Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3606-3619.doi: 10.3864/j.issn.0578-1752.2020.17.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore

CHEN HuaZhi(),ZHU ZhiWei(),JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui()   

  1. College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2019-12-25 Accepted:2020-02-04 Online:2020-09-01 Published:2020-09-11
  • Contact: Rui GUO E-mail:CHZ0720@outlook.com;zzw15235470398@163.com;ruiguo@fafu.edu.cn

Abstract: 【Objective】Ascosphaera apis exclusively infects honeybee larvae, resulting in chalkbrood disease. The objective of this study is to clarify the differences of number, structure and expression pattern of miRNAs between A. apis mycelium and spore based on deep sequencing and comparative analysis of purified mycelia (AaM) and spores (AaS) using small RNA-seq (sRNA-seq) and bioinformatics, and reveal the potential relationship between common miRNAs, specific miRNAs, differentially expressed miRNAs (DEmiRNAs) and their target mRNAs and the growth and development of mycelium and spore as well as pathogenesis of A. apis.【Method】The pure culture of A. apis was gained under lab condition. AaM and AaS were respectively sequenced using sRNA-seq technology. Clean tags were obtained after filtration and quality control of raw reads. Common miRNAs and specific miRNAs in AaM and AaS were screened out using Venn analysis. DEmiRNAs in the AaM vs AaS comparison group were filtered out following the criteria of P≤0.05 and |log2 fold change|≥1. Target mRNAs of common miRNAs, specific miRNAs and DEmiRNAs were predicted using related bioinformatic software. Target mRNAs mentioned above were respectively annotated to GO database and KEGG database. The regulatory network of DEmiRNAs and target mRNAs was constructed on basis of target binding relationship, followed by visualization with Cytoscape. RT-qPCR was conducted to verify the reliability of the sequencing data.【Result】In total, 12 982 320 and 12 708 832 raw reads were produced from AaM and AaS, and after strict quality control, 10 800 101 and 9 888 848 clean tags were gained, respectively. The length of specific miRNAs in AaM was distributed among 18-26 nt, while that in AaS was distributed among 18-24 nt. Additionally, most of the miRNAs were distributed in 18 nt. MiRNAs with the first base U in both AaM and AaS were the most abundant. MiRNAs with the highest expression levels in both AaM and AaS were miR6478-x, miR10516-x and miR482-x. These common miRNAs could target 5 946 mRNAs, while specific miRNAs in AaM and AaS could bind to 6 141 and 6 346 mRNAs, respectively. Targets of common miRNAs were annotated to 42 functional terms such as metabolism process, cellular process and catalytic activity, and 120 pathways including translation, carbohydrate metabolism and energy metabolism. In addition, a total of 93 DEmiRNAs were identified in AaM vs AaS comparison group, targeting 6 090 mRNAs annotated to 38 functional terms and 120 pathways. Moreover, complicated regulatory networks were formed between DEmiRNAs and target mRNAs, with miR-4968-y located in the center and linked to as many as 118 mRNAs. RT-qPCR result demonstrated the expression trend of five DEmiRNAs was consistent with that in the sequencing result, confirming the reliability of our sequencing data.【Conclusion】The structures of miRNAs in A. apis mycelium and spore were similar, whereas their expression patterns were obviously different; mycelium and spore may specifically and differentially express part of miRNAs to regulate their growth, development and reproduction.

Key words: Ascosphaera apis, mycelium, spore, miRNA, mRNA, target binding

Table 1

Primers used in this study"

引物名称 Primer name 引物序列Primer sequence (5′-3′)
Loop-miR5658-x CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCATCATC
Loop-miR-10285-y CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAATTGG
Loop-miR-3245-y CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCCCGGAC
Loop-miR4404-x CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCCAGTCT
Loop-miR-9-z CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCATACAG
miR5658-x-F ACACTCCAGCTGGGCGATGATGAT
miR-10285-y-F ACACTCCAGCTGGGTCATTTGTGGT
miR-3245-y-F ACACTCCAGCTGGGCTTGGGAGAG
miR4404-x-F ACACTCCAGCTGGGAATACGTAGA
miR-9-z-F ACACTCCAGCTGGGTCTTTGGTTATCTAG
Universal-R CTCAACTGGTGTCGTGGA
actin-F CAGGAAAGGCTATGTTCGC
actin-R ATTACCGAGGAGCAAGACG

