.0031081
[6] LEAH R, KIGEL J, MUNDY J. Biochemical and molecular characterization of a barley seed -glucosidase. Biological Chemistry, 1995, 270:15789-15797.
[7] RHEE S Y, OSBORNE E, POINDEXTER P D, SOMERVILLE C R. Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiology, 2003, 133(3):1170-1180.
doi: 10.1104/pp.103.028266
[8] OGAWA M, KAY P, WILSON S, SWAIN S M. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development inArabidopsis. The Plant Cell, 2009, 21:216-233.
doi: 10.1105/tpc.108.063768
[9] CHEONG J J, CHOI Y D. Methyl jasmonate as a vital substance in plants. Trends in Genetics, 2003, 19(7):409-413.
doi: 10.1016/S0168-9525(03)00138-0
[10] BAI J F, WANG Y K, WANG P, YUAN S H, GAO J G, DUAN W J, WANG N, ZHANG F T, ZHANG W J, QIN M Y, ZHAO C P, ZHANG L P. Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.). BMC Genomics, 2018, 19(1):754.
doi: 10.1186/s12864-018-5116-9
[11] LESCOT M, DéHAIS P, THIJS G, MARCHAL K, MOREAU Y, PEER Y V D, ROUZé P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30:325-327.
doi: 10.1093/nar/30.1.325
[12] 孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29(2):224-234.
SUN H, LANG Z H, ZHU L, HUANG D F. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chinese Journal of Biotechnology, 2013, 29(2):224-234. (in Chinese)
[13] PFAFFL M W . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29:2003-2007.
doi: 10.1093/nar/29.10.2003
[14] SUZUKI H, TAKAHASHI S, WATANABE R, FUKUSHIMA Y, FUJITA N, NOGUCHI A, YOKOYAMA R, NISHITANI K, NISHINO T, NAKAYAMA T. An isoflavone conjugate-hydrolyzing beta-glucosidase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and cellular localization. Biological Chemistry, 2006, 281(40):30251-30259.
[15] BRZOBOHATY B, MOORE L, KRISTOFFERSEN P, BAKO L, CAMPOS N, SCHELL J, PALME K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science, 1993, 262(5136):1051-1054.
doi: 10.1126/science.8235622
[16] JONES P, VOGT T. Glycosyltransferases in secondary plant metabolism: Tranquilizers and stimulant controllers. Planta, 2014, 213(2):164-174.
doi: 10.1007/s004250000492
[17] LEE K H, PIAO H L, KIM H Y, CHOI S M, JIANG F, HARTUNG W, HWANG I, KWAK J M, LEE I J, HWANG I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell, 2006, 126(6):1109-1120.
doi: 10.1016/j.cell.2006.07.034
[18] KE X, WANG H, LI Y, ZHU B, ZANG Y, HE Y, CAO J, ZHU Z, YU Y. Genome-wide identification and analysis of polygalacturonase genes in Solanum lycopersicum. International Journal of Molecular Sciences, 2018, 19(8):145156-145156.
[19] CHEN Y, JIA Y, NIU F, WU Y, YE J, YANG X, ZHANG L, SONG X. Identification and validation of genetic locus Rfk1for wheat fertility restoration in the presence of Aegilops kotschyicytoplasm. Theoretical and Applied Genetics, 2020: 1-11.
[20] DAVIES H G J C O I S B. Structural and sequence-based classification of glycoside hydrolases. 1997, 7(5):637-644.
[21] CHUENCHOR W, PENGTHAISONG S, ROBINSON R C, YUVANIYAMA J, OONANANT W, BEVAN D R, ESEN A, CHEN C J, OPASSIRI R, SVASTI J, CAIRNS J R. Structural insights into rice BGlu1 beta-glucosidase oligosaccharide hydrolysis and transglycosylation. Journal of Molecular Biology, 2008, 377(4):1200-1215.
doi: 10.1016/j.jmb.2008.01.076
[22] ZHAO M, DING H, ZHU J K, ZHANG F, LI W X. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytologist, 2011, 190(4):906-915.
doi: 10.1111/nph.2011.190.issue-4
[23] ZHAO B, LIANG R, GE L, LI W, XIAO H, LIN H, RUAN K, JIN Y. Identification of drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications, 2007, 354(2):585-590.
doi: 10.1016/j.bbrc.2007.01.022
[24] LEYVA-GONZALEZ M A, IBARRA-LACLETTE E, CRUZ-RAMIREZ A, HERRERA-ESTRELLA L. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated byArabidopsisNF-YA family members. PLoS ONE, 2012, 7(10):e48138.
doi: 10.1371/journal.pone.0048138
[25] LIU W, CHENG C, CHEN F, NI S, LIN Y, LAI Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC Plant Biology, 2018, 18(1):308.
doi: 10.1186/s12870-018-1483-2
[26] TRUDEAU D L, LEE T M, ARNOLD F H. Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures. Biotechnology and Bioengineering, 2014, 111(12):2390-2397.
doi: 10.1002/bit.v111.12
[27] BONNER L J, DICKINSON H G. Anther dehiscence in Lycopersicon esculentum Mill: I. Structural aspects. New Phytologist, 1989, 113(1):97-115.
doi: 10.1111/nph.1989.113.issue-1
[28] 潘孝武, 刘文强, 黎用朝, 熊海波, 盛新年, 段永红, 余亚莹, 赵文锦, 魏秀彩, 李小湘. 水稻裂颖突变体sh1的鉴定及基因定位. 中国水稻科学, 2019, 33(4):323-330.
PAN X W, LIU W Q, LI Y C, XIONG H B, SHENG X N, DUAN Y H, YU Y Y, ZHAO W J, WEI X C, LI X X. Identification and genetic analysis. of split husk mutant sh1 in rice . Chinese Journal Of Rice Science, 2019, 33(4):323-330. (in Chinese)
[29] 向群, 张立平, 赵昌平, 唐忠辉, 徐小芹, 苑少华. 外源茉莉酮酸甲酯通过调节相关基因表达诱导光温敏雄性不育小麦BS366离体花药开裂. 中国生物化学与分子生物学报, 2010, 26(11):1028-1035.
XIANG Q, ZHANG L P, ZHAO C P, TANG Z H, XU X Q, YUAN S H. Methyl jasmonic acid in vitro induces anther dehiscence of photothermo-sensitive male sterile wheat line BS366 through regulating related gene expression. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(11):1028-1035. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[15] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!