Table 2

Overview of sRNA-seq datasets"

样品
Sample
原始读段
Raw reads
有效标签序列
Clean tags
比对上参考基因组的clean tags
Clean tags mapped to reference genome
AaM 12982320 10800101 (84.34%) 8703440 (80.59%)
AaS 12708832 9888848 (78.83%) 7080369 (71.60%)

Fig. 1

Comparison of structural properties of miRNAs between AaM and AaS"

Table 3

Top 10 highly expressed miRNAs in AaM"

miRNA ID miRNA序列
miRNA sequence
TPM值
TPM value
miR6478-x GCGACTTTAGCTCAGTTGG 294585.5787
miR10516-x GATCCTCTGCAGACGACTGA 200923.7875
miR482-x TTGGAGTGGGTGGGTTGGGAA 99563.767
miR-8440-y GTTCGTTTCTGGGTCAGG 84423.9158
miR5658-x CGATGATGATGATGATGA 30792.9176
miR-11987-x AGGAAACTCTGGTGGAGGT 27713.6259
miR-10285-y TCATTTGTGGTCCAATTGT 11547.3441
miR-3245-y CTTGGGAGAGGTCCGGGG 10264.3059
miR-1332-y CAGTTGGTTAGAGCTGGT 9494.4829

Table 4

Top 10 highly expressed miRNAs in AaS"

miRNA ID miRNA序列
miRNA sequence
TPM值
TPM value
miR6478-x GCGACTTTAGCTCAGTTGG 209814.8692
miR482-x TTGGAGTGGGTGGGTTGGGAA 71995.2983
miR10516-x GATCCTCTGCAGACGACTGA 71407.5815
miR-21-x TAGCTTATCAGACTGATGTTGA 32324.4196
miR-8440-y GTTCGTTTCTGGGTCAGG 31736.7029
miR-143-y TGAGATGAAGCACTGTAGCTCT 29973.5527
miR-11987-x AGGAAACTCTGGTGGAGGT 26741.1108
let-7-x TGAGGTAGTAGGTTGTATAGTT 19688.5101
novel-m0040-3p TCTTGAACTGAGAGATGGGGC 16456.0682
miR159-y TCTTGGGGTGAAGGGCGG 15574.4931

Table 5

Top 10 up- and down-regulated miRNAs in AaM vs AaS comparison group"

差异表达miRNA ID
DEmiRNA ID
AaM的TPM值
TPM value in AaM
AaS的TPM值
TPM value in AaS
Log2差异倍数
Log2FC
P
P value
上调miRNA Up-regulated miRNAs
novel-m0040-3p 0.01 16456.0682 20.65019 5.98E-17
novel-m0016-3p 0.01 14399.0597 20.45754 3.77E-15
miR319-y 0.01 12342.0511 20.23515 4.75E-13
novel-m0010-3p 0.01 8521.8924 19.70081 3.80E-09
novel-m0028-3p 0.01 7346.459 19.48669 6.05E-08
miR-1546-x 0.01 5583.3088 19.09076 3.85E-06
miR-6882-x 0.01 5289.4505 19.01276 7.69E-06
novel-m0001-3p 0.01 4995.5921 18.9303 1.54E-05
novel-m0017-5p 0.01 4701.7338 18.84283 3.07E-05
miR-992-x 0.01 4701.7338 18.84283 3.07E-05
下调miRNA Down-regulated miRNAs
miR-4028-y 8211.4447 0.01 -19.6472765 4.77E-10
miR-4171-x 3079.2918 0.01 -18.2322391 0.00049
miR7787-y 2822.6841 0.01 -18.1067082 0.000979
miR-92-x 2566.0765 0.01 -17.9692047 0.0020
novel-m0011-3p 2309.4688 0.01 -17.8172015 0.0040
miR5782-y 2052.861 0.01 -17.6473 0.0078
novel-m0013-5p 2052.861 0.01 -17.6473 0.0078
novel-m0031-3p 2052.861 0.01 -17.6473 0.0078
novel-m0036-5p 2052.861 0.01 -17.6473 0.0078
miR-3533-y 1796.254 0.01 -17.4546 0.0156
novel-m0003-5p 1796.254 0.01 -17.4546 0.0156
novel-m0006-5p 1796.254 0.01 -17.4546 0.0156

Fig. 2

GO database annotation of target mRNAs of DEmiRNAs in AaM vs AaS comparison group"

Table 6

Top 10 pathways annotated by target mRNAs of DEmiRNAs in AaM vs AaS comparison group"

通路名称
Pathway name
通路 ID
Pathway ID
靶mRNA数
Number of target mRNAs
P
P value
新陈代谢通路Metabolic pathway ko01100 652 0.174
次级代谢物的生物合成Biosynthesis of secondary metabolites ko01110 285 5.63E-05
抗生素的生物合成Biosynthesis of antibiotics ko01130 212 0.002
微生物在不同环境中的代谢Microbial metabolism in diverse environments ko01120 172 0.001
氨基酸的生物合成Biosynthesis of amino acids ko01230 115 0.012
碳代谢Carbon metabolism ko01200 101 0.025
嘌呤代谢Purine metabolism ko00230 81 0.916
核糖体Ribosome ko03010 78 1.000
剪接体Spliceosome ko03040 77 0.861
RNA转运RNA transport ko03013 76 0.936

Fig. 3

Regulatory network of DEmiRNA-mRNA"

Fig. 4

RT-qPCR verification of DEmiRNAs"

[1] ARONSTEIN K A, MURRAY K D. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010,103(Suppl. 1):S20-S29.
doi: 10.1016/j.jip.2009.06.018
[2] MAXFIELD-TAYLOR S A, MUJIC A B, RAO S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS ONE, 2015,10(4):e0124868.
pmid: 25885679
[3] EVISON S E. Chalkbrood: Epidemiological perspectives from the host-parasite relationship. Current Opinion in Insect Science, 2015,10:65-70.
doi: 10.1016/j.cois.2015.04.015 pmid: 29588016
[4] SPILTOIR C F. Life cycle of Ascosphaera apis (Pericystis apis). American Journal of Botany, 1955,42(6):501-518.
doi: 10.1002/ajb2.1955.42.issue-6
[5] WIJAYAWARDENE N N, HYDE K D, LUMBSCH H T, LIU J K, MAHARACHCHIKUMBURA S S N, EKANAYAKA A H, TIAN Q, PHOOKAMSAK R. Outline of Ascomycota: 2017. Fungal Diversity, 2018,88:167-263.
doi: 10.1007/s13225-018-0394-8
[6] PÖGGELER S. Mating-type genes for classical strain improvements of ascomycetes. Applied Microbiology and Biotechnology, 2001,56(5/6):589-601.
doi: 10.1007/s002530100721
[7] FLORES J M, SPIVAK M, GUTIERREZ I. Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood. Veterinary Microbiology, 2005,108(1/2):141-144.
doi: 10.1016/j.vetmic.2005.03.005
[8] FLORES J M, GUTIÉRREZ I, ESPEJO R. The role of pollen in chalkbrood disease in Apis mellifera: Transmission and predisposing conditions. Mycologia, 2005,97(6):1171-1176.
doi: 10.3852/mycologia.97.6.1171 pmid: 16722211
[9] BARTEL D P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009,136(2):215-233.
doi: 10.1016/j.cell.2009.01.002 pmid: 19167326
[10] BURKLEW C E, XIE F U, ASHLOCK J, ZHANG B H. Expression of microRNAs and their targets regulates floral development in tobacco ( Nicotiana tabacum). Functional and Integrative Genomics, 2014,14(2):299-306.
doi: 10.1007/s10142-014-0359-2 pmid: 24448659
[11] KIDNER C A, MARTIENSSEN R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004,428(6978):81-84.
doi: 10.1038/nature02366 pmid: 14999284
[12] LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochromatic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75(5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621
[13] GRIMSON A, SRIVASTAVA M, FAHEY B, WOODCROFT B J, CHIANG H R, KING N, DEGNAN B M, ROKHSAR D S, BARTEL D P. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature, 2008,455(7217):1193-1197.
doi: 10.1038/nature07415 pmid: 18830242
[14] LLAVE C, KASSCHAU K D, RECTOR M A, CARRINGTON J C. Endogenous and silencing-associated small RNAs in plants. The Plant Cell, 2002,14(7):1605-1619.
pmid: 12119378
[15] MOLNÁR A, SCHWACH F, STUDHOLME D J, THUENEMANN E C, BAULCOMBE D C. MiRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 2007,447(7148):1126-1129.
doi: 10.1038/nature05903 pmid: 17538623
[16] ZHAO T, LI G, MI S, LI S, HANNON G J, WANG X J, QI Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes and Development, 2007,21(10):1190-1203.
doi: 10.1101/gad.1543507 pmid: 17470535
[17] CHEN D F, GUO R, XU X J, XIONG C L, LIANG Q, ZHENG Y Z, LUO Q, ZHANG Z N, HUANG Z J, KUMAR D, XI W J, ZOU X, LIU M. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017,621:40-50.
doi: 10.1016/j.gene.2017.04.022 pmid: 28427951
[18] GUO R, CHEN D F, DIAO Q Y, XIONG C L, ZHENG Y Z, HOU C S. Transcriptomic investigation of immune responses of the Apis cerana cerana larval gut infected by Ascosphaera apis. Journal of Invertebrate Pathology, 2019,166:107210.
doi: 10.1016/j.jip.2019.107210 pmid: 31211962
[19] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica. Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
[20] 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878.
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese)
[21] 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017,60(1):34-44.
ZHANG Z N, XIONG C L, XU X J, HUANG Z J, ZHENG Y Z, LUO Q, LIU M, LI W D, TONG X Y, ZHANG Q, LIANG Q, GUO R, CHEN D F. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017,60(1):34-44. (in Chinese)
[22] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, LI W D, KUMAR D, LIANG Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018,156:1-5.
doi: 10.1016/j.jip.2018.06.001 pmid: 29894727
[23] GUO R, CHEN D F, CHEN H Z, FU Z M, XIONG C L, HOU C S, ZHENG Y Z, GUO Y L, WANG H P, DU Y, DIAO Q Y. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018,678:17-22.
doi: 10.1016/j.gene.2018.07.076 pmid: 30077766
[24] 郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
doi: 10.13343/j.cnki.wsxb.20170535
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20170535
[25] JENSEN A B, ARONSTEIN K, FLORES J M, VOJVODIC S, PALACIO M A, SPIVAK M. Standard methods for fungal brood disease research. Journal of Apicultural Research, 2013,52(1): DOI: 10.3896/IBRA.1.52.1.13.
doi: 10.3896/IBRA.1.52.1.13 pmid: 24198438
[26] 郭睿, 杜宇, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 陈华枝, 耿四海, 周丁丁, 石彩云, 赵红霞, 陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络. 中国农业科学, 2018,51(21):4197-4209.
GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F. Differentially expressed microRNA and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. Scientia Agricultura Sinica, 2018,51(21):4197-4209. (in Chinese)
[27] 杜宇, 范小雪, 蒋海宾, 王杰, 范元婵, 祝智威, 周丁丁, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 陈大福, 郭睿. 微小RNA及其介导的竞争性内源RNA调控网络在意大利蜜蜂工蜂中肠发育过程中的潜在作用. 中国农业科学, 2020,53(12):2512-2526.
DU Y, FAN X X, JIANG H B, WANG J, FAN Y C, ZHU Z Z, ZHOU D D, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. The potential role of microRNAs and microRNA-mediated competitive endogenous networks during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2020,53(12):2512-2526. (in Chinese)
[28] RITCHIE W. microRNA target prediction. Methods in Molecular Biology, 2017,1513:193-200.
doi: 10.1007/978-1-4939-6539-7_13 pmid: 27807838
[29] REHMSMEIER M, STEFFEN P, HOCHSMANN M, GIEGERICH R. Fast and effective prediction of microRNA/target duplexes. RNA, 2004,10(10):1507-1517.
doi: 10.1261/rna.5248604 pmid: 15383676
[30] KRÜGER J, REHMSMEIER M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Research, 2006,34:W451-W454.
doi: 10.1093/nar/gkl243 pmid: 16845047
[31] ALLEN E, XIE Z X, GUSTAFSON A M, CARRINGTON J C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121(2):207-221.
doi: 10.1016/j.cell.2005.04.004 pmid: 15851028
[32] ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308
[33] CHEN C F, RIDZON D A, BROOMER A J, ZHOU Z H, LEE D H, NGUYEN J T, BARBISIN M, XU N L, MAHUVAKAR V R, ANDERSEN M R, LAO K Q, LIVAK K J, GUEGLER K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005,33(20):e179.
doi: 10.1093/nar/gni178 pmid: 16314309
[34] 郭睿, 杜宇, 周倪红, 刘思亚, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 耿四海, 周丁丁, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌胁迫后期的差异表达微小RNA及其靶基因分析. 昆虫学报, 2019,62(1):49-60.
GUO R, DU Y, ZHOU N H, LIU S Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, GENG S H, ZHOU D D, CHEN D F. Comprehensive analysis of differentially expressed microRNAs and their target genes in the larval gut of Apis mellifera ligustica during the late stage of Ascosphaera apis stress. Acta Entomologica Sinica, 2019,62(1):49-60. (in Chinese)
[35] ZHOU Q, WANG Z X, ZHANG J, MENG H M, HUANG B. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biology, 2012,116(11):1156-1162.
doi: 10.1016/j.funbio.2012.09.001 pmid: 23153806
[36] SHAO Y, TANG J, CHEN S L, WU Y H, WANG K, MA B, ZHOU Q M, CHEN A H, WANG Y L. MilR4 and milR16 mediated fruiting body development in the medicinal fungus Cordyceps militaris. Frontiers in Microbiology, 2019,10:83.
doi: 10.3389/fmicb.2019.00083 pmid: 30761116
[37] LAU A Y T, CHENG X, CHENG C K, NONG W, CHEUNG M K, CHAN R H, HUI J H L, KWAN H S. Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS ONE, 2018,13(9):e0198234.
doi: 10.1371/journal.pone.0198234 pmid: 30231028
[38] ZENG W P, WANG J, WANG Y, LING J, FU Y P, XIE J T, JIANG D H, CHEN T, LIU H Q, CHENG J S. Dicer-like proteins regulate sexual development via the biogenesis of perithecium-specific microRNAs in a plant pathogenic fungus Fusarium graminearum. Frontiers in Microbiology, 2018,9:818.
doi: 10.3389/fmicb.2018.00818 pmid: 29755439
[39] LIU T, HU J, ZUO Y, JIN Y, HOU J. Identification of microRNA-like RNAs from Curvularia lunata associated with maize leaf spot by bioinformation analysis and deep sequencing. Molecular Genetics and Genomics, 2016,291(2):587-596.
doi: 10.1007/s00438-015-1128-1 pmid: 26481645
[40] LAU S K, CHOW W N, WONG A Y, YEUNG J M, BAO J, ZHANG N, LOK S, WOO P C, YUEN K Y. Identification of microRNA-Like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Neglected Tropical Diseases, 2013,7(8):e2398.
doi: 10.1371/journal.pntd.0002398 pmid: 23991243
[41] LI J, HULL J J, LIANG S, WANG Q, CHEN L, ZHANG Q, WANG M, MANSOOR S, ZHANG X, JIN S. Genome-wide analysis of cotton miRNAs during whitefly infestation offers new insights into plant-herbivore interaction. International Journal of Molecular Sciences, 2019,20(21):e5357.
doi: 10.3390/ijms20215357 pmid: 31661835
[42] 熊翠玲, 杜宇, 陈大福, 郑燕珍, 付中民, 王海朋, 耿四海, 陈华枝, 周丁丁, 吴素珍, 石彩云, 郭睿. 意大利蜜蜂幼虫肠道的miRNAs的生物信息学预测及分析. 应用昆虫学报, 2018,55(6):1023-1033.
XIONG C L, DU Y, CHEN D F, ZHENG Y Z, FU Z M, WANG H P, GENG S H, CHEN H Z, ZHOU D D, WU S Z, SHI C Y, GUO R. Bioinformatic prediction and analysis of miRNAs in the Apis mellifera ligustica larval gut. Chinese Journal of Applied Entomology, 2018,55(6):1023-1033. (in Chinese)
[43] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, LIANG Q, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, KUMAR D. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018,49(5):660-670.
[44] 黄居敏, 张普照, 王芳, 李旸, 冯少俊, 杨明. 白僵菌的代谢产物及药理活性研究进展. 中国生化药物杂志, 2014,34(9):167-173.
HUANG J M, ZHANG P Z, WANG F, LI Y, FENG S J, YANG M. Advanced studies on metabolites and pharmacological of Beauveria bassiana. Chinese Journal of Biochemical and Pharmaceuticals, 2014,34(9):167-173. (in Chinese)
[45] CALVO A M, WILSON R A, BOK J W, KELLER N P. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 2002,66(3):447-459.
doi: 10.1128/mmbr.66.3.447-459.2002 pmid: 12208999
[46] CORNMAN R S, BENNETT A K, MURRAY K D, EVANS J D, ELSIK C G, ARONSTEIN K. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: Implications for host pathogenesis. BMC Genomics, 2012,13:285.
doi: 10.1186/1471-2164-13-285 pmid: 22747707
[47] WOLF J C, MIROCHA C J. Regulation of sexual reproduction in Gibberella zeae (Fusarium roxeum “Graminearum”) by F-2 (Zearalenone). Canadian Journal of Microbiology, 1973,19(6):725-734.
doi: 10.1139/m73-117 pmid: 4712507
[48] 李琼, 崔春来, 宋红生, 王四宝. Mro-miR-33在绿僵菌产孢中的作用. 菌物学报, 2017,36(6):671-678.
LI Q, CUI C L, SONG H S, WANG S B. The effects of mro-miR-33 on the conidial production in Metarhizium robertsii. Mycosystema, 2017,36(6):671-678. (in Chinese)
[49] 闫思源, 姜学军. 细胞自噬及真菌中自噬研究概述. 菌物学报, 2015,34(5):871-879.
YAN S Y, JIANG X J. Overview of autophagy and related research in fungi. Mycosystema, 2015,34(5):871-879. (in Chinese)
[50] KIKUMA T, KITAMOTO K. Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes. FEMS Microbiology Letters, 2011,316(1):61-69.
doi: 10.1111/j.1574-6968.2010.02192.x pmid: 21204928
[51] RICHIE D L, FULLER K K, FORTWENDEL J, MILEY M D, MCCARTHY J W, FELDMESSER M, RHODES J C, ASKEW D S. Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryotic Cell, 2007,6(12):2437-2447.
doi: 10.1128/EC.00224-07 pmid: 17921348
[52] ZHAO X, MEHRABI R, XU J R. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell, 2007,6(10):1701-1714.
doi: 10.1128/EC.00216-07 pmid: 17715363
[53] IGBARIA A, LEV S, ROSE M S, LEE B N, HADAR R, DEGANI O, HORWITZ B A. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Molecular Plant-Microbe Interactions, 2008,21(6):769-780.
pmid: 18473669
[54] CHEN X X, XU C, QIAN Y, LIU R, ZHANG Q Q, ZENG G H, ZHANG X, ZHAO H, FANG W G. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environmental Microbiology, 2016,18(3):1048-1062.
doi: 10.1111/1462-2920.13198 pmid: 26714892
[55] LECLERQUE A, WAN H , ABSCHÜTZ A, CHEN S, MITINA G V, ZIMMERMANN G, SCHAIRER H. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Current Genetics, 2004,45(2):111-119.
doi: 10.1007/s00294-003-0468-2 pmid: 14634789
[56] FANG W, PEI Y, BIDOCHKA M J. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology, 2006,52(7):623-626.
doi: 10.1139/w06-014 pmid: 16917517
[57] ZHANG Y J, ZHAO J J, XIE M, PENG D L. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains. Journal of Microbiological Methods, 2014,105:168-173.
doi: 10.1016/j.mimet.2014.07.033 pmid: 25107375
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[3] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[4] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[5] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[6] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[7] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[8] TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723.
[9] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
[10] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[11] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[12] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[13] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[14] ZHU JingJing,ZHOU XiaoLong,WANG Han,LI XiangChen,ZHAO AYong,YANG SongBai. Prediction and Verification of MicroRNAs Targeting Porcine Endoplasmic Reticulum Stress Pathway [J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179.
[15] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